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1 Introduction

Many investors hold portfolios of assets that are traded over the counter (OTC). For such an

investor, are two OTC-traded assets substitutes or complements market liquidity-wise? Fol-

lowing a negative shock to one asset’s liquidity, will other assets become more or less liquid?

What happens to the cross section of liquidity after an uncertainty shock to an asset? Do

the answers to these questions differ depending on which empirical liquidity measure is used?

Through an interplay of empirical analysis and theoretical discourse, this paper embarks on

a comprehensive exploration of such questions related to cross-sectional liquidity within and

across OTC markets, delving into its nuanced drivers, participants’ decision-making processes,

and profound implications for measurement methodologies.

On the theoretical side, our paper makes a contribution to the search-based OTC market

literature by exploring the understudied area of managing portfolios containing multiple OTC

assets. More precisely, we construct a dynamic general equilibrium model, in which investors can

invest in portfolios of OTC assets. These assets are traded in a segmented, fully decentralized

market that operates via search and bilateral bargaining. The assets differ from one another

in their exposure to an aggregate risk factor and in the severity of search frictions in the

particular segment of the OTC market where they are traded (i.e., investors are subject to asset-

specific contact rates). In the empirical part of the paper, we calculate empirical counterparts

from transaction-level data for certain equilibrium objects related to market liquidity. By also

utilizing empirical proxies for asset-specific search friction and risk parameters, we test the

implications of our theoretical model. This analysis highlights the importance of studying a

model with arbitrary joint distribution of payoff risk and contact rates in the cross section of

assets.

In our theoretical model, a continuum of risk-averse investors with stochastic hedging needs

contact one another pairwise in different segments of the OTC market and bargain bilaterally

over the terms of trade including price and quantity of the asset that is traded in that partic-

ular market segment. When negotiating over the terms of trade, investors take as given the

equilibrium distribution of asset positions in order to evaluate the value of their outside option,

i.e., the value of continuing search. In turn, these negotiated terms generate the distribution

of asset positions. Thus, the distribution of investors’ positions and their strategies must be

jointly pinned down as a fixed point in the function space, which complicates the equilibrium

analysis. However, employing the characteristic function techniques and focusing on an asymp-

totic case in which investors are averse to systematic risk only, we show that the model is fully
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tractable.1

The presence of search frictions in our model in the sense of inability to instantly access a

competing counterparty makes investors’ current state a determinant of their marginal valua-

tion. This means that when bargaining over the terms of trade for an asset, an investor will

take into account her current state including her hedging need and her positions in all other

assets, unlike all other multi-asset OTC market models which allow investors to hold only one

of the many assets at a time. In the characterization of equilibrium, we show that an investor’s

current state can be summarized by a sufficient statistic which equals her hedging need type

plus the weighted sum of her (excess) inventories in all assets with weights being the assets’

exposure to the aggregate risk factor. We term this sufficient statistic “excess risk exposure”

because it is equal to the difference between the investor’s current exposure to systematic risk

and the per capita endowment of systematic risk in the economy at large. We derive all the

stationary equilibrium objects in closed form including investors’ valuations, terms of trade,

and the characteristic function of the distribution of investors’ excess risk exposures.

When each pair of buyer and seller contact, their negotiated trade quantity is determined

such that their excess risk exposures are pairwise equalized. This implies that investors tend

to trade safer assets in larger quantities, and vice-versa, riskier assets are traded in smaller

quantities. Therefore, controlling for the contact rate (i.e., the inverse of the exposure to search

frictions), safer assets have larger trade volume than riskier assets. However, high contact rate

in the market for a particular asset allows investors to have more frequent opportunities to

exchange that asset, and so tends to increase its trade volume. As a result, we show that

upward-sloping iso-trade-volume curves arise on the plane of systematic risk and contact rate

because systematic risk and contact rate have an opposite impact on equilibrium trade volume.

We argue that, if risk and contact rate are (locally) inversely related in the cross section of assets,

this can rationalize some of the puzzling empirical observations such as the apparent flees from

quality in the Euro-area government bond market and the non-monotonicity of liquidity in

credit rating in the US corporate bond market.2

In addition to the intuitive within-asset trade volume results explained above, we also obtain

1Praz (2014) and Üslü (2019) also use the same “source-dependent” risk aversion approach combined with
characteristic functions (Fourier transform) in their respective single-asset models. Although we have a multi-
asset model, our characterization is even more explicit than theirs because we do not assume any ex ante
heterogeneity in investors’ characteristics or asymmetric information. As a result, we are able to obtain an
explicit expression for the characteristic function of the distribution of investors’ excess risk exposures, while
Praz (2014) and Üslü (2019) can only characterize the moments explicitly.

2See Beber, Brandt, and Kavajecz (2009) and Geromichalos, Herrenbrueck, and Lee (2023) for further details
about these puzzling empirical facts.
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a general substitutability result regarding trade volume as a cross-asset comparative static. We

show that while a decline in the contact rate in a market decreases the equilibrium trade volume

in that market, it increases the volume in all other markets. As the contact rate in a particular

market declines, investors have less frequent opportunities in that market to equalize their

excess risk exposures, which means that there will be more misallocation in their excess risk

exposures when they meet in other markets. This raises the volume they trade in other markets.

This is an important cross-asset comparative static that could not be deduced from single-asset

models or from multi-asset models with independent asset payoffs, whose comparative statics

typically imply a positive relationship between contact rate and trade volume.3

As is the case with negotiated quantity, when each pair of buyer and seller contact, their

negotiated price also depends on their current excess risk exposures. This gives rise to equi-

librium price dispersion. We calculate two price-related measures of liquidity: price dispersion

and price impact. Price dispersion is defined to be the standard deviation of the equilibrium

price distribution, while price impact is defined to be price dispersion divided by the standard

deviation of the equilibrium quantity distribution. While the former is a natural definition for

price dispersion, the latter is a model-informed measure for price impact. We show that the

negotiated prices in equilibrium are equal to the mid-point of the negotiating parties’ marginal

valuations. Thus, a natural measure of price impact in a certain market segment is the sensitiv-

ity of an investor’s counterparty’s marginal valuation to the traded quantity of the asset traded

in that market segment. We show that, in equilibrium, this sensitivity measure coincides with

(a normalized version of) the ratio of price dispersion to quantity dispersion, and hence, we

define it to be price impact.

We find that, while a general substitutability holds regarding the effect of a change in the

contact rate of an asset on the trade volume of other assets, a general complementarity holds

regarding price dispersion and price impact. This is due to investors’ ability to hold multiple

OTC assets at the same time, which is a unique feature of our model. As a result of this

feature, the sensitivity of investors’ marginal valuation to excess risk exposure depends on the

total contact rate of all markets, i.e., the sum of asset-specific contact rates. Accordingly, price

dispersion and price impact in an individual market also depend on the total contact rate of

all markets, instead of the contact rate of that particular market only. In turn, we find that

a decline in the contact rate in a market increases the price dispersion and price impact in all

markets by the same factor. In other words, the cross-sectional differences in price dispersion

3See Üslü (2019), Hugonnier, Lester, and Weill (2022), and Li (2023), for example.
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and price impact are solely determined by risk differentials across assets, although the cross-

sectional trade volume patterns are determined by both risk and contact rate differentials.

To understand the extent to which the within-asset and cross-asset comparative statics

results summarized above hold in real-world OTC markets, we test our theoretical formulas

for trade volume, price dispersion, and price impact, in the cross section of bonds traded in

the US corporate bond market. The corporate bond market is a textbook example of an OTC

market where majority of trades are purely bilateral and subject to significant search frictions.

Overall, our results from empirical tests of liquidity are mostly consistent with the implications

of the theoretical model. We interpret this as pointing to the usefulness of the search-theoretic

approach as a unifying framework to study the determinants of endogenous liquidity differentials

across OTC assets, especially considering its ability to lead to parsimonious and tractable

models as exemplified by our theoretical model.4

In the last part of the paper, we broaden the scope of our empirical tests by utilizing

data from multiple asset classes, namely, from the bond and the credit default swap (CDS)

markets. We start by extending our theoretical model to allow for endogenous contact rate in

one market. This allows us to make causal prediction for the effect of liquidity in the CDS

market on the liquidity of the bond issued by the same CDS entity. Our results echo the cross-

market comparative statics of trade volume explained above: As the CDS market gets more

liquid, investors do not have to rely on the bond market as much. In turn, this reduces the

liquidity in the bond market. We show that the empirical correlations confirm such a negative

relation. In other words, we show that an entity with a deeper CDS market has a bond subject

to more severe search frictions. This is also consistent with the arguments of Oehmke and

Zawadowski (2017) that bond and CDS markets are alternative trading venues for hedging and

speculation.

The remainder of the paper is organized as follows. We next discuss how our paper relates

to the pertinent literature. Section 2 describes the model environment. Section 3 studies the

stationary equilibrium in this environment, while Section 4 discusses the main results about the

various endogenous measures of liquidity. Section 5 analyzes the extent to which our theoretical

findings are consistent with liquidity differentials across corporate bonds in practice. Section

6 presents further theoretical and empirical results on liquidity across asset classes. Section 7

4To our knowledge, there is no other dynamic model that studies bilateral trade or price impact in large
markets when investors are allowed to hold a rich portfolio of assets. State-of-the-art work only studied single-
asset dynamic environments (e.g., Sannikov and Skrzypacz, 2016) or multi-asset static environments (e.g.,
Malamud and Rostek, 2017).
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concludes.

Related literature Search-theoretic approach to OTC market structure, spurred by Duffie,

Gârleanu, and Pedersen (2005), has proven useful in analyzing the determinants and various

measures of market liquidity and become a leading approach in modeling OTC markets.5 See

Weill (2020) for a recent survey of the search-theoretic OTC market literature. Our paper

contributes to this literature by considering a multi-asset trading model, where investors are

allowed to hold portfolios of OTC assets. In particular, our model follows the approach of having

only search frictions like the single-asset models of Gârleanu (2009), Lagos and Rocheteau

(2009), Afonso and Lagos (2015), and Üslü (2019) and does not impose any restrictions on

portfolio holdings. This sets apart our model from the existing search-theoretic multi-asset OTC

models such as Vayanos and Wang (2007), Vayanos and Weill (2008), Weill (2008), Milbradt

(2017), An (2020), Li and Song (2021), and Sambalaibat (2022a), whose investors can only

hold an indivisible position in some asset. Thus, to our knowledge, our paper is the first to

analyze investors’ dynamic portfolio management strategies in OTC markets and the resulting

effect of asset characteristics in general equilibrium (GE). Li (2023) also studies portfolio choice

with multiple OTC assets and unrestricted holdings. Her model assumes independent asset

payoffs, and so, does not have any GE effects, while our one-factor model makes all assets

interdependent liquidity-wise.

Within the search-theoretic OTC market literature, our paper belongs to the group of fully

decentralized trading models with all-to-all trading, i.e., without any exogenously assigned

trading roles like dealer or customer. For single-asset, fully decentralized trading models, see

Afonso and Lagos (2015), Bethune, Sultanum, and Trachter (2016), Chang and Zhang (2019),

Farboodi, Jarosch, Menzio, and Wiriadinata (2019), Üslü (2019), Gabrovski and Kospentaris

(2021), Bethune, Sultanum, and Trachter (2022), Hugonnier, Lester, and Weill (2022), and Far-

boodi, Jarosch, and Shimer (2023), among others.6 Compared to these papers, our contribution

5Another leading approach to modeling OTC markets builds on network theory, e.g., Gofman (2011), Babus
and Hu (2017), Malamud and Rostek (2017), Aymanns, Georg, and Golub (2018), Babus and Kondor (2018),
Manea (2018), and Farboodi (2023). Some work also use a hybrid approach, integrating elements from search
and network models, e.g., Atkeson, Eisfeldt, and Weill (2015), Chang and Zhang (2019), Colliard and Demange
(2021), Colliard, Foucault, and Hoffmann (2021), Dugast, Üslü, and Weill (2022), and Frei, Capponi, and
Brunetti (2022).

6Similar to these papers, we do not assume ex ante who is a customer and who is a dealer. Instead, any
customer-like or dealer-like trading behavior emerges endogenously. Another approach in the literature is to
assume exogenously designated dealers operating either in a frictionless interdealer platform (e.g., Lagos and
Rocheteau, 2009, Pintér and Üslü, 2022, Kargar, Passadore, and Silva, 2023, and Li, 2023.) or in a frictional
interdealer platform (e.g., Hugonnier, Lester, and Weill, 2020, Sambalaibat, 2022b, and Yang and Zeng, 2023).
Because we focus on the aggregate implications of our model, introducing exogenously designated dealers would
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is to obtain cross-market comparative statics regarding market liquidity, which are not possible

to obtain in single-asset models. Similar to Farboodi, Jarosch, Menzio, and Wiriadinata (2019),

An (2020), Hendershott, Li, Livdan, and Schürhoff (2020), Hugonnier, Lester, and Weill (2020),

Shen, Wei, and Yan (2020), Bethune, Sultanum, and Trachter (2022), Brancaccio and Kang

(2022), Li (2023), Lu, Puzzelo, and Zhu (2023), and Pintér and Üslü (2023), not only do we

construct an OTC trading model, but we also empirically test our model’s key implications.

While these papers only test market-wide implications or test cross-sectional implications via

comparative statics of model parameters, our theoretical portfolio choice model with GE effects

allows us to formulate precise cross-sectional hypotheses and directly test them.

Malamud and Rostek (2017) and Aymanns, Georg, and Golub (2018) study static network-

based models of multi-asset OTC markets, where investors engage in one-shot trading game

in multiple segmented markets at the same time. Our dynamic model, instead, analyzes how

investors optimally manage their portfolios over time by fully internalizing the option value of

waiting and continuing search. Our paper is also related to the literature that studies price

impact in dynamic environments such as Chapter III of Praz (2014, co-authored with Julien

Cujean), Rostek and Weretka (2015), Sannikov and Skrzypacz (2016), Du and Zhu (2017), and

Antill and Duffie (2021), among others. Because this literature considers only single-asset envi-

ronments, our multi-asset model contributes to this literature by analyzing how dynamic portfo-

lio considerations affect price impact. There are also multi-asset models in the search-theoretic

literature on monetary economics. See, among others, Rocheteau (2011), Li, Rocheteau, and

Weill (2012), Hu (2013), Lagos (2013), Hu, In, Lebeau, and Rocheteau (2021), Geromichalos

and Herrenbrueck (2023), and Geromichalos, Herrenbrueck, and Lee (2023). These papers also

focus on analyzing liquidity differentials across assets. However, the concept of liquidity they

analyze is mainly the assets’ ability to serve as medium of exchange, while we focus on market

liquidity, i.e., the ease of sale and purchase.

Finally, our paper is related to the recent literature on demand-system asset pricing. In

particular, focusing on an asymptotic case in which investors are averse to only systematic risk

makes our model a one-factor model like Koijen and Yogo (2019a).7 While this literature mainly

focuses on the implications of ex ante heterogeneity among investors and estimating the different

demands of different class of investors from the holdings data, our paper is concerned with the

ex post heterogeneity that the market frictions create among ex ante homogeneous investors.

not change our qualitative results.
7See also Koijen and Yogo (2019b), Allen, Kastl, and Wittwer (2023), and Koijen, Richmond, and Yogo

(2023), among others.
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Because our main focus is on market liquidity in the cross section of OTC-traded assets, we

utilize transactions data, which is high-frequency, instead of the low-frequency holdings data.

2 Environment

Time is continuous and has an infinite horizon. We fix a probability space (Ω,F ,Pr) and a

filtration {Ft, t ≥ 0} of sub-σ-algebras satisfying the usual conditions (see Protter, 2004). An

economy is populated by a continuum of banks with a normalized mass of 1.8 Each bank

comprises of J ∈ Z+ traders, who are von Neumann-Morgenstern expected utility maximizers

with a constant absolute risk aversion (CARA) coefficient of γ > 0. Within a bank, all traders

share risk perfectly. Namely, a trader’s net consumption is equal to 1/J of her bank’s traders’

total consumption at any point in time. Traders discount the future at rate r > 0 and are also

able to borrow and lend a risk-free asset, which we designate as the numéraire, frictionlessly at

the same exogenous rate r.

There are also J risky assets, which are indexed by j ∈ J ≡ {1, 2, ..., J} and each of which

are in zero net supply. Banks can trade these assets over the counter. The assets’ cumulative

dividend flows, Dj, evolve according to

dDjt = mjdt+ σψjdBt + νjdBjt (1)

for j ∈ J , where Bt is a standard Brownian motion. The first term of (1) captures the

expected dividend flow. The second term captures the systematic risk and depends on the

aggregate volatility parameter σ. The last term captures the asset-specific risk; i.e., Bjts are

i.i.d. standard Brownian motion processes, which are also independent of Bt.

From its operations outside the explicitly modeled OTC markets, bank i ∈ [0, 1] has a

cumulative background income process Zi:

dZi
t = mZdt+ ηitσdBt,

where

dηit = σηdB
i
t. (2)

For j ∈ J , the exogenous object ηitσ
2ψj captures the instantaneous covariance between the

payoff of OTC asset j and the bank i’s background income. This covariance is time-varying and

8In practice, many non-bank institutions including hedge funds, pension funds, and insurance companies
engage in trading in the OTC markets. We follow Atkeson, Eisfeldt, and Weill (2015), Dugast, Üslü, and Weill
(2022), and Frei, Capponi, and Brunetti (2022) in labeling all of them as banks for brevity.
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heterogeneous across banks. Thus, this heterogeneity creates the fundamental gains from trade.

We interpret this heterogeneity as stemming from instantaneous hedging need differentials

across banks.

Importantly, the heterogeneity-driving coefficient ηit is stochastic itself. Banks continuously

receive idiosyncratic shocks to the covariance between the asset payoffs and their background

risk, which creates the motive to trade even in steady state.9 Arrival of these shocks is governed

as a diffusion by the standard Brownian motion processes Bi
t, which are i.i.d. in the cross section

of banks and independent of Bt and Bjts, as well. Since the assets are in zero net supply and

(2) does not have a drift term, all traded and non-traded risks net out to zero once aggregated

across all banks.

Trades are fully bilateral and take place in segmented markets for assets 1, 2, and so on.

There are J different types of traders, indexed by j. A trader indexed by j has specialization

in trading in market j. All banks are ex ante identical. Namely, each bank has a complete set

of traders, and so, has access to all OTC markets. In each market, pairwise meetings among

traders follow standard random search and matching dynamics.10 A given trader in market j

meets another trader at Poisson arrival times with intensity λj > 0, where 1/λj reflects the

expected trading delay in market j for j ∈ J . Conditional on a meeting in market j, the

counterparty is drawn randomly and uniformly from the pool of all traders operating in market

j.

Let a−j refer to a J − 1-dimensional vector that represents a bank’s asset positions in all

markets except for j. A meeting in market j between the trader who works for bank (η, aj, a−j)

and another trader who works for bank (η′, a′j, a
′
−j) is followed by a bargaining process over

quantity qj and unit price Pj. The resulting number of assets that the trader from the former

bank purchases is denoted by qj
[
(η, aj, a−j), (η

′, a′j, a
′
−j)
]
. Thus, her bank’s position in asset j

will become aj + qj
[
(η, aj, a−j), (η

′, a′j, a
′
−j)
]

after this trade, while her counterparty’s bank’s

position in asset j will become a′j − qj
[
(η, aj, a−j), (η

′, a′j, a
′
−j)
]
. The per unit price, the bank

(η, aj, a−j) will pay, is denoted by Pj
[
(η, aj, a−j), (η

′, a′j, a
′
−j)
]
. The specific bargaining protocol

we employ is the axiomatic bargaining à la Nash (1950) in which traders are symmetric in their

bargaining powers.

9To generate trade volume, Lo, Mamaysky, and Wang (2004), Chapter III of Praz (2014, co-authored with
Julien Cujean), and Sannikov and Skrzypacz (2016) also utilize hedging needs that follow diffusion processes.
Antill and Duffie (2021) allow for Lévy processes which include pure jump, pure diffusion, and jump-diffusion
processes.

10See Duffie, Qiao, and Sun (2017) for a formal treatment of the existence of continuous-time independent
random matching in a continuum population. See also Sun (2006), Duffie and Sun (2007), and Duffie and Sun
(2012) for discrete-time analogues.
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3 Equilibrium

We solve for the equilibrium of the economy described in the previous section in two steps. First,

we study a “partial equilibrium” determination of banks’ stationary trading rules by taking as

given the dynamics of the joint distribution of banks’ types and asset positions, denoted by Φ.

In the second part, we endogenize the dynamics of the equilibrium joint distribution generated

by banks’ stationary optimal trading rules.

3.1 Trader’s problem

Let a ∈ RJ denote the vector of a bank’s asset positions. Let U j (W, η, a) and U j (W, η, ak, a−k),

that we use interchangeably, both refer to the maximum attainable continuation utility of a

type-j trader who works for a bank of type (η, a) with current numéraire holding of W . They

satisfy

U j (W, η, a) = sup
c

Et

−∞∫
t

e−r(s−t)e−γcsds

∣∣∣∣∣∣Wt = W, ηt = η, at = a

 ,
subject to

dWt = (rWt − ct − c̃t +mZ) dt+ ηtσdBt +
J∑
k=1

{akt−dDkt − Pk [(ηt−, at−) , (η′t, a
′
t)] dakt} ,

dakt =

{
qk [(ηt−, at−) , (η′t, a

′
t)] if (η′t, a

′
t) is contacted in market k

0 if no contact in market k,

ct =
c̃t

J − 1
,

where

{qk [(η, a) , (η′, a′)] , Pk [(η, a) , (η′, a′)]}

= arg max
q,P

[Uk (W − Pq, η, ak + q, a−k)− Uk (W, η, ak, a−k)]
1
2

[Uk
(
W ′ + Pq, η′, a′k − q, a′−k

)
− Uk

(
W ′, η′, a′k, a

′
−k
)
]
1
2 , (3)

subject to

Uk (W − Pq, η, ak + q, a−k) ≥ Uk (W, η, ak, a−k) ,

Uk
(
W ′ + Pq, η′, a′k − q, a′−k

)
≥ Uk

(
W ′, η′, a′k, a

′
−k
)

.
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Thanks to the translation invariance property of CARA preferences, terms of trade are inde-

pendent of numéraire holdings as will be clear shortly. Therefore, in writing down the dynamic

budget constraint, the law of motion for asset positions, and the Nash product above, we

dropped W and W ′ from the arguments of terms of trade functions. To prevent Ponzi schemes

from arising in the optimal solution, we impose the transversality condition

lim
T→∞

e−r(T−t)Et
[
e−rγ

WT
J

]
= 0.

We use the technique of stochastic dynamic programming to derive the optimal rules. As-

suming sufficient differentiability and applying the Ito’s lemma for Lévy processes, the trader’s

value function U j (W, η, a) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = sup
c

{
−e−γc + U j

W (W, η, a)

(
rW − c− c̃+mZ +

J∑
k=1

akmk

)

+
1

2
U j
WW (W, η, a)

(
η2σ2 + 2ησ2

J∑
k=1

ψkak + 2σ2

J∑
l=1

J∑
k>l

ψlψkalak + σ2

J∑
k=1

ψ2
ka

2
k +

J∑
k=1

ν2
ka

2
k

)

+
1

2
U j
ηη (W, η, a)σ2

η − rU j (W, η, a) + U̇ j (W, η, a)

+
J∑
k=1

2λk

∫
R

∫
RJ

[
U j (W − qk (µ, µ′)Pk (µ, µ′) , η, ak + qk (µ, µ′) , a−k)

−U j (W, η, ak, a−k)
]

Φ (da′, dη′)

)}
, (4)

subject to

c =
c̃

J − 1
,

where µ ≡ (η, a) and µ′ ≡ (η′, a′).

Note that the HJB equation (4) is written under the assumption that optimal consump-

tion is a coalitional choice, although a trader’s optimal trading behavior depends only on her

own continuation utility. In other words, not only does (4) pin down the optimal consump-

tion of trader j but also every other trader’s optimal consumption level with perfect equality

constraint.11 Thus, any optimizer of the constrained HJB equation (4) must satisfy

cj (W, η, a) = cj
′
(W, η, a) (5)

11Alternatively, one can think of traders’ optimal consumption being determined by a multilateral proportional
bargaining à la Kalai (1977) in which traders get to consume the same amount as one another.
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for all (j, j′) ∈ J 2.

Noting that (4) is symmetric across traders, we look for a symmetric solution in which

U j (W, η, a) = U (W, η, a) for all j ∈ J . We solve (4) by making the standard Ansatz

U (W, η, a) = −e−
rγ
J (W+V (η,a)+V ),

where

V =
1

r

(
mZ +

J log r

γ

)
is a constant and V (η, a) is the bank’s wealth-equivalent continuation value that will determine

the terms of trade. Indeed, a natural interpretation following from the Ansatz is that the total

flow value of a bank, r
(
W + V (η, a) + V

)
, is distributed equally to its J traders each of whom

has the CARA coefficient of γ.

Using the Ansatz, we find that a trader’s optimal consumption is

c = − log r

γ
+
r

J

(
W + V (η, a) + V

)
.

Uniqueness of the optimal consumption implies that the coalitional consistency condition (5)

is satisfied. Substituting c into (4) and dividing by rγ
J
U (W, η, a), we find at steady state that

(4) is satisfied if and only if

rV (η, a) =
J∑
j=1

mjaj −
1

2

rγ

J
σ2

(
η2 + 2η

J∑
j=1

ψjaj + 2
J∑
j=1

J∑
k>j

ψjψkajak +
J∑
j=1

ψ2
ja

2
j

)

− 1

2

rγ

J

J∑
j=1

ν2
j a

2
j −

1

2
σ2
η

[rγ
J

(Vη (η, a))2 − Vηη (η, a)
]

+
J∑
j=1

2λj

∫
R

∫
RJ

1− e− rγJ [V (η,aj+qj(µ,µ
′),a−j)−V (η,aj ,a−j)−qj(µ,µ′)Pj(µ,µ′)]

rγ
J

Φ (da′, dη′)

 . (6)

Terms of bilateral trades, qj (µ, µ′) and Pj (µ, µ′), maximize the Nash product (3). By

dividing by U (W, η, a)
1
2 U (W ′, η′, a′)

1
2 , we simplify (3) as

{qj [(η, a) , (η′, a′)] , Pj [(η, a) , (η′, a′)]}

= arg max
q,P

[1− e−
rγ
J

[V (η,aj+q,a−j)−V (η,aj ,a−j)−qP ]]
1
2 [1− e−

rγ
J [V (η′,a′j−q,a′−j)−V (η′,a′j ,a′−j)+qP ]]

1
2 ,

subject to

1− e−
rγ
J

[V (η,aj+q,a−j)−V (η,aj ,a−j)−qP ] ≥ 0,

1− e−
rγ
J [V (η′,a′j−q,a′−j)−V (η′,a′j ,a′−j)+qP ] ≥ 0,

12



which verifies that there are no wealth effects. Solving this problem is relatively straightfor-

ward: We set up the Lagrangian of this problem. Then using the first-order and Kuhn-Tucker

conditions, the trade quantity qj [(η, a) , (η′, a′)] solves

V (j) (η, aj + q, a−j) = V (j)
(
η′, a′j − q, a′−j

)
, (7)

where V (j) stands for the partial derivative with respect to the argument representing the

position in asset j. And, the negotiated price Pj [(η, a) , (η′, a′)] is determined such that the

joint trade surplus is split equally between the negotiating parties:

P =
V (η, aj + q, a−j)− V (η, aj, a−j)−

(
V
(
η′, a′j − q, a′−j

)
− V

(
η′, a′j, a

′
−j
))

2q
(8)

if V (j) (η, aj, a−j) 6= V (j)
(
η′, a′j, a

′
−j
)
; and P = V (j) (η, aj, a−j) if V (j) (η, aj, a−j) = V (j)

(
η′, a′j, a

′
−j
)
.

From (6), (7), and (8), one can see that the bargaining between two traders is equivalent to a

bargaining between the traders’ respective banks where V is the banks’ value function and γ
J

is the banks’ effective risk aversion.

Letting γB = γ
J

and substituting the pricing function (8) into (6), we get

rV (η, a) =
J∑
j=1

mjaj −
1

2
rγBσ

2

(
η2 + 2η

J∑
j=1

ψjaj + 2
J∑
j=1

J∑
k>j

ψjψkajak +
J∑
j=1

ψ2
ja

2
j

)

− 1

2
rγB

J∑
j=1

ν2
j a

2
j −

1

2
σ2
η

[
rγB (Vη (η, a))2 − Vηη (η, a)

]
+

J∑
j=1

2λj

∫
R

∫
RJ

1− e−
rγB
2 [V (η,aj+qj(µ,µ

′),a−j)−V (η,aj ,a−j)+V (η′,a′j−qj(µ,µ′),a′−j)−V (η′,a′j ,a′j)]

rγB

Φ (da′, dη′)

)
, (9)

subject to (7).

In order to obtain an asymptotic solution of Equation (9) in closed form, we follow Üslü

(2019) and calculate the limit as the CARA coefficient vanishes and the aggregate volatility goes

to infinity at the same speed. Mathematically, this leads to the first-order linear approximation

1−e−rγBx
rγB

≈ x that ignores terms of order higher than 1 in [V (η, aj + q, a−j)− V (η, aj, a−j)].
12

Economically, this approximation can be understood in terms of source-dependent risk aversion;

i.e., we assume that banks are averse towards systematic risk (risk generated byBt in the model),

12The same approximation is also used by Biais (1993), Duffie, Gârleanu, and Pedersen (2007), Vayanos and
Weill (2008), Gârleanu (2009), and Praz (2014).
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while they are neutral towards other types of risk. The assumption does not suppress the impact

of risk aversion because the instantaneous mean-variance benefit function (12) associated with

asset positions possesses a negative definite quadratic part. Therefore, as is formally stated in

the lemma below, this assumption focuses the bank’s risk aversion on systematic diffusion risk

and eliminates aversion to idiosyncratic diffusion risks and jump risks caused by the Poisson

arrival of trade opportunities.

Lemma 1. Fix parameters γB and σ and let σ = σ
√
γB/γB. Banks’ stationary value function

solves the following HJB equation in the limit as γB → 0:

rV (η, a) =
J∑
j=1

mjaj −
1

2
rγBσ

2

(
η2 + 2η

J∑
j=1

ψjaj + 2
J∑
j=1

J∑
k>j

ψjψkajak +
J∑
j=1

ψ2
ja

2
j

)

+
1

2
σ2
ηVηη (η, a) +

J∑
j=1

λj∫
R

∫
RJ

[V (η, aj + qj (µ, µ′) , a−j)− V (η, aj, a−j)

+V
(
η′, a′j − qj (µ, µ′) , a′−j

)
− V

(
η′, a′j, a

′
−j
)]

Φ (da′, dη′)

)
, (10)

subject to (7).

Notice that the quantity which solves (7) is also the maximizer of the joint trade surplus;

i.e.,

qj [(η, a) , (η′, a′)]

= arg max
q

V (η, aj + q, a−j)− V (η, aj, a−j) + V
(
η′, a′j − q, a′−j

)
− V

(
η′, a′j, a

′
−j
)
.

Using this and ignoring bars, (10) can be written as

rV (η, a) = u (η, a) +
1

2
σ2
ηVηη (η, a)

+
J∑
j=1

λj∫
R

∫
RJ

max
q

[
V (η, aj + q, a−j)− V (η, aj, a−j) + V

(
η′, a′j − q, a′−j

)
−V

(
η′, a′j, a

′
−j
)]

Φ (da′, dη′)

)
, (11)

where

u (η, a) ≡mTa− 1

2
rγBσ

2
(
η2 + 2ηψTa + aTΨa

)
(12)
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is the instantaneous mean-variance benefit to the bank from holding the portfolio a when of

type η,

m ≡ [m1 m2 ... mJ ]T ,

ψ ≡ [ψ1 ψ2 ... ψJ ]T ,

and

Ψ ≡ ψTψ.

In order to solve for V (η, a), we follow the method of undetermined coefficients. The

complete solution is given in Theorem 1. Since (11) is a flow Bellman equation with a negative

definite linear-quadratic return function, the solution V (η, a) itself inherits the negative definite

linear-quadratic functional form as well. As a result, to find the stationary equilibrium value of

V (η, a), we are required to use the cross-sectional mean of the linear part and of the quadratic

part of the return function, i.e., E [a′] and E
[
(η′)2 + 2η′ψTa′ + (a′)T Ψa′

]
, respectively, instead

of the entire joint distribution Φ (a′, η′).

What is more striking is that determining the banks’ equilibrium trading behavior does not

require calculating any moment of the endogenous distribution of asset positions. To see this,

one can take the derivative of (11) with respect to a by applying the envelope theorem and

arrive at the following vector of partial derivatives:

r
∂V

∂a
(η, a) = m− rγBσ2 (ηψ + Ψa)

+
J∑
k=1

λk∫
R

∫
RJ

[
∂V

∂a
(η, ak + qk [(η, a) , (η′, a′)] , a−k)−

∂V

∂a
(η, a)

]
Φ (da′, dη′)

 . (13)

Equation (13) provides us with a flow Bellman equation for the vector of marginal valuations,

where the jth element of ∂V
∂a

(η, a) is the marginal valuation for asset j, V (j) (η, a). As can be

seen, the flow Bellman equations for the marginal valuation have a return function that is linear

and separable in η and all ajs for j ∈ J . In turn, the FOC (7) for Nash bargaining and (13)

imply that V (j) (η, a) is itself linear and separable in all of its arguments. Thus, calculating the

equilibrium value of the second line of (13) requires only the first moment of the asset holding

distribution for assets j ∈ J , which equals the exogenous supply of those assets by market

clearing: E [a′] = 0. The following theorem establishes the optimal trading behavior of banks

at steady state.
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Theorem 1. Let λ =
J∑
k=1

λk and

θ (η, a) = η +ψT (a− E [a′]) .

The unique quadratic stationary value function that solves (11) is

V (η, a) =
γBσ

2

2r + λ

(
−σ2

η +
λ

2
E
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
])
− λ γBσ

2

2r + λ
ψTE [a′] η

+

(
1

r
m− λ γBσ

2

2r + λ
ψTE [a′]ψ

)T
a− rγBσ

2

2r + λ

(
η2 + 2ηψTa + aTΨa

)
, (14)

Thus, at steady state, banks’ marginal valuations, individual trade sizes, and transaction prices

are given by:

∂V

∂a
(η, a) =

1

r

∂u

∂a
(0,E [a′])− rγBσ

2

r + λ/2
θ (η, a)ψ, (15)

qj [(η, a) , (η′, a′)] =
θ (η′, a′)− θ (η, a)

2ψj
, (16)

and

Pj [(η, a) , (η′, a′)] = V (j)

(
η + η′

2
,
a + a′

2

)
=
V (j) (η, a) + V (j) (η′, a′)

2
, (17)

respectively.

Equation (15) reveals important information about the effect of OTC frictions. In a fric-

tionless market, the equilibrium marginal valuation would not depend on the current state as

banks would equalize their marginal valuation instantly. The frictionless case is achieved in

the limit as λ → ∞. When all λks are finite, banks’ marginal valuation is dependent on their

current state as well. This essentially reflects the time cost of search. When negotiating a

trade, traders rationally expect that their banks will spend some time with their post-trade

portfolio as a result of limited trading opportunities, even if their preferred portfolio becomes

very different. Therefore, this situation creates deviation of the marginal valuation from what

would obtain in a frictionless benchmark case.

Combining (15) with the FOC (7) for Nash bargaining, one sees that traders’ bilateral trade

quantities are determined such that their banks’ θs are pairwise equalized. Thus, the com-

posite type θ serves as a sufficient statistic for banks’ optimal trading behavior. We name θ

a bank’s excess risk exposure because it is equal to the difference between the bank’s expo-

sure to systematic risk, η + ψTa, and the per-capita systematic risk in the economy at large,
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ψTE [a′], which is assumed to be zero for simplicity. Equations (16) and (17) provide us with

explicit expression for the bilateral trade sizes and prices. One sees from (16) that the larger

the difference between the bargaining parties’ excess risk exposures, the larger the trade size

implied by the equalization of their post-trade excess risk exposures. In addition, the larger

the systematic risk exposure of the traded asset, the smaller the trade size. As expected, banks

must exchange smaller quantity of an asset to equalize their excess risk exposures if per-unit

systematic risk content of the asset is larger. Finally, (17) tells us that the bilateral trade price

is equal to the trading banks’ post-trade marginal valuation, which equals the midpoint of their

initial marginal valuations due to symmetric bargaining powers and linear marginal valuations.

3.2 Dynamics of the distribution of banks’ states

Theorem 1 shows that the excess risk exposure θ is a sufficient statistic for banks’ equilibrium

trading behavior. Furthermore, as mentioned above, the equilibrium value function V (η, a)

depends only on two particular moments calculated from the equilibrium distribution: E [a′]

and E
[
(η′)2 + 2η′ψTa′ + (a′)T Ψa′

]
. The former is totally pinned down by the market-clearing

conditions E [a′] = 0, and so, the latter is equal to E
[
(θ′)2]. Therefore, determining the equi-

librium dynamics of θ is sufficient to analyze the banks’ optimal trading and their equilibrium

value functions. Accordingly, what we do next is calculate the distribution of θ across banks

instead of the joint distribution of banks’ hedging need types η and their portfolios a.

Lemma 2. Let λ =
J∑
k=1

λk. If traders trade according to the trade size function (16), the pdf

g (·) of banks’ excess risk exposures satisfies the following Kolmogorov Forward Equation:

.
g (θ) =

1

2
g′′ (θ)σ2

η − 2λg (θ) + 4λ

∫
R

g (θ′) g (2θ − θ′) dθ′ (18)

for all θ ∈ R,∫
R

g (θ) dθ = 1, (19)

and ∫
R

θg (θ) dθ = 0. (20)

Equation (19) holds because g (·) is a pdf. Equation (20) is implied by the market-clearing

conditions and the fact that η does not have a drift. Equation (18) has the usual inflow-

outflow interpretation. The first term represents the net inflow due to the diffusion process

17



that η follows. The second and third terms represent the (gross) outflow and the (gross)

inflow due to trading, respectively. Banks with the current excess risk exposure of θ receive

trading opportunities at the Poisson rate of 2λ and this gives rise to the outflow term −2λg (θ).

The third term is a convolution integral because any bank of type θ′ can become of type

θ following a trade with the “right” counterparty. It is easy to see from Theorem 1 that

θ′ + ψj qj (θ′, 2θ − θ′) = θ, and hence, the right counterparty in this context is a counterparty

of type 2θ − θ′. Because both the bank with the initial type of θ′ and the one with the initial

type of 2θ − θ′ become of type θ after trading with each other, the coefficient in front of the

convolution integral is 4λ. Since the convolution integral complicates the computation of the

pdf, we will make use of the characteristic function (Lukacs, 1970, p. 5):13

ĝ (z) =

∫
R

eizθg (θ) dθ.

Theorem 2. Let λ =
J∑
k=1

λk and let ĝ (·) be the characteristic function of the equilibrium pdf

g (·) of excess risk exposures. If traders trade according to the trade size function (16), ĝ (·)
satisfies the system

˙̂g (z) = −
(

1

2
σ2
ηz

2 + 2λ

)
ĝ (z) + 2λ

[
ĝ
(z

2

)]2

(21)

for all z ∈ R,

ĝ (0) = 1, (22)

and

d

dz
ĝ (0) = 0. (23)

At steady state, the characteristic function admits the following explicit expression:

ĝ (z) =
∞∏
k=0

(
1

1 +
σ2
η

4k+1λ
z2

)2k

. (24)

From (24), one sees that as ση√
λ

goes to zero, ĝ (z) approaches 1, which is the characteristic

function of the degenerate distribution with the mass point at θ = 0. This degenerate distri-

bution would obtain if banks were to trade in a continuous Walrasian market. Thus, ση√
λ

can

13Duffie and Manso (2007), Praz (2014), Andrei and Cujean (2017), and Üslü (2019), among others, also
made use of characteristic functions or Fourier transforms to deal with the convolution integral in the context
of search and matching models.

18



be understood as a measure of misallocation resulting from the frictional structure of OTC

trading. Indeed, if ση is larger, this means that at any instant the exogenous stochastic process

of η makes ηs more dispersed in the cross section of banks, which in turn leads to a larger

cross-sectional dispersion of banks’ excess risk exposures, θ. On the other hand, if λ is larger,

banks have more frequent opportunities to make their θs closer together, which implies a lower

dispersion of θs. In the limit as λ goes to infinity, banks enjoy infinitely frequent opportunities

to make their θs closer together so they successfully equalize them at θ = 0, which coincides

with the frictionless benchmark allocation.
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Figure 1: Equilibrium density function of banks’ excess risk exposure, θ, for varying degrees
of “misallocation.”

Using the system (21)-(23), together with ˙̂g (z) = 0, it is possible to derive recursively all

moments of the stationary excess risk exposure distribution (Lukacs, 1970, p. 21):

E [θn] = i−n
[
dn

dzn
ĝ (z)

]
z=0

. (25)

The following corollary reports results about the first four moments.

Corollary 3. At steady state, banks’ excess risk exposure, θ, has a symmetric, mean-zero

distribution with a standard deviation of ση√
λ

and an excess kurtosis of 6
7
.

Utilizing the same technique (25) in Section 4, we derive in closed form proxies for important

dimensions of market il/liquidity including price dispersion, price impact, and sharp bounds for
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trade volume. One can also utilize the closed-form characteristic function (24) and invert it to

numerically obtain the equilibrium pdf in Figure 1. Thanks to the parsimoniousness of (24),

ση/
√
λ alone determines the entire pdf, which is also equal to the standard deviation as stated

in Corollary 3.

4 Results

In this section, we derive certain endogenous equilibrium objects that are related to market

liquidity and have direct counterparts easily calculated from transaction-level data.

4.1 Trade volume

In the previous section, we have established that, as a result of search frictions, there is a

non-degenerate distribution of excess risk exposures in the cross section of banks. According to

our bilateral matching protocol, there is a measure λj of pairwise meetings among these banks

at any instant in market j, in which each pair of banks bilaterally equalize their excess risk

exposures by trading the quantity (16) stated in Theorem 1. Thus, instantaneous aggregate

trading volume in market j can be calculated as

Vj = λj

∫
R

∫
R

|qj (θ, θ′)| g (θ′) g (θ) dθ′dθ. (26)

By using Theorem 1 and Theorem 2, we arrive at the following proposition, which provides us

with a closed-form formula for equilibrium trade volume.

Proposition 4. Trade volume in market j in the stationary equilibrium is

Vj =
λj
|ψj|

1

π

∫
R++

1

z2

1−
∞∏
k=0

(
1

1 +
σ2
η

4k+1λ
z2

)2k+1
 dz. (27)

Trade volume in market A relative to trade volume in market B is

VA
VB

=
λA
λB

|ψB|
|ψA|

. (28)

Equation (27) shows that four parameters, ση, λ, λj, and |ψj|, together determine the

trade volume in market j. The integral term is a measure of how dispersed banks’ excess risk

exposures are, which is increasing in
σ2
η

λ
, i.e., how intensely banks’ hedging need changes relative

to how frequently they can trade in some market. The rate of meetings in market j, λj, has

two opposing effects on trading volume. First, it has a direct positive effect, i.e., as traders
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meet more frequently in market j, they can exchange more of asset j in total. Second, it has

an indirect negative effect through λ, i.e., as λj increases, the equilibrium misallocation, ση√
λ
,

decreases and this depresses the trade volume. However, the former effect dominates, and λj

correlates positively with trading volume in market j. The systematic risk of asset j, |ψj|, has

a negative impact on trade volume by decreasing the individual trade sizes. Indeed, trading

an asset with large systematic risk leads to a large movement in excess risk exposures, and

hence, banks trade these assets in smaller quantities when trying to equalize their excess risk

exposures through bilateral trade.

One virtue of our model is to demonstrate how the cross section of trade volume is deter-

mined jointly by arbitrary combinations of asset quality (i.e., less exposure to risk) and asset

liquidity (i.e., less exposure to search frictions) and also to shed light on some of the puzzling

evidence documented in the empirical literature. It is common that a safer asset has also less

exposure to search frictions, but there are counter-examples studied in the fixed-income lit-

erature. Geromichalos, Herrenbrueck, and Lee (2023), for example, brought attention to the

case of AAA-rated vs. AA-rated US corporate bonds. Post-crisis regulations have substantially

increased the difficulty of attaining the AAA rating, and so, the resulting dearth of outstanding

bonds has made it more difficult to buy and sell these bonds. As a result, trade volume of

AAA-rated bonds has become smaller than that of AA-rated, although AAA-rated bonds are

still safer than AA-rated bonds. From (28), we see that the relative volume in market A may

become smaller than one, following a sharp decline in λA, as long as λA/λB becomes smaller

than |ψA/ψB|. That is to say, a safer asset A can be traded in a smaller volume (per bond) than

a riskier asset B as long as buying and selling A is substantially harder compared to B. Another

example was presented by Beber, Brandt, and Kavajecz (2009) in the Euro-area government

bond market, which features a unique negative correlation between credit quality and liquidity

across countries. Similar to the case of AAA-rated vs. AA-rated US corporate bonds, Italian

government bonds have high trading volume (per bond) due to their abundance stemming from

Italy’s lower fiscal discipline, while lower fiscal discipline at the same time makes Italian bonds

more risky.

Although (27) is an explicit expression for trade volume, it is not straightforward to study

its limiting properties, especially for λj, because the integral cannot be computed exactly. To

overcome this difficulty, we calculate sharp lower and upper bounds for trade volume using

results from the recent probability theory literature.

Corollary 5. Trade volume in market j in the stationary equilibrium satisfies the following
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inequalities:

1

4

√
7

3

λj
|ψj|

ση√
λ
≤ Vj ≤

2

π

λj
|ψj|

ση√
λ
. (29)

Hence,

lim
λj→∞

Vj = lim
|ψj |→0

Vj = lim
ση→∞

Vj =∞,

lim
λj→0
Vj = lim

|ψj |→∞
Vj = lim

ση→0
Vj = 0,

and

lim
λk→∞

Vj = 0

for all k ∈ J such that k 6= j.

Corollary 5 gives us interesting limiting results. As the systematic risk of asset j approaches

zero, banks trade it in increasingly larger quantities to equalize their excess risk exposures, and

hence, the trading volume of asset j approaches infinity. Vice-versa, as the systematic risk of

asset j approaches infinity, its trading volume approaches zero because trading even a small

quantity leads to a large change in banks’ excess risk exposures. More interestingly, the effect

of λj and λk for k 6= j on trade volume in market j in the limit are the opposite. As λk for k 6= j

approaches infinity, banks’ valuations approach the frictionless benchmark valuations and the

distribution of excess risk exposures approaches the degenerate distribution in which there is no

misallocation. As a result, banks do not trade asset j in the limit because trading the infinitely

liquid asset k already allows them to obtain their first-best risk exposure. If λj approached

infinity, the same effect would be observed on the equilibrium level of misallocation. However,

this would not dry up the trading in market j. On the contrary, the reason why banks can

achieve the degenerate distribution of excess risk exposures in this case is that they trade in

market j with infinite intensity, which implies that trading volume in market j goes to infinity

while volume in all other markets go to zero. This is an interesting cross-market implication

of decline of search frictions in one market that would not obtain in single-asset OTC models.

This is one of the implications of our model that we test in Section 5.

4.2 Price dispersion

As is typical in this class of models, different trader pairs trade at different prices because the

lack of immediate access to a competing counterparty is reflected as a discount or premium
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in the bilaterally negotiated prices. Therefore, the law of one price does not obtain in the

frictional OTC market equilibrium. An interesting equilibrium object to calculate is price

dispersion, which also attracted attention in empirical research with transaction-level data

from various OTC markets becoming more widely available to researchers.14 As the measure of

price dispersion, we calculate in closed form the standard deviation σP of the equilibrium price

distribution.

Proposition 6. Price dispersion in market j measured by the standard deviation of the sta-

tionary equilibrium price distribution is

σPj =
1√
2

rγBσ
2 |ψj|

r + λ/2

ση√
λ
. (30)

Price dispersion in market A relative to price dispersion in market B is

σPA
σPB

=
|ψA|
|ψB|

. (31)

One advantage of our model relative to the models that restrict banks’ asset positions to

{0, 1} such as Hugonnier, Lester, and Weill (2022) and Shen, Wei, and Yan (2020) is the

following. In those models, the standard deviation of price is not available in closed form, but

the difference between the maximum and the minimum price. From an econometric point of

view, one would like a measure that takes into account the distributional effect; i.e., trades

that are more likely to happen should have higher weight than trades that are less likely, in the

calculation of price dispersion. Our price dispersion measure (30) takes into consideration this

distributional impact.

Our price dispersion measure (30) is the product of two factors. The first factor captures

the sensitivity of transaction prices in market j to banks’ excess risk exposures, which decreases

with λ. That λ is finite is the reason why there is a deviation from the law of one price. The

second factor, common with the trade volume (29), captures the misallocation. An increase

in λ reduces the equilibrium level of misallocation so banks’ marginal valuations become less

dispersed, so does price dispersion.

The relative price dispersion measure (31) provides very interesting cross-market compara-

tive statics. Intuitively, an increase in the systematic risk |ψA| of asset A increases the relative

price dispersion in market A because the price of asset A becomes more sensitive to excess risk

exposures when it contains more systematic risk. More surprisingly, an increase in the liquidity

14See, among others, Jankowitsch, Nashikkar, and Subrahmanyam (2011), Feldhütter (2012), Friewald,
Jankowitsch, and Subrahmanyam (2012), Eisfeldt, Herskovic, and Liu (2023), and Pintér (2023).
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λA does not affect the relative price dispersion in any market. This is an interesting result

that could not be obtained in the comparative statics of single-asset models. In a single-asset

model typically an increase in λA will lead to a decline in price dispersion because distortions on

extensive and intensive margins alleviate. Here, these effects are present as well, but the novel

cross-market effect is that an increase in λA leads to a decline in the price dispersion in both

market A and market B by reducing misallocation and by reducing the sensitivity of prices

to excess risk exposures. This happens because when trading in market B, a bank takes into

account how its position in asset A can expose it to the risk of being stuck with a suboptimal

portfolio due to the search frictions in market A, and vice-versa. Hence, when we look at the

relative price dispersion, we see that the effect of an increase in λA work in the same way in

both markets so the relative price dispersion stays unaffected.

4.3 Price impact

In search models, equilibrium price dispersion arises because banks with different marginal

valuations bilaterally negotiate and then their valuation differentials translate into different

realized prices. It is possible to interpret this as price impact due to illiquidity. Price impact

arises for various reasons in market microstructure models such as strategic interaction15 or

a combination of strategic interaction and adverse selection.16 In our model, it arises due to

search frictions.

To understand the way we quantify the price impact in the equilibrium of our model, one

must inspect the Nash bargained price (17). Using (15) and (16), one sees that in order to buy

q units of asset j from a counterparty with current excess risk exposure of θ′, a bank pays

Pj (q | θ′) =
u(j) (0,E [a])

r
− rγBσ

2ψj
r + λ/2

(θ′ − ψjq) .

As can be seen, the sensitivity of the transaction price to the traded quantity is∣∣∣∣∂Pj (q | θ′)
∂q

∣∣∣∣ =
rγBσ

2 |ψj|2

r + λ/2
.

The following proposition establishes that this sensitivity is equal to (a normalized version of)

the ratio of price dispersion to quantity dispersion. Thus, we quantify the price impact in the

cross-section of equilibrium trades as the ratio of price dispersion to quantity dispersion.

15See, for example, Vayanos (1999), Rostek and Weretka (2015), Antill and Duffie (2021), and Chen and
Duffie (2021).

16See, for example, Kyle (1985), Kyle (1989), Sannikov and Skrzypacz (2016), and Du and Zhu (2017).
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Proposition 7. Price impact in market j in the stationary equilibrium is

δj ≡
2σPj
σqj

=
rγBσ

2 |ψj|2

r + λ/2
. (32)

Price impact in market A relative to price impact in market B is

δA
δB

=

∣∣∣∣ψAψB
∣∣∣∣2 . (33)

The price impact (32) is calculated using the second moment of equilibrium price and

quantity distributions but, as explained above, the rationale behind it being a measure of price

impact comes from the bank’s problem. In particular, δj is equal to (the absolute value of)

the sensitivity of a bank’s marginal valuation for asset j to its position in asset j. Because

transactions prices are equal to the trading banks’ post-trade marginal valuations, δj thus

measures how much extra a bank should pay over its counterparty’s initial marginal valuation

in order to buy an additional unit of asset j, just as Kyle’s lambda measures how much price

movement a trader’s trade induces. Equation (32) shows that price impact is present due to

search frictions. As search frictions vanish (i.e., λj → 0 for any j), δj goes to 0. Importantly,

price impact in one market is affected exactly the same way by the illiquidity of either markets.

It is because banks use any asset to satisfy the same type of hedging need and if one market

becomes more or less liquid, their reliance on that market adjust accordingly. In the end, what

determines price impact is the overall illiquidity of the markets rather than the illiquidity of

an individual market. As a result, (33) shows that the relative price impact is affected only by

systematic risks of the asset and not by their illiquidity.

An interesting comparative statics revealed by (33) is that as the systematic risk |ψA| of

asset A increases, the relative price impact in market A increases in a convex way. Convexity

arises because the systematic risk increases both the price dispersion and the reciprocal of

quantity dispersion linearly. Thus, it enters the relative price impact with an exponent of 2.

5 Testing the model’s implications

In this section, we empirically test the model’s implications in the US corporate bond market.

Corporate bonds are traded over the counter with majority of these trades being purely bilateral

and subject to significant search frictions. A typical trade occurs after an investor calls over

telephone, one-by-one, one or multiple dealers. Many of these dealers may not have the trading

need that matches with that of the investor. And if they do, the quotes in each call are valid
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only for a short period of time (“as long as the breath is warm” (Bessembinder and Maxwell,

2008)), which makes it difficult to obtain multiple quotations before agreeing to a particular

trade.17 These characteristics of the corporate bond market make search frictions a prevalent

component of the trading process. Considering these microstructure components, we find the

corporate bond market as an appropriate laboratory to test the predictions of our model.

A natural question before we move on to describing our data sample is how the agents in

our model map to the participants in the US corporate bond market. Regarding this mapping,

our main approach is that of Hugonnier, Lester, and Weill (2022). That is, we consider the

real-world OTC markets as fully decentralized in that all market participants are subject to

the bilateral trading friction characteristic of these markets. According to this approach, both

dealers and customers of the US corporate bond market map to banks in our model. Hence, in

what follows, we use the full sample of transaction data containing both customer-to-dealer and

interdealer trades. One caveat is, however, that banks in our model are ex-ante homogeneous

agents, while dealers and customers in practice may be very different in why and how they

trade. To address this concern, we repeat all our formal analyses by using the subsample of our

data with only interdealer trades in Appendix D.3 and show that our main results are robust

to this restriction.

5.1 Data

The data used in this study come from several sources. We obtain our bond transactions

data from the enhanced version of Trade Reporting and Compliance Engine (TRACE), for the

sample period from July 1, 2002 to December 31, 2021.18 TRACE dataset covers virtually all

transactions of the US corporate bond market, and reports trade price, trade size, buy/sell

indicator, as well as the type of the counterparty (dealer vs. customer). We use the data filters

proposed by Dick-Nielsen (2014) to eliminate erroneous entries from reversals, canceled trades,

and corrected trades. We further remove the commissioned trades, the non-secondary market

transactions and the transactions that are labeled as when-issued, and special price trades.

We merge the cleaned TRACE data with the Mergent Fixed Income Securities Database

(FISD), to incorporate bond characteristics such as security type, offering amount, offering

date, maturity date, and coupon rate. We eliminate bonds that are asset-backed, mortgage-

17See Bessembinder and Maxwell (2008) for a detailed review of the U.S. corporate bond market, and
Feldhütter (2012) for a discussion of its appropriateness for empirical tests of search-theoretic models.

18Although TRACE bond data starts from July 1, 2002, our final sample period for the endogenous liquidity
measures starts from the week of October 7, 2002 since we use the initial quarter as the estimation period for
some of our predictors.
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backed, agency-backed, equity-linked, or issued by governments or municipalities, bonds that

are putable, convertible, exchangeable, preferred securities, Eurobonds/-notes, pass-through

trust securities, or part of unit deals, and bonds with unusual coupons (variable rate, pay-in-

kind), with sinking fund feature, or that are issued in non-USD currencies. We also remove the

transactions that are priced below $5 or above $1,000, the transactions executed on weekends,

and the transactions that occur within less than one year remaining to maturity date. We next

bring the macroeconomic indicators to our data, such as GDP forecast dispersion and treasury

rate, obtained from the Federal Reserve’s website, as well as implied market volatility, obtained

from OptionMetrics. Finally, we bring information on the credit default swaps (CDS) of the

bond issuers with CDS, obtained from IHS Markit.19

After merging and cleaning the data, we calculate the liquidity measures and the predictors.

Our objective is to construct the variables as closely as possible to the variables in the theo-

retical model, while keeping in mind the properties of transaction-based data. Although the

corporate bond transactions data are intraday, most bonds do not trade at daily frequency. In

addition, the cross section of bonds that are traded changes rapidly over time. If the liquidity

measures were calculated at a high frequency (e.g., daily), we could lose illiquid bonds from our

sample. If we instead calculated the liquidity measures at a lower frequency (e.g., monthly), our

econometric specification could be too sluggish to capture the sensitivity of liquidity to system-

atic risk and to the shifts in the time-varying cross section. We therefore calculate our liquidity

measures at weekly frequency to capture both the cross section of bonds and its dynamics more

comprehensively.

The liquidity measures we construct include trade volume (Vj), price dispersion (σPj), and

price impact (δj), which have direct counterparts in our theoretical model. We calculate these

measures for each bond-week. The predictors are similarly based on the model and calculated

prior to the beginning of each bond-week to avoid any time overlap between a dependent variable

and a predictor.20 We require any bond-week to have non-missing observations for liquidity

measures and predictor variables to be included in our final sample. Our sampling procedure

results in 4,912,241 bond-week observations of 29,446 bonds by 3,952 issuers over the sample

19Our sampling procedure for the CDS data is as follows. We use the senior unsecured, USD-denominated,
and five-year tenor contracts. We prioritize the modified restructuring documentation clause before April 8,
2009 (“CDS Big Bang”), and no restructuring documentation clause on and after.

20For instance, we use the number of trades as a control for the variations in the liquidity measures due to
firm-specific news events. Without making sure that the number of trades is calculated for a non-overlapping
period, it could be problematic to use it as a predictor in regressions in which trade volume or price dispersion
is the dependent variable. The detailed variable definitions and methodology followed in their calculations are
included in Appendix A.
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period from October 7, 2002 to December 31, 2021.

Table 1 presents the sample summary. The mean weekly trade volume is $11.03 million,

and median trade volume is $2.25 million. Similarly, the weekly average number of trades has

a mean of 23.07 and a median of 11.42. Inspection of quartile observations reveals that the

distributions of trade volume and average number of trades are right skewed. We similarly

observe highly skewed distributions in other liquidity measures and several control variables.

Table 1: Descriptive statistics

This table presents the descriptive statistics of the sample used in this study. The sample period is from October
7, 2002 to December 31, 2021. The sample includes 29,446 bonds of 3,952 issuers, and the observation unit is
bond-week. The dependent variables, trade volume, price dispersion, and price impact, are calculated at weekly
frequency for each bond. The predictors are calculated within the most recent quarter prior to beginning of
each week. For the readily available time-series variables (e.g., treasury rate), we use the most recent weekly
observation prior to beginning of the week. The table reports mean, standard deviation, 1st, 25th, 50th, 75th,
and 99th percentile observations for each variable. Detailed variable definitions and sources of data are provided
in Appendix A.

Mean St. dev. 1st 25th 50th 75th 99th Obs.

Trade volume ($mm) 11.03 29.39 0.01 0.29 2.25 10.41 119.87 4,912,241
Price dispersion 0.47 1.01 0.00 0.12 0.33 0.66 2.24 4,912,241
Price impact 22.87 113.90 0.00 0.24 1.28 10.00 304.26 4,912,241
Offering amount ($bn) 0.65 0.67 0.01 0.25 0.50 0.80 3.00 4,912,241
Offering amt., other bonds ($bn) 4232 1332 2135 2848 4308 5507 6100 4,912,241
Volatility beta 0.61 29.21 0.00 0.03 0.08 0.24 5.77 4,912,241
Average number of trades 23.07 38.30 1.50 5.92 11.42 24.92 171.75 4,912,241
GDP forecast dispersion 0.47 0.62 0.19 0.26 0.31 0.43 5.09 4,912,241
Treasury rate, 1 mo. (%) 1.03 1.37 0.00 0.05 0.23 1.66 5.15 4,912,241
Implied market volatility, 3 mo. 0.17 0.07 0.09 0.13 0.15 0.20 0.42 4,912,241
Average number of cancellations 0.23 0.53 0.00 0.00 0.08 0.25 2.00 4,912,241
Avg. # of cancel., other bonds 0.16 0.05 0.07 0.13 0.17 0.19 0.32 4,912,241
Average CDS depth 7.08 4.68 0.43 4.10 6.25 8.65 25.52 2,725,599

5.2 Empirical analysis

In this section, we test the implications of our model for each endogenous liquidity measure.

The theoretical results regarding the determinants of trade volume (Vj), price dispersion (σPj),

and price impact (δj), from Equations (29), (30), and (32), respectively, are as follows:

Vj ∼
λj
|ψj|

ση√
λj + λ−j

,

σPj =
1√
2

rγBσ
2 |ψj|

r + (λj + λ−j) /2

ση√
λj + λ−j

,

δj =
rγBσ

2 |ψj|2

r + (λj + λ−j) /2
.
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The theoretical model suggests a clear relationship for each pair of liquidity measure and

predictor. For instance, it suggests that trade volume (Vj) of a particular bond j is increasing

with its offering amount (λj) and decreasing with its volatility beta (|ψj|) and the total offering

amount of other bonds (λ−j). Therefore, these equations provide the coefficient signs for each

predictor that we expect to observe in the data if our search-based model of equilibrium portfolio

management captures the dominant economic channels in practice. Table 2 briefly shows the

empirical counterparts of the variables in our model.

Table 2: Empirical counterparts

This table presents the empirical counterparts of our variables in the theoretical model. The only variable we
do not empirically measure or proxy for in this table is γB (risk aversion), and therefore is not included in the
regressions. Detailed variable definitions are provided in Appendix A.

Variable Empirical counterpart

Vj Trade volume
σPj

Price dispersion
δj Price impact
λj Offering amount
λ−j Offering amount, other bonds
ψj Volatility beta
ση Real GDP forecast dispersion
r Treasury rate
σ Implied market volatility

Before proceeding to the detailed regression analysis, let us discuss our choice and construc-

tion of the key predictors, λj and ψj. We use offering amount as a proxy for asset-specific

contact rates (λj). Because asset-specific contact rates, λj, are deep parameters that govern

the exogenous liquidity differentials among the assets, one ideally needs to use a proxy that

comes outside the sample from which the endogenous liquidity proxies are calculated. Consid-

ering this, we think offering amount is a sensible choice. Furthermore, there are theoretical and

practical motivations for this choice. Theoretically, Weill (2008) shows that assets with high

offering amount end up having high endogenous contact rates when ex ante identical investors

allocate their search budget across assets. While there are no short-sale costs or restrictions

in our model, shorting a corporate bond is a complicated process in practice, which involves

borrowing the bond before being able to short. This may give an advantage to bonds with

high offering amount in the market for borrowing corporate bonds. Thus, one may argue that

interpreting the offering amount as a measure of λj makes sense in a model without short sale

restrictions like ours because the offering amount has the role of alleviating frictions in practice,

which is captured by λj in the model.
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As a proxy for ψj, we construct a volatility beta measure. Traditional empirical analyses

of fixed-income instruments use credit rating, coupon rate, time-to-maturity, callable bond

dummy, etc., to capture various dimensions of risk such as credit risk and interest rate risk.21

However, none of these measures provide a reasonable match for the main systematic risk

measure ψj of our model. Because the main purpose of our empirical analysis is to test the

implications of our model, we construct a novel but intuitive measure of exposure to systematic

risk by following our model assumption (1). Equation (1) tells us that if the aggregate volatility

is σ, the systematic volatility of asset j is equal to σψj. Therefore, to find the empirical

counterpart of ψj, we run the following OLS regression:

σj,t = αj + βjσt + εj,t,

where σt is implied market volatility, σj,t is the return volatility of bond j, and the resulting

coefficient βj is what we call bond j’s volatility beta.22 It is important to note that there

is no mechanical overlap between the information content of our volatility beta measure and

the endogenous liquidity measures. Price dispersion and price impact calculations also require

using transaction prices, but they specifically use the second moment of the demeaned prices.

Volatility beta instead requires using mean prices to calculate bond returns, and so, the de-

meaning process in the calculation of price dispersion and price impact eliminates any overlap

with volatility beta. Thus, any relation between volatility beta and liquidity measures captured

by our regressions below is an economic relation.

Figure 2 plots the time series of cross-sectional average of each liquidity measure over the

sample period at weekly frequency. In this demonstration, we partition the cross section of

bonds into two subsamples with respect to their (absolute) volatility betas (i.e., above vs.

below median volatility beta). A simple visual inspection reveals differences for each liquidity

measure between the sample averages of low beta and high beta bonds. Relative to low beta

bonds, high beta bonds have lower trade volume, higher price dispersion, and higher price

impact, consistent with the model predictions.23 We deepen this simple visual inspection with

21See Bessembinder, Maxwell, and Venkataraman (2006), Dick-Nielsen, Feldhütter, and Lando
(2012),Hotchkiss and Jostova (2017), O’Hara and Zhou (2021), and Choi, Huh, and Shin (2024), for exam-
ple.

22For more details, see Appendix A, which includes variable definitions. As our measure for aggregate volatil-
ity, we use implied market volatility instead of volatility index (VIX). This is because implied market volatility
is a measure of volatility, while volatiliy index is a measure of price (of volatility). In any case, these two series
are highly correlated (with a correlation coefficent of 0.9806), and our results are robust to using VIX instead of
implied market volatility in our estimations. The Appendix Figure D.1 presents a comparison, which indicates
a high degree of similarity between the two series.

23We find volatility beta to be an important predictor of liquidity measures. Therefore, a natural question
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our formal regression analyses below in order to mainly inspect the sign of the resulting precise

elasticities that capture the relation of our endogenous liquidity measures with volatility beta

and other parameters.
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Figure 2: Time series of liquidity measures
This figure plots the cross-sectional average of liquidity measures over the sample period from October 7, 2002
to December 31, 2021, for the subsamples of bonds with low versus high (absolute) volatility betas. Calculation
of liquidity measures (trade volume, price dispersion, and price impact), as well as volatility beta are described
in Appendix A. Each week, we calculate the median of volatility beta and partition the cross-section of bonds
into “Low beta” vs. “High beta” subsamples, based on whether a bond’s volatility beta is below or above
median volatility beta, respectively.

We start by noting that the theoretical formulas (29), (30), and (32) for liquidity measures

all have multiplicative functional forms. In order to test their implications more accurately,

we take the natural logarithm of each empirical variable.24 We then run the linear regression

is how it relates to the traditional fixed-income risk measures. In Appendix Table D.1 we present our findings
that address this question. Indeed, Table D.1 shows a significant and economically meaningful relation between
volatility beta and credit risk measures as well as other main characteristics of the bond.

24We add 0.01 before taking logarithm of the variables that can take zero values.
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specified below with the logged version of variables (log and absolute value are suppressed for

simplicity).25

Liquidityj,t = α + β1λj,t + β2ψj,t + β3 ANTj,t + τt + εj,t, (34)

where “Liquidityj,t” of bond j in week t denotes the liquidity measure, trade volume (Vj), price

dispersion (σPj), or price impact (δj), and τt denotes the time-specific intercepts for year-weeks.

We run this regression separately for each measure.

Table 3 presents our findings under the baseline model (34). We directly control for the

time-fixed effects in this table to isolate and focus on the cross-sectional relation of liquidity

measures with the predictors. Column (1) shows our findings for trade volume (Vj). We find

that trade volume increases with the offering amount of the bond (λj), as suggested by the

theoretical model. Specifically, one percent increase in offering amount of bond j leads to a

0.91 percent increase in trade volume of the same bond. Consistent with the theoretical results,

we find that trade volume decreases with volatility beta (ψj, sensitivity of bond volatility to

aggregate volatility).

In addition to our main cross-sectional predictors and time fixed effects, we also include the

average number of trades of each bond to control for the variation in liquidity measures due

to firm-specific news events. Although investors in our model trade only because of changes

in their idiosyncratic hedging needs, the firm-specific news events absent in our model trigger

speculative trading activity in practice (e.g., rating changes in Jankowitsch, Ottonello, and

Subrahmanyam, 2018 and earnings announcements in Wei and Zhou, 2016) and this activity in

turn affects bonds’ realized liquidity measures. Consistent with earlier work, Table 3 presents

positive and significant relation between this control variable and the liquidity measures.

In Column (2) of Table 3, we repeat our estimations for price dispersion (σPj). We find

that price dispersion is decreasing with offering amount of bond j (λj), exactly as predicted

by the theoretical model. One percent increase in the offering amount of bond j leads to a

0.179 percent decline in the same bond’s price dispersion. We also find that price dispersion is

increasing with volatility beta (ψj), consistent with the model.

In Column (3) of Table 3, we estimate the specification for price impact (δj). As predicted

by the model, we find that price impact is decreasing with the offering amount of bond j

(λj). One percent increase in the offering amount of bond j leads to 1.015 percent decrease in

25Appendix Table D.4 presents our findings under linear functional form (i.e., not log). Note the significant in-
crease in the model fit for all liquidity measures when we run the regressions with logged variables. The adjusted
R2s increase from 0.300, 0.163, and 0.101 in Appendix Table D.4 to 0.484, 0.216, and 0.204 in corresponding
Table 4, respectively.
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Table 3: Determinants of liquidity in the cross section, baseline model

This table presents determinants of liquidity in the cross section of OTC-traded corporate bonds under a log-
linear functional form assumption. The single-letter name of each variable, as used in the theoretical model,
is provided in the parenthesis adjacent to the variable. The subscript j refers to bond j. Detailed variable
definitions are provided in Appendix A. The standard errors are double clustered by bond and week, and the
t-statistics are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Offering amount (λj) 0.910*** -0.179*** -1.015***
(147.78) (-48.64) (-125.18)

Volatility beta (ψj) -0.038*** 0.086*** 0.110***
(-15.10) (51.42) (31.88)

Average number of trades (ANTj) 0.653*** 0.721*** 0.996***
(107.21) (142.00) (103.32)

Intercept -0.333*** -3.214*** -2.937***
(-14.37) (-192.57) (-85.70)

Year-week FE Y Y Y
Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.503 0.231 0.209

price impact. Finally, consistent with the model, we find that price impact is increasing with

volatility beta (ψj). Overall, our empirical results for the cross-sectional analysis in Table 3 are

entirely consistent with the theoretical model.

We next extend our cross-sectional analysis to a test that incorporates model-informed

time-series factors. Instead of using time fixed-effects for each year-week, we directly include

macroeconomic indicators. More specifically, we extend our regression equation to (again, log

and absolute value are suppressed for simplicity):

Liquidityj,t = α + β1λj,t + β2λ−j,t + β3ψj,t + β4 ANTj,t + β5ση,t + β6rt + β7σt + εj,t, (35)

where ση,t, rt, and σt denote GDP forecast dispersion, treasury rate, and implied market volatil-

ity, respectively. The contribution of this extension to our analysis is two-fold. First, this allows

us to include the total offering amount of other bonds in our regression equation (35) as a proxy

for λ−j, which is one of the cross-sectional determinants of liquidity as seen in the theoretical

formulas (29), (30), and (32). This was not possible in the earlier regression (34) because the

presence of time fixed-effects would lead to a mechanical multicollinearity if we used both the

offering amount of bond j and the total offering amount of other bonds as independent variables

in the same regression. The second benefit of (35) is that it captures not only the asset-specific

determinants of liquidity in the theoretical model but also the economy-wide determinants.

Table 4 presents the results. Compared to Table 3, there is a slight decline in adjusted
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R2s for all liquidity measures. The decline is not surprising because one naturally expects

that, compared to time fixed effects, our chosen time-series variables cannot capture equally

well the time-series variation in liquidity measures. That the decline is small, however, means

that the extent to which they capture the time-series variation is satisfactory. Looking at the

performance of the cross-sectional determinants of liquidity, our regressions indicate that our

theoretical model’s implications regarding λj and ψj are successfully confirmed in the data, even

in a conservative full-sample analysis like ours.26 Turning to λ−j, we find that while the signs

of the slope coefficient of λ−j in the trade volume regression and the price dispersion regression

are consistent with our theory the same sign in the price impact regression is inconsistent.27

The success of the implications regarding λ−j is, therefore, more ambiguous. One can always

blame the offering amount of all other bonds as being an imperfect proxy for λ−j, and so, argue

that the model is not given the best chance to be consistent with the data. We however take the

view of these inconsistencies highlighting some of the strong assumptions our model makes. For

example, as a reasonable starting point, banks in our model are assumed to be homogeneous

in terms of their access to all J markets. This assumption does not leave any room for clientele

effects, which are very likely to be present in the corporate bond market. Thus, in reality, in

the calculation of λ−js, investors of different bonds may focus on different smaller universes

of bonds instead of the full sample that we use. An empirical introspection may suggest that

repeating our analysis with different bond subsamples containing bonds that are more likely to

be substitutes from the investors’ viewpoint would give the model a better chance to work. We

do not take this route because our model does not inform us about how we could choose those

subsamples.

Overall, our cross-sectional results from empirical tests of liquidity are mostly consistent

with the implications of the theoretical model, both with time fixed effects and with a model-

informed set of macroeconomic indicators. Because our model is developed mainly to obtain

precise cross-sectional implications, we interpret this empirical consistency as pointing to the

success and usefulness of the search-theoretic approach in uncovering the determinants of en-

dogenous liquidity differentials across OTC assets. For the sake of completeness, we discuss the

non-cross-sectional predictors of Table 4 in Appendix E.

26An alternative to using the full sample would be to consider only dealer-to-dealer trades, which may be
seen as more consistent with our model’s assumption of ex-ante homogeneous agents. In Appendix Table D.2,
we repeat our analyses but instead use only the dealer-to-dealer trades when calculating our liquidity measures,
and we find that our main results are robust to this restriction.

27Interestingly, the sign of λ−j in the Appendix Table D.4 (where we run the regression assuming a linear
functional form) is consistent with the theory in all three regressions. However, we base our conclusions on
Table 4, as it more accurately corresponds to the functional forms in the theoretical model.
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Table 4: Determinants of liquidity in the cross section and over time, full model

This table presents determinants of liquidity in the cross section of OTC-traded corporate bonds under a log-
linear functional form assumption. The single-letter name of each variable, as used in the theoretical model, is
provided in the parenthesis adjacent to the variable. The subscript j refers to bond j, and the subscript −j
refers to all other bonds except bond j. Detailed variable definitions are provided in Appendix A. The standard
errors are double clustered by bond and week, and the t-statistics are reported in parentheses. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Offering amount (λj) 0.910*** -0.177*** -1.013***
(147.94) (-47.94) (-125.20)

Offering amount, other bonds (λ−j) -0.575*** -0.361*** 0.268***
(-16.27) (-17.75) (9.97)

Volatility beta (ψj) -0.027*** 0.096*** 0.110***
(-8.69) (43.95) (32.53)

Average number of trades (ANTj) 0.653*** 0.722*** 0.994***
(106.44) (146.31) (104.07)

GDP forecast dispersion (ση) -0.110*** -0.186*** -0.098***
(-5.95) (-12.73) (-8.57)

Treasury rate (r) 0.012 -0.019*** -0.030***
(1.64) (-5.01) (-6.59)

Implied market volatility (σ) -0.087** 0.562*** 0.727***
(-2.33) (20.05) (25.56)

Intercept 4.210*** 0.620*** -3.959***
(15.36) (4.17) (-18.66)

Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.484 0.216 0.204

5.3 Proxying for search frictions

One challenge we face, that is also prevalent in the literature, is the difficulty of proxying for

search frictions (i.e., inverse of asset-specific contact rates). Search frictions relate to many

factors and manifest in many forms largely unobserved by the econometrician, which involve

being able to find a counterparty willing to trade a given asset, at a sufficient quantity, at a

desirable price, in a timely manner, among other considerations. Although one can cleanly

model search frictions in theory, its measurement in practice is challenging due to limitations

with the available data.

In our main analyses, we use the variable offering amount as a proxy for (the inverse of)

search frictions, and explain our motivations for doing so in detail in Section 5.2. However, one

may argue that the variable offering amount could wear many hats and its relations with our

liquidity measures could be confounded by other factors than what is due to search frictions. To

address this concern, we propose an alternative proxy for search frictions: trade cancellations.

We use the number of trade cancellations a given bond has during a time period as an
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alternative proxy for (the inverse of) search frictions. We conjecture that a trade cancellation

is more likely to occur if it is easy to find an equivalent or better trade on the bond (i.e.,

cancellations reveal that search frictions are milder). In contrast, if it is difficult to find a trade

that is at least as good as the current trade, then the current trade would be less likely to get

canceled.

For this test, we utilize the trade cancellations reported in TRACE. In addition to the

transactions that eventually settle, the TRACE data also reports the transactions that get

canceled. The timeline for a typical transaction includes an execution time, a report time,

and a settlement date. Most trades get reported within minutes of transaction (with the

introduction of TRACE and post-trade transparency requirements), and eventually settle if no

further modification occurs. However, the counterparties of the trade are allowed 20 business

days to cancel the trade.28 When preparing the trade cancellations, we use the same data filters

as we do for corporate bond trades, with the exception that we keep the cancellation entries

only.29 We then count the number of cancellations reported for each bond in the most recent

12 weeks prior to the current week.30

Table 5 presents our findings. In Panel A of Table 5, we run the regression with the baseline

model as we do in Table 3 but use the number of cancellations instead of offering amount

to proxy for search frictions. We find that that as the number of cancellations increases, the

trade volume also increases. Consistent with our conjecture, more cancellations suggest that

it is easy to find a desirable substitute trade on the bond which results in a higher trade

volume. Moreover, we find that as the number of cancellations increases, price dispersion and

price impact decrease. This is again consistent with the conjecture that higher number of

cancellations implies that it is easier to find a substitute trade, which increases the liquidity on

the bond.31

In Panel B of Table 5, we run the regression with the full model as we do in Table 4 but use

the number of cancellations instead of offering amount (and average number of cancellations in

28For more information, see “TRACE OTC Corporate Bonds and Agency Debt User Guide” at https:

//www.finra.org/filing-reporting/trace/documentation.
29Interdealer trades are typically reported by both buying and selling dealers, and as such, data filters proposed

by Dick-Nielsen (2014) drop one side of the interdealer trade entries (buy side) to avoid double counting.
However, interdealer trade cancellations are not often reported by both sides. We similarly drop the buy side of
interdealer cancellation entries for consistency. It is not clear if an ideal filter exists for interdealer cancellation
entries, but if we err, it would be against double counting them.

30A cancellation entry includes the execution time and settlement date of the original trade, but has a different
report time, and it could arrive minutes or days after the the original trade. Therefore, we use the report times
of cancellation entries as their timestamp when bringing cancellation entries to our main data.

31Appendix Table D.3 shows our results if we also include offering amount and offering amount of the other
bonds to the relevant specifications. Our results are robust to these alternative specifications.
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other bonds instead of offering amount of the other bonds) to proxy for search frictions. Our

results for the number of cancellations are unchanged, which are entirely consistent with our

conjecture of cancellations as a proxy for search frictions as well as our results with the offering

amount variable. In terms of the number of cancellations in other bonds, our findings largely

confirm our previous findings except for the relation between average number of cancellations

of other bonds and the price dispersion liquidity measure. Overall, our findings in Panel B of

Table 5 mostly confirm our previous results.

Table 5: Proxying for search frictions, trade cancellations

This table presents the relation between trade cancellations and the liquidity in corporate bonds. Panel A
presents the results under the baseline model, where bond-level controls except OAj & OA−j (offering amount
& offering amount, other bonds) and year-week fixed effects collectively represent the predictors used in Table
3 except offering amount. Panel B presents the results under the full model, where bond-level controls except
OAj & OA−j (offering amount & offering amount, other bonds) and market-level controls collectively represent
the predictors used in Table 4 except offering amount and offering amount of the other bonds. The subscript j
refers to bond j, and the subscript −j refers to all other bonds except bond j. Detailed variable definitions are
provided in Appendix A. The standard errors are double clustered by bond and week, and the t-statistics are
reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average number of cancellationsj 0.303*** -0.040*** -0.320***
(68.23) (-19.41) (-53.31)

Bond-level controls except OAj & OA−j Y Y Y
Year-week FE Y Y Y
Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.366 0.215 0.082

Panel B: Full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average number of cancellationsj 0.305*** -0.027*** -0.306***
(66.94) (-12.49) (-51.65)

Average number of cancellations−j -0.384*** 0.579*** 0.786***
(-9.23) (22.55) (20.95)

Bond-level controls except OAj & OA−j Y Y Y
Market-level controls Y Y Y
Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.346 0.201 0.074

6 Liquidity across asset classes

A key feature of our theoretical model is its characterization of liquidity in the cross-section of

assets. Therefore, our empirical analyses mainly focus on testing the relations that come out
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of our model in the cross-section of assets, with the corporate bond market as our laboratory.

However, an interesting question arises when we consider the availability of assets from different

asset classes on the same entity. How does the liquidity of an asset from a different class on

the same entity relate to the liquidity of the current asset?

6.1 Theory

An investor could satisfy her hedging need via an asset different than a bond, if such an asset

on the same entity is available for trade. A credit default swap (CDS) is one such asset. A

CDS is a derivative contract on a reference bond that requires periodic premium payments and

pays off in the event of a default. Buying a CDS contract on the bond is implicitly equivalent

to a short position on the bond, and vice versa. Therefore, the availability of CDS expands

the bank’s choice set when it comes to satisfying its hedging need, and makes it easier to take

position on an entity when it is difficult to find the bond of that entity.

We extend a two-asset version of our baseline model by taking as given the liquidity of one

asset (CDS) and endogenizing the liquidity of the other asset (bond). Namely, we let investors

choose their λb upon birth before their time-varying states are realized. Thus, an investor

chooses her λb to maximize

E [V (η,a, λb |λ∗b , λc)]− χ (λb) ,

where λ∗b denotes the other agents’ contact rate in the bond market, λc denotes the exogenous

contact rate in the CDS market, the expectation is taken considering that (η,a) realizes from

the economy’s steady state distribution, and χ (·) is assumed to be strictly increasing and twice

differentiable. Using Theorem 1 and Corollary 3, the problem can be written as

max
λb≥0

γBσ
2σ2

η

2r + λc + λb

(
−1 +

λc + λb
2 (λc + λ∗b)

− r

λc + λb

)
− χ (λb) . (36)

By using the solution of this optimization problem, we obtain the following proposition.

Proposition 8. There exists a unique symmetric equilibrium. Assume pure variable costs with

constant marginal cost: χ (λb) = χ0λb. Then, the equilibrium contact rate in the bond market

is

λ∗b =

√
γB
χ0

σση − λc

in the limit as r approaches zero.
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Proposition 8 implies that when the marginal cost is constant and there is no fixed cost,

investors endogenously choose their total contact rate, λ∗b + λc, to be
√

γB
χ0
σση in equilibrium.

That is, they want to trade faster if they are more risk averse, if there is more aggregate or

idiosyncratic risk, and if choosing a higher contact rate is less costly. However, they do not

care if they satisfy their trading need by trading bond or trading CDS. Then, if it is easier to

trade CDS contracts (larger λc), investors endogenously choose a lower contact rate in the bond

market (smaller λ∗b). In the next subsection, we empirically test this prediction of our extended

model.

6.2 Empirics

We next bring the insights from Proposition 8 to our empirical tests in the cross section of

US corporate bonds. Proposition 8 predicts that if a CDS is easier to trade, the bond on the

same entity must be difficult to trade. Thus, we use the ease of trading CDS as a proxy for

(the inverse of) λj. Specifically, we utilize the CDS data available from IHS Markit. We use

the composite CDS depth of five-year contracts as our measure of how easy to trade a CDS

contract.32 For any given day, the CDS depth variable represents the number of unique CDS

quote contributors on that day.33

Table 6 presents our findings, both for the baseline and the full model in Panels A and B,

respectively. Both Panels A and B confirm that as the CDS depth increases, trade volume on

the bond decreases while price dispersion on the bond and price impact on the bond increase.

Thus, our empirical findings for all three bond liquidity measures are exactly as predicted by our

theoretical model. Our findings are also consistent with Oehmke and Zawadowski (2017), who

argue that bond and CDS markets are alternative trading venues for hedging and speculation.

Another interesting result of Proposition 8 and Table 6 relates to our discussion of search

friction proxies. Namely, our theory and empirics imply that one may consider CDS depth as a

search friction proxy for the bond. The idea is that, as it gets easier to find a CDS counterparty,

investors may look for the CDS on the bond’s issuer to satisfy their hedging need, which in

turn increases the difficulty of finding the bond.34 Thus, consistently, we observe in Table 6

32CDS depth is a commonly used measure of CDS liquidity in the literature (see, for example, Qiu and Yu
(2012), Feldhütter, Hotchkiss, and Karakaş (2016), Lee, Naranjo, and Velioglu (2018), among others).

33Note that the minimum non-missing value this variable can take in a given day is two, since Markit requires
at least two contributors for each quote.

34It could be the other way around as well, that is, the ease of finding the bond might reduce the trading
activity in the CDS. We do not make a claim on the direction, but just on the correlation. To see this, note that
one could swap the subscripts of b and c in Subsection 6.1, and the results of Proposition 8 would still hold.
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that offering amount and CDS depth have the exact opposite signs as the two predictors of

endogenous liquidity measures. While offering amount is a positive proxy for λj, CDS depth

serves a negative proxy.

Overall, our findings in this cross-asset-class analysis lend significant support to our theo-

retical model, and point to usefulness of the CDS depth variable to understand bond-specific

search frictions.

Table 6: Liquidity across assets, bonds and CDS

This table presents the relation between CDS depth of a bond’s issuer and liquidity of the bond. Panel A presents
the results under the baseline model, where offering amount, bond-level controls except OAj & OA−j (offering
amount & offering amount, other bonds), and year-week fixed effects collectively represent the predictors used
in Table 3. Panel B presents the results under the full model, where offering amount, bond-level controls except
OAj (offering amount), and market-level controls collectively represent the predictors used in Table 4. The
subscript j refers to bond j, and the subscript −j refers to all other bonds except bond j. Detailed variable
definitions are provided in Appendix A. The standard errors are double clustered by bond and week, and the
t-statistics are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel A: Baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj ) Price impact (δj)

Average CDS depthj -0.151*** 0.095*** 0.255***
(-15.61) (16.19) (19.10)

Offering amount 0.898*** -0.154*** -0.969***
(116.43) (-33.62) (-96.62)

Bond-level controls except OAj & OA−j Y Y Y
Year-week FE Y Y Y
Observations 2,725,599 2,725,599 2,725,599
Adjusted R2 0.519 0.226 0.197

Panel B: Full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average CDS depthj -0.148*** 0.096*** 0.256***
(-15.03) (16.24) (19.77)

Offering amount 0.896*** -0.154*** -0.966***
(116.36) (-33.75) (-96.91)

Bond-level controls except OAj Y Y Y
Market-level controls Y Y Y
Observations 2,725,599 2,725,599 2,725,599
Adjusted R2 0.501 0.212 0.192

7 Conclusion

We develop a search-theoretic model to study the impact of heterogeneity in asset characteristics

on their endogenous liquidity differentials. Thanks to the tractability of our model, we derive
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natural theoretical counterparts for various measures of market liquidity easily calculated from

transaction-level data. We find that the alleviation of search frictions of one asset may lead to

opposite observations regarding other assets’ liquidity depending on which liquidity measure

is used. Based on data from the US corporate bond market, our empirical tests indicate

significant support for the search-and-bargaining framework, which uncovers the determinants

of endogenous liquidity differentials across OTC assets.
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A Variable definitions

Variable Type Description Source

Dependent variables

Trade volume (Vj) $mm Weekly total of trade sizes (in par value amount) of the bond, in
million dollars. TRACE

Price dispersion (σPj
) Decimal

The square root of weekly second moment of demeaned bond prices.
Demeaned prices for each bond-day are calculated as the difference
between bond price and daily mean bond price. We follow Jankow-
itsch, Nashikkar, and Subrahmanyam (2011) and Feldhütter (2012)
in our definition of price dispersion.

TRACE

Price impact (δj) Decimal The ratio of weekly price dispersion to square root of weekly second
moment of trade sizes of the bond, multiplied by two. TRACE

Predictors

Offering amountj (λj) $bn Offering amount (par value) of the bond j, in billion dollars. FISD

Offering amount−j (λ−j) $bn

Total offering amount (par value) of the other bonds, in billion
dollars. Calculated as the summation of the offering amount of the
unique bonds that have been traded other than bond j, over the 12
weeks prior to the beginning of current week.

FISD,
TRACE

Volatility beta (ψj) Decimal

The sensitivity of weekly volatility of bond returns to implied
volatility. For each bond, we first calculate the weekly standard
deviation of daily returns, where daily bond returns are calculated
based on trade size weighted average of bond prices (clean price plus
accrued interest, and coupons if any). Then, for each bond-quarter,
we regress weekly volatility of bond returns on implied volatility.
We further take the absolute value of the coefficient estimate of
this regression, to more accurately test the theoretical model. This
volatility beta is the sensitivity measure of bond volatility to sys-
tematic volatility. For any given bond-week, we use the volatility
beta from the most recent quarter prior to the beginning of week.

FISD, Op-
tionMetrics,
TRACE

Average number of trades Decimal

The average of the weekly number of trades of bond j, calculated
over the trailing 12 weeks prior to the beginning of current week.
If we do not observe any trade on a given day, we assume that the
number of trades is zero for that day.

TRACE

GDP forecast dispersion (ση) Decimal

The dispersion measure D3 for one quarter ahead real GDP level
from the Survey of Professional Forecasters. It is the logarithmic
difference between the 75th percentile and the 25th percentile of the
one quarter ahead forecasts of real GDP level, multiplied by 100.

FED

Treasury rate (r) Pct. One-month Treasury bill rate. We take the average of daily Trea-
sury rates to have Treasury rates at weekly frequency. FED

Implied market volatility (σ) Decimal

The implied volatility of Chicago Board of Options Exchange
(CBOE) S&P 500 index European call option. For any given day,
we use the implied volatility of the European call option that is
closest to being at-the-money, and then with days to expiry that
is closest to 91 days (∼3 months). We take the average of daily
implied volatility levels to have implied volatility levels at weekly
frequency.

Option-
Metrics

Average number of
cancellationsj

Decimal

The average of the weekly number of trade cancellations of bond
j, calculated over the trailing 12 weeks prior to the beginning of
current week. If we do not observe any trade cancellation on a
given day, we assume that the number of trade cancellations is zero
for that day.

TRACE

Average number of
cancellations−j

Decimal The average of the average number of cancellations of the bonds
other than bond j. TRACE

Average CDS depthj Decimal

The average of the weekly summation of composite CDS depth of
bond j’s issuer, calculated over the trailing 12 weeks prior to the
beginning of current week. CDS depth is the number of distinct
CDS dealers providing quotes for the issuer’s CDS on a given day.
If we do not observe CDS depth on a given day, we assume that
CDS depth is zero for that day.

Markit
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B Optimization

In this appendix, we study the stochastic control problem faced by an individual bank with the

reduced-form linear-quadratic utility, u (η, a), in the search-theoretic equilibrium of Section 2.

Following closely the steps in Duffie, Gârleanu, and Pedersen (2005), Vayanos and Weill (2008),

and Üslü (2019), we define the bank’s problem and provide HJB equations and an optimality

verification argument.

B.1 Bank’s problem

We fix a probability space (Ω,F ,Pr) and a filtration {Ft, t ≥ 0} of sub-σ-algebras satisfying

the usual conditions (see Protter, 2004). Bank i can be of either one of the J + 1-dimensional

continuum of types denoted by (η, a) ∈ T ≡ R × RJ . Shocks to the hedging need type η are

governed by a diffusion process Bi with constant volatility ση. The arrival times of potential

counterparties are counted by J independent adapted counting processes denoted by N i
j with

constant intensity 2λj for all j ∈ J . The details of these independent diffusion and counting

processes are as described in Section 2.

Starting with initial type (η0, a0) and initial wealth W0, bank i chooses a feasible trad-

ing strategy {at}t∈[0,∞) = {(ajt, a−jt)}t∈[0,∞) and an adapted consumption and wealth process

{(ct,Wt)}t∈[0,∞) subject to the following feasibility conditions. First, the portfolio at must re-

main constant during the inter- and intra-arrival times of the counting processes N i
j , j ∈ J .

Second, when the bank is in state (η, aj, a−j) ∈ T and when the process N i
jt jumps, the

bank transitions into the state (η, aj + qjt [(η, a) , (η′, a′)]) ∈ T , where the trade quantity,

qjt [(η, a) , (η′, a′)], is bargained with the countarparty of type (η′, a′) who is drawn according

to the joint cdf, Φt (η′, a′), of hedging need types and asset positions.35

First, we describe a bank’s indirect utility at time t from its traders’ remaining lifetime

consumption. As is typical, the arguments of this indirect utility function are the bank’s

current wealth Wt, its current type (ηt, at), and time t. Mathematically, the indirect utility is

J (Wt, ηt, at, t) = sup
C,a

Et

∞∫
0

e−rsdCt+s (37)

35Because, in our reduced-form environment, banks have effectively quasi-linear preferences with the effective
utility being linear in consumption and linear-quadratic in asset positions, terms of trade are independent of
wealth levels, as will be clear shortly.
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subject to

dWt = rWtdt− dCt + u(ηt, at)dt−
J∑
j=1

Pjt [(ηt−, at−) , (η′t, a
′
t)] dajt, (38)

dajt =

{
qjt [(ηt−, at−) , (η′t, a

′
t)] if (η′t, a

′
t) is contacted in market j

0 if no contact in market j,

where

{qjt [(η, a) , (η′, a′)] , Pjt [(η, a) , (η′, a′)]} =

arg max
q,P

{
[J(W − qP, η, aj + q, a−j, t)− J(W, η, a, t)]

1
2

[J(W ′ + qP, η′, a′j − q, a′−j, t)− J(W ′, η′, a′, t)]
1
2

}
,

subject to

J(W − qP, η, aj + q, a−j, t) ≥ J(W, η, a, t),

J(W ′ + qP, η′, a′j − q, a′−j, t) ≥ J(W ′, η′, a′, t).

where Et[·] ≡ E[· | Ft] is the conditional expectation with respect to the filtration F , {Ct}t∈[0,∞)

is a cumulative consumption process, {(ηt, at)}t∈[0,∞) is a T -valued type process induced by the

feasible trading strategy {at}t∈[0,∞), and the benefit u(ηt, at) has a similar holding benefit/cost

interpretation as in Üslü (2019). The main difference is that our specification is for a multi-asset

environment while Üslü’s specification has a single asset. Accordingly, Üslü’s specification is a

special case of ours when the number of assets is equal to one, m1 = δ, η = 0, and rγBσ
2ψ2

1 = κ.

Note that (37) and (38) imply that the indirect utility is linear in wealth, i.e., J (Wt, ηt, at, t) =

Wt + V (ηt, at, t), where

V (ηt, at, t) = sup
a

Et

∞∫
t

e−r(s−t)u (ηs, as) ds− e−r(s−t)
J∑
j=1

Pjs [(ηs−, as−) , (η′s, a
′
s)] dajs

. (39)

Finally, to guarantee the global optimality of the trading strategy induced by the martingale

(39), we impose the transversality condition

lim
t→∞

e−rtV (η, a, t) = 0 (40)

for all (η, a) ∈ T and the condition

E

 T∫
0

(
e−rsV (ηs, as, s)

)2
ds

 <∞ (41)
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for any T > 0, for any initial bank type (η0, a0), any feasible trading strategy {at}t∈[0,∞), and

the associated type process {(ηt, at)}t∈[0,∞). These conditions will allow us to complete the

usual verification argument for stochastic control.

B.2 HJB equations

To further characterize V , qj, and Pj, we focus on a particular bank i and a particular time t

and let τj be an exponential random variable that represents the next (stopping) time at which

bank i meets another bank in market j for j ∈ J , and let τ = min {τ1, τ2, ..., τJ}. Then,

V (ηt, at, t) = Et

 τ∫
t

e−r(s−t)u (δs, as) ds

+
J∑
j=1

e−r(τj−t)I{τj=τ}
∫
RJ

∫
R

{
V (ητj , ajτj + qjτj

[(
ητj , aτj

)
,(η′, a′)

]
, a−jτj)

−qjτj
[(
ητj , aτj

)
, (η′, a′)

]
Pjτj

[(
ητj , aτj

)
, (η′, a′)

]}
Φτj(dη

′, da′)

]
. (42)

Assuming sufficient regularity for Ito’s lemma for Lévy processes to hold, we differentiate

the both sides of (42) with respect to time argument t and suppress it:

.

V (η, a) = rV (η, a)− u (η, a)− 1

2
σ2
ηVηη (η, a)

−
J∑
j=1

2λj

∫
RJ

∫
R

{V (η, aj + qj[(η, a),(η′, a′)] , a−j)− V (η, a)

−qj [(η, a) , (η′, a′)]Pj [(η, a) , (η′, a′)]}Φ(dη′, da′). (43)

A stationary value function must satisfy
.

V (η, a) = 0. Hence, after using the price implied by

the Nash bargaining procedure, (43) implies the HJB equation (10) of Section 3.

B.3 Optimality verification

In order to verify the sufficiency of the HJB equation (10) for individual optimality, we consider

any initial bank type (η0, a0), any feasible trading strategy {at}t∈[0,∞), and the associated type

process {(ηt, at)}t∈[0,∞). Without loss of generality, we assume that the wealth process is Wt = 0

for all t ≥ 0. Then, the resulting cumulative consumption process {Ca
t }t∈[0,∞) satisfies

dCa
t = u(ηt, at)dt−

J∑
j=1

Pjt [(ηt−, at−) , (η′t, a
′
t)] dajt. (44)
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At any time T > 0,

E

 T∫
0

e−rsdCa
s + e−rTV (ηT , aT )


= E

 T∫
0

e−rsdCa
s + V (η0, a0) +

T∫
0

d
(
e−rsV (ηs, as)

)
= E

V (η0, a0) +

T∫
0

e−rsdCa
s +

T∫
0

(
−re−rsV (ηs, as)

)
ds +

T∫
0

e−rsd (V (ηs, as))


= E

V (η0, a0) +

T∫
0

e−rs
(
dCa

s − rV (ηs, as) +
1

2
σ2
ηVηη(ηs, as)

+
J∑
j=1

(V (ηs, ajs + qjs[(ηs−, as−),(η′s, a
′
s)] , a−js)− V (ηs, as)) dNjs

)]
, (45)

where Njss are counting processes that govern the arrivals of potential counterparties in markets

for j ∈ J . Note that any side payment to effect a transaction at an arrival time of N j is reflected

by Ca according to (44).

We next calculate the stochastic integrals containing the counting processes. The condition

(41) implies that

T∫
0

|V (ηs, as)− V (ηs, ajs−, a−js)| ds ≤ sup
s,s′∈[0,T ]

|V (ηs′ , as′)− V (ηs, as)|T <∞.

Using Corollary C4 of Brémaud (1981, p. 235),

E

 T∫
0

e−rs(V (ηs, ajs + qjs[(ηs−, as−),(η′s, a
′
s)] , a−js)− V (ηs, as)) dNjs


=E

T∫
0

e−rs

2λj

∫
RJ

∫
R

(V (ηs, ajs + qjs[(ηs−, as−),(η′s, a
′
s)] , a−js) −V (ηs, as)) Φs(dη

′
s, da

′
s)

 ds

 .
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Combining this equality with (45),

E

 T∫
0

e−rsdCa
s + e−rTV (ηT , aT)

 = E

V (η0, a0) +

T∫
0

e−rsdCa
s

+

T∫
0

e−rs
(
−rV (ηs, as) +

1

2
σ2
ηVηη(ηs, as)

+
J∑
j=1

2λj

∫
RJ

∫
R

(V (ηs, ajs + qjs[(ηs−, as−),(η′s, a
′
s)] , a−js) −V (ηs, as)) Φs(dη

′
s, da

′
s)

 ds



≤ E

V (η0, a0) + sup
C


T∫
0

e−rsdCs +

T∫
0

e−rs
(
−rV (ηs, as) +

1

2
σ2
ηVηη(ηs, as)

+
J∑
j=1

2λj

∫
RJ

∫
R

(V (ηs, ajs + qjs[(ηs−, as−),(η′s, a
′
s)] , a−js) −V (ηs, as)) Φs(dη

′
s, da

′
s)

 ds




= V (η0, a0).

This, in turn, means that

V (η0, a0) ≥ E

τn∫
0

e−rtdCa
t

+ E
[
e−rτ

n

V (ητn , aτn)
]

,

at any future meeting date τn, n ∈ N. Then, we let n→∞ and use the transversality condition

(40), which allow us to obtain V (η0, a0) ≥ J (Ca). Since V (η0, a0) = J (C∗), where C∗ is the

consumption process associated with the candidate equilibrium strategy, optimality has been

verified.

C Proofs

C.1 Proof of Theorem 1

Conjecture

V (η, a) = D + ETa + F
(
η2 + 2ηψTa + aTΨa

)
+Mη (46)

for D, E, F , and M to be determined. Take the derivative with respect to a:

∂V

∂a
(η, a) = E + 2F (ηψ + Ψa) .
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The marginal valuation for asset j is, then,

V (j) (η, a) = Ej + 2Fψj

(
η +

J∑
k=1

ψkak

)
.

Using the FOC (7) for Nash bargaining,

qj [(η, a) , (η′, a′)] =

η′ − η +
J∑
k=1

ψk (a′k − ak)

2ψj
. (47)

(46) implies

V (η, aj + qj (µ, µ′) , a−j)− V (η, aj, a−j) + V
(
η′, a′j − qj (µ, µ′) , a′−j

)
− V

(
η′, a′j, a

′
−j
)

= −2qFψj

[
η′ − η − ψjq +

J∑
k=1

ψk (a′k − ak)

]
.

Using (47),

V (η, aj + qj (µ, µ′) , a−j)− V (η, aj, a−j) + V
(
η′, a′j − qj (µ, µ′) , a′−j

)
− V

(
η′, a′j, a

′
−j
)

= −1

2
F

[
η′ − η +

J∑
k=1

ψk (a′k − ak)

]2

= −1

2
F
[
η′ +ψTa′ −

(
η +ψTa

)]2
= −1

2
F
[(
η′ +ψTa′

)2 − 2
(
η′ +ψTa′

) (
η +ψTa

)
+
(
η +ψTa

)2
]

= −1

2
F
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′ − 2

(
η′ +ψTa′

) (
η +ψTa

)
+ η2 + 2ηψTa + aTΨa

]
.

Then, we are ready to set up the equation that will determine the undetermined coefficients

using the HJB (11):

r
[
D + ETa + F

(
η2 + 2ηψTa + aTΨa

)
+Mη

]
= mTa−1

2
rγBσ

2
(
η2 + 2ηψTa + aTΨa

)
+σ2

ηF

− 1

2
λF

∫
R

∫
RJ

[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′ − 2

(
η′ +ψTa′

) (
η +ψTa

)
+η2 + 2ηψTa + aTΨa

]
Φ (da′, dη′) .

Letting E [·] denote the cross-sectional mean and noticing that E [η′] = 0,

r
[
D + ETa + F

(
η2 + 2ηψTa + aTΨa

)
+Mη

]
= mTa−1

2
rγBσ

2
(
η2 + 2ηψTa + aTΨa

)
+σ2

ηF

−1

2
λF
{
E
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
]
− 2

(
η +ψTa

)
ψTE [a′] + η2 + 2ηψTa + aTΨa

}
.
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Thus, the coefficients solve

rD = σ2
ηF −

1

2
λFE

[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
]

rE = m + λFψTE [a′]ψ

rF = −1

2
rγBσ

2 − 1

2
λF

rM = λFψTE [a′] ,

which implies that

D =
γBσ

2

2r + λ

(
−σ2

η +
λ

2
E
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
])

E =
1

r
m− λ γBσ

2

2r + λ
ψTE [a′]ψ

F = − rγBσ
2

2r + λ

M = −λ γBσ
2

2r + λ
ψTE [a′] .

Putting together,

V (η, a) =
γBσ

2

2r + λ

(
−σ2

η +
λ

2
E
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
])

+

(
1

r
m− λ γBσ

2

2r + λ
ψTE [a′]ψ

)T
a− rγBσ

2

2r + λ

(
η2 + 2ηψTa + aTΨa

)
−λ γBσ

2

2r + λ
ψTE [a′] η,

which is Equation (14) of Theorem 1. By taking the derivative with respect to a, one obtains

(15). (47) is equal to (16). Substituting into the Nash bargaining price (8), one obtains (17).

Since V (η, ·) stated above is negative definite for all η ∈ R, (16) and (17) constitute the unique

solution to the Nash bargaining problem. By construction, V (η, a) given by (14) is the unique

quadratic solution to the HJB equation (11). Finally, it is a matter of algebra to show that the

value function we have constructed satisfies the transversality conditions (40) and (41).

C.2 Proof of Lemma 2

The dynamics of the composite type θ for a given bank i is

dθt = σηdB
i
t +

J∑
j=1

[θt− + qj (θt−, θ
′
t)ψj] dN

j
t −

J∑
j=1

θt−dN
j
t , (48)

where N j is an independent Poisson process with jump intensity 2λj for j ∈ J and θ′t, the

counterparty’s composite type, is a random draw from the pdf g (t, θ′).
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Define

H (t, θ0, θ) ≡ Pr [θt ≤ θ | θ0]

and

h (t, θ0, θ) ≡
∂

∂θ
H (t, θ0, θ) .

In equilibrium, the dynamics of the cross-sectional pdf of composite types, g (t, θ), is generated

by (48):

g (t+ s, θ) =

∫
R

g (t, ξ)h (s, ξ, θ) dξ.

It follows that for any s > 0,

1

s
[g (t+ s, θ)− g (t, θ)] =

1

s

∫
R

[g (t, ξ)− g (t, θ)]h (s, ξ, θ) dξ. (49)

Taking the limit in (49) as s→ 0 and applying the Ito’s lemma for Lévy processes on the RHS

leads to

∂g (t, θ)

∂t
=

1

2
σ2
η

∂2g (t, θ)

∂θ2
+

J∑
j=1

2λj

 ∂

∂θ

∫
R

∫
R

I{qj(θ̃,θ′)ψj≤θ−θ̃}g (t, θ′) g
(
t, θ̃
)
dθ′dθ̃

− J∑
j=1

2λjg (t, θ) .

This second-order partial differential equation (PDE) satisfied by the densities at dates t > 0

generated by Lévy processes is called the Kolmogorov forward equation.36

Since (16) provides us with explicit expression for trade sizes, we can get rid of indicator

function inside the integral:

∂g (t, θ)

∂t
=

1

2
σ2
η

∂2g (t, θ)

∂θ2
+

J∑
j=1

2λj

 ∂

∂θ

∫
R

2θ−θ′∫
−∞

g (t, θ′) g
(
t, θ̃
)
dθ′dθ̃

− J∑
j=1

2λjg (t, θ) .

One can calculate the derivate inside the square bracket using Leibniz rule:

∂g (t, θ)

∂t
=

1

2
σ2
η

∂2g (t, θ)

∂θ2
+

J∑
j=1

4λj

∫
R

g (t, θ′) g (t, 2θ − θ′) dθ′
− J∑

j=1

2λjg (t, θ) .

By defining λ ≡
J∑
j=1

λj and suppressing ts, one obtains Equation (18) of the lemma. Equation

(19) obtains because g (θ) is a pdf. Equation (20) is implied by the market-clearing conditions

and the fact that η does not have a drift.

36For a reference, see Guttorp (1995, p. 133) or Stokey (2009, p. 50).
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C.3 Proof of Theorem 2

We first calculate the characteristic function of the second term on the RHS of (18):∫
R

4λ

∫
R

g (θ′) g (2θ − θ′) dθ′
 eizθdθ = 4λ

∫
R

g (θ′)

∫
R

g (2θ − θ′) eizθdθ

 dθ′
= 4λ

∫
R

g (θ′)

∫
R

g (2θ − θ′) ei
z
2

(2θ−θ′)d (2θ − θ′)

 1

2
ei
z
2
θ′dθ′

= 4λ

∫
R

[
g (θ′) ĝ

(z
2

)] 1

2
ei
z
2
θ′dθ′ = 2λĝ

(z
2

)∫
R

g (θ′) ei
z
2
θ′dθ′ = 2λ

[
ĝ
(z

2

)]2

.

That if ĝ (z) is the characteristic function of g (θ), (−iz)n ĝ (z) is the characteristic function of

∂n

∂θn
g (θ) implies that the characteristic function of the first term on the RHS of (18) is

−1

2
σ2
ηz

2ĝ (z) .

Putting together and using the linearity, differentiability, and integrability of the characteristic

function, Equation (21) of the theorem obtains.

To obtain Equation (22) and (23), we apply the identities satisfied by all characteristic

functions

ĝ (0) =

∫
R

g (θ) dθ

and

ĝ′ (0) = i

∫
R

θg (θ) dθ

to Equation (19) and (20), respectively.

To derive the last equation of the theorem, note that, at steady state, (21) implies

ĝ (z) =
1

1 +
σ2
ηz

2

4λ

[
ĝ
(z

2

)]2

, (50)

which also implies

ĝ
(z

2

)
=

1

1 +
σ2
ηz

2

42λ

[
ĝ
(z

4

)]2

,

Substituting into (50),

ĝ (z) =
1

1 +
σ2
ηz

2

4λ

(
1

1 +
σ2
ηz

2

42λ

)2 [
ĝ
(z

4

)]4

.
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Evaluating (50) at z
4

and substituting into the previous equality,

ĝ (z) =
1

1 +
σ2
ηz

2

4λ

(
1

1 +
σ2
ηz

2

42λ

)2(
1

1 +
σ2
ηz

2

43λ

)4 [
ĝ
(z

8

)]8

.

Repeating the same procedure, one can induce Equation (24) of the theorem. What remains

to show is that the RHS of (24) does not vanish. Rewrite (24):

ĝ (z) = lim
K→∞

K∏
k=0

[ζ (k, z)]2
k

, (51)

where

ζ (k, z) ≡ 1

1 +
σ2
η

4k+1λ
z2
.

Note that ζ (k, ·) is the characteristic function of a Laplace distribution for all k ∈ {0, 1, 2, ...},
which means it is an infinitely divisible characteristic function for all k (Lukacs, 1970, p. 109).

Then, Corollary to Theorem 5.3.3 of Lukacs (1970) implies that [ζ (k, ·)]2
k

is an infinitely di-

visible characteristic function for all k as well because 2k is a positive real number (p. 111).

Theorem 5.3.2 of Lukacs (1970) states that the product of a finite number of infinitely divisible

characteristic functions is an infinitely divisible characteristic function (p. 109). Thus,

K∏
k=0

[ζ (k, z)]2
k

is an infinitely divisible characteristic function. Then, from Theorem 5.3.3 of Lukacs (1970), the

limit (51) is an infinitely divisible characteristic function because it is the limit of a sequence

of infinitely divisible characteristic functions (p. 110). Finally, Theorem 5.3.1 of Lukacs (1970)

implies that the RHS of (24) does not vanish because ĝ (z) 6= 0 for all z ∈ R holds for any

infinitely divisible characteristic function (p. 108).

C.4 Proof of Proposition 4

Substituting (16) into (26),

Vj =
λj

2 |ψj|

∫
R

∫
R

|θ′ − θ| g (θ′) g (θ) dθ′dθ.

Written in a more compact way,

Vj =
λj

2 |ψj|
E [|θ′ − θ|] . (52)
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Thus, we need to calculate the first absolute moment of θ′ − θ. Note that the characteristic

function of θ′ − θ is ĝ (z) ĝ (−z) because θ′ and θ are independently distributed due to random

matching. Also, using the fact that ĝ (·) is an even function, the characteristic function of θ′−θ
is [ĝ (z)]2.

Corollary 3.3 of Pinelis (2018) implies that

E [|θ′ − θ|] =
2

π

∞∫
0+

1− [ĝ (z)]2

z2
dz.

Substituting into (52) and using (24), one obtains Equation (27) of the proposition. It is

straightforward to obtain (28) from (27).

C.5 Proof of Corollary 3 and 5

In the probability theory literature, some sharper bounds for first absolute moments have

recently been developed than usual Hölder-Lyapunov inequalities could provide. For the upper

bound, we use Theorem 6 of Ushakov (2011):

E [|θ′ − θ|] ≤ 4

π

√
var [θ] (53)

because θ′ and θ are independently distributed due to random matching. And, for the lower

bound we use Corollary 2.3 of Berger (1997):{
E
[
(θ′ − θ)2]} 3

2{
E
[
(θ′ − θ)4]} 1

2

≤ E [|θ′ − θ|] .

Again using the fact that θ and θ′ are independently distributed and E [θ] = 0, this can be

re-written as

2 (E [θ2])
3
2{

E [θ4] + 3 (E [θ2])2} 1
2

≤ E [|θ′ − θ|] . (54)

Thus, we need higher order usual moments of θ to be able to calculate the bounds for trade

volume. Using (21) and (25) and equating ˙̂g (z) = 0, one easily obtains the moments reported

in Corollary 3:

E
[
θ2
]

=
σ2
η

λ
E
[
θ3
]

= 0

E
[
θ4
]

=
27

7

σ4
η

λ2
.
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Substituting into (54) and (53),

1

2

√
7

3

ση√
λ
≤ E [|θ′ − θ|] ≤ 4

π

ση√
λ
.

Combining with (52), one obtains Equation (29) of Corollary 5. Then, the limiting results

follow by Squeeze Theorem.

C.6 Proof of Proposition 6

σ2
Pj
≡
∫
R

∫
R

{Pj (θ, θ′)− E [Pj (θ′′, θ′′′)]}2
g (θ′) g (θ) dθ′dθ,

where

E [pj (θ′′, θ′′′)] =

∫
R

∫
R

Pj (θ′′, θ′′′) g (θ′′′) g (θ′′) dθ′′′dθ′′ =
1

r

∂u

∂aj
(0,E [a′]) .

The last equality follows from (17) and E [θ] = 0. Thus,

σ2
Pj

=

∫
R

∫
R

{
Pj (θ, θ′)− 1

r

∂u

∂aj
(0,E [a′])

}2

g (θ′) g (θ) dθ′dθ.

Using (17),

σ2
Pj

=

∫
R

∫
R

(
−rγBσ

2ψj
r + λ/2

θ + θ′

2

)2

g (θ′) g (θ) dθ′dθ

=

(
1

2

rγBσ
2ψj

r + λ/2

)2 ∫
R

∫
R

(θ + θ′)
2
g (θ′) g (θ) dθ′dθ

= 2

(
1

2

rγBσ
2ψj

r + λ/2

)2

E
[
θ2
]
.

Using the second moment derived in the earlier proof C.5 and taking the square-root of both

sides, Equation (30) of the proposition follows. It is straightforward to obtain (31) from (30).

C.7 Proof of Proposition 7

σ2
qj
≡
∫
R

∫
R

{qj (θ, θ′)− E [qj (θ′′, θ′′′)]}2
g (θ′) g (θ) dθ′dθ,

where

E [qj (θ′′, θ′′′)] =

∫
R

∫
R

qj (θ′′, θ′′′) g (θ′′′) g (θ′′) dθ′′′dθ′′ = 0.
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The last equality follows from (16) and E [θ] = 0. Thus,

σ2
qj

=

∫
R

∫
R

[qj (θ, θ′)]
2
g (θ′) g (θ) dθ′dθ.

Using (16),

σ2
qj

=

∫
R

∫
R

(
θ′ − θ
2ψj

)2

g (θ′) g (θ) dθ′dθ

=

(
1

2ψj

)2 ∫
R

∫
R

(θ′ − θ)2
g (θ′) g (θ) dθ′dθ

= 2

(
1

2ψj

)2

E
[
θ2
]
.

Using the second moment derived in the earlier proof C.5 and taking the square-root of both

sides,

σqj =
√

2
ση

|ψj|
√
λ
.

Combining with (30), one obtains Equation (32) of the proposition. It is straightforward to

obtain (33) from (32).

C.8 Proof of Proposition 8

Equation (14) implies

V (η,a, λb |λ∗b , λc) =
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2
Eλ∗b

[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
])

− (λb + λc)
γBσ

2

2r + λb + λc
ψTE [a′] η +

(
1

r
m− (λb + λc)

γBσ
2

2r + λb + λc
ψTE [a′]ψ

)T
a

− rγBσ
2

2r + λb + λc

(
η2 + 2ηψTa + aTΨa

)
.

Then,

E [V (η,a, λb |λ∗b , λc)]

=

∫
R

∫
RJ

{
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2
Eλ∗b

[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
])

− (λb + λc)
γBσ

2

2r + λb + λc
ψTEλ∗b [a′] η +

(
1

r
m− (λb + λc)

γBσ
2

2r + λb + λc
ψTEλ∗b [a′]ψ

)T
a

− rγBσ
2

2r + λb + λc

(
η2 + 2ηψTa + aTΨa

)}
Φ (da, dη) .
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And, in equilibrium,

Eλ∗b [a′] = 0,

Eλ∗b
[
(η′)

2
+ 2η′ψTa′ + (a′)

T
Ψa′
]

= Eλ∗b
[(
θ′ +ψTEλ∗b [a′]

)2
]
.

Thus,

E [V (η,a, λb |λ∗b , λc)] =

∫
R

∫
RJ

{
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2
Eλ∗b [θ′]

)

+
1

r
mTa − rγBσ

2

2r + λb + λc

(
η2 + 2ηψTa + aTΨa

)}
Φ (da, dη) .

Using the second moment derived in the earlier proof C.5, one obtains

E [V (η,a, λb |λ∗b , λc)] =

∫
R

∫
RJ

{
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2

σ2
η

λc + λ∗b

)

+
1

r
mTa − rγBσ

2

2r + λb + λc

(
η2 + 2ηψTa + aTΨa

)}
Φ (da, dη)

=
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2

σ2
η

λc + λ∗b

)
+

1

r
mTEλb [a] − rγBσ

2

2r + λb + λc
Eλb

[
η2 + 2ηψTa + aTΨa

]
.

Because the system is ergodic,

Eλb [a] = 0,

Eλb
[
η2 + 2ηψTa + aTΨa

]
= Eλb

[(
θ +ψTEλb [a]

)2
]
.

Thus,

E [V (η,a, λb |λ∗b , λc)]

=
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2

σ2
η

λc + λ∗b

)
− rγBσ

2

2r + λb + λc
Eλb

[
θ2
]

=
γBσ

2

2r + λb + λc

(
−σ2

η +
λb + λc

2

σ2
η

λc + λ∗b

)
− rγBσ

2

2r + λb + λc

σ2
η

λc + λb
,

which implies (36).

The first order condition of the optimization problem (36) is

−
γBσ

2σ2
η

(2r + λc + λb)
2

(
−1 +

λc + λb
2 (λc + λ∗b)

− r

λc + λb

)
+

γBσ
2σ2

η

2r + λc + λb

(
1

2 (λc + λ∗b)
+

r

(λc + λb)
2

)
− χ′ (λb) ≤ 0
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and with equality if λb > 0. The second order condition is

− 2
γBσ

2σ2
η

(2r + λc + λb)
3

(
1 +

r

λc + λ∗b
+

r

λc + λb

)
− 2

γBσ
2σ2

η

(2r + λc + λb)
2

r

(λc + λb)
2

−
γBσ

2σ2
η

2r + λc + λb

(
1

2 (λc + λ∗b)
2 +

2r

(λc + λb)
3

)
− χ′′ (λb) ≤ 0.

Because the second order condition always holds with strict inequality, there is a unique op-

timum λb given any λ∗b . Then, the first order condition evaluated at λb = λ∗b pins down the

equilibrium:

γBσ
2σ2

η

2 (λc + λ∗b)

(
1

2r + λc + λ∗b
+

1

λc + λ∗b

)
− χ′ (λ∗b) ≤ 0.

The left hand side is strictly decreasing in λ∗b , which implies the uniqueness of the equilibrium.

Finally, by using the assumption χ (λb) = χ0λb, the proof is complete.
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Supplement to “Liquidity in the Cross Section of OTC

Assets”

This online appendix contains discussions and additional empirical results
omitted from the printed manuscript.

Semih Üslü1 Güner Velioğlu2

D Additional empirical results

D.1 Market volatility measures
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Figure D.1: Time series of market volatility measures
This figure plots two market volatility measures over the sample period from October 7, 2002 to December 31,
2021. Implied market volatility is the implied volatility of CBOE S&P 500 index European call option (see
Appendix A for more details). Volatility index (VIX) is CBOE volatility index, obtained from the Federal
Reserve’s website. We take the average of daily VIX levels to have VIX levels at weekly frequency.

1Carey Business School, Johns Hopkins University, e-mail: semihuslu@jhu.edu
2Quinlan School of Business, Loyola University Chicago, e-mail: gvelioglu@luc.edu
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D.2 Volatility beta

Table D.1: Relation of volatility beta with other risk measures

This table presents the relation of bond volatility beta with other risk measures. Bond rating is bond’s credit
rating provided by S&P, Moody’s, or Fitch, in availability order, where letter ratings are converted to numbers
from 1 (AAA) to 22 (D). Coupon rate is bond’s coupon rate in percentages. Years to maturity is the number
of years left to bond’s maturity date. Bond age is the number of years since bond’s offering date. Callable
dummy equals one if bond is callable, and equals zero otherwise. Offering amount is the issuance size of the
bond. Detailed descriptions of volatility beta and average number of trades are provided in Appendix A. We
take the logarithm of each variable except the callable dummy. The standard errors are double clustered by
bond and week, and the t-statistics are reported in parentheses. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
Volatility beta (ψj) Volatility beta (ψj) Volatility beta (ψj)

Bond rating 0.339*** 0.337*** 0.401***
(21.45) (20.67) (37.50)

Coupon rate 0.129*** 0.088***
(6.10) (5.73)

Years to maturity 0.466*** 0.399***
(66.60) (78.20)

Bond age 0.124***
(24.37)

Callable dummy -0.116***
(-11.14)

Offering amount -0.348***
(-84.90)

Average number of trades -0.378***
(-69.55)

Intercept -3.220*** -4.286*** -3.672***
(-93.46) (-113.24) (-119.06)

Year-week FE Y Y Y
Observations 4,889,790 4,889,381 4,889,381
Adjusted R2 0.155 0.213 0.389
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D.3 Interdealer trades

Table D.2: Determinants of liquidity in the cross section and over time, interdealer trades

This table presents our main findings when the liquidity measures are instead calculated based on interdealer
trades only, under a log-linear functional form assumption as in our main results. The single-letter name of
each variable, as used in the theoretical model, is provided in the parenthesis adjacent to the variable. The
subscript j refers to bond j, and the subscript −j refers to all other bonds except bond j. Detailed variable
definitions are provided in Appendix A. The standard errors are double clustered by bond and week, and the
t-statistics are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel A: Baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Offering amount (λj) 0.522*** -0.142*** -0.678***
(95.16) (-40.72) (-92.00)

Volatility beta (ψj) -0.010*** 0.108*** 0.127***
(-5.19) (65.88) (40.93)

Average number of trades (ANTj) 0.878*** 0.473*** 0.476***
(151.08) (120.43) (63.63)

Intercept -2.831*** -2.617*** -0.291***
(-135.36) (-195.41) (-10.37)

Year-week FE Y Y Y
Observations 4,206,079 4,206,079 4,206,079
Adjusted R2 0.401 0.198 0.130

Panel B: Full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj ) Price impact (δj)

Offering amount (λj) 0.522*** -0.139*** -0.675***
(95.09) (-39.43) (-90.87)

Offering amount, other bonds (λ−j) -0.373*** -0.508*** 0.019
(-12.28) (-24.82) (0.66)

Volatility beta (ψj) -0.013*** 0.120*** 0.140***
(-5.00) (54.71) (40.11)

Average number of trades (ANTj) 0.870*** 0.476*** 0.484***
(144.99) (123.94) (64.65)

GDP forecast dispersion (ση) -0.018 -0.186*** -0.226***
(-1.21) (-11.61) (-12.72)

Treasury rate (r) 0.036*** -0.008** -0.035***
(6.10) (-2.03) (-6.99)

Implied market volatility (σ) -0.023 0.649*** 0.770***
(-0.74) (21.07) (22.55)

Intercept 0.273 2.621*** 0.699***
(1.16) (18.10) (3.03)

Observations 4,206,079 4,206,079 4,206,079
Adjusted R2 0.387 0.179 0.122
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Panel C: Trade cancellations, baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average number of cancellationsj 0.206*** -0.021*** -0.233***
(65.15) (-12.29) (-55.07)

Bond-level controls except OAj & OA−j Y Y Y
Year-week FE Y Y Y
Observations 4,206,079 4,206,079 4,206,079
Adjusted R2 0.357 0.185 0.068

Panel D: Trade cancellations, full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj ) Price impact (δj)

Average number of cancellationsj 0.213*** -0.006*** -0.226***
(65.46) (-3.37) (-53.71)

Average number of cancellations−j -0.420*** 0.656*** 0.951***
(-13.60) (24.64) (29.70)

Bond-level controls except OAj & OA−j Y Y Y
Market-level controls Y Y Y
Observations 4,206,079 4,206,079 4,206,079
Adjusted R2 0.343 0.167 0.061

Panel E: CDS depth, baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average CDS depthj -0.079*** 0.057*** 0.155***
(-9.52) (10.59) (13.30)

Offering amount 0.508*** -0.135*** -0.663***
(69.43) (-31.47) (-69.95)

Bond-level controls except OAj & OA−j Y Y Y
Year-week FE Y Y Y
Observations 2,354,299 2,354,299 2,354,299
Adjusted R2 0.407 0.201 0.128

Panel F: CDS depth, full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average CDS depthj -0.080*** 0.060*** 0.164***
(-9.58) (10.93) (14.26)

Offering amount 0.507*** -0.134*** -0.660***
(69.30) (-31.46) (-69.90)

Bond-level controls except OAj Y Y Y
Market-level controls Y Y Y
Observations 2,354,299 2,354,299 2,354,299
Adjusted R2 0.393 0.181 0.118
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D.4 Trade cancellations and offering amount as search friction prox-
ies

Table D.3: Proxying for search frictions, trade cancellations and offering amount

This table presents the relation between trade cancellations and the liquidity in corporate bonds, with offering
amount included in the specifications. Panel A presents the results under the baseline model, where offering
amount, bond-level controls except OAj & OA−j (offering amount & offering amount, other bonds), and year-
week fixed effects collectively represent the predictors used in Table 3. Panel B presents the results under the
full model, where offering amount, offering amount of the other bonds, bond-level controls except OAj & OA−j
(offering amount & offering amount, other bonds), and market-level controls collectively represent the predictors
used in Table 4. The subscript j refers to bond j, and the subscript −j refers to all other bonds except bond
j. Detailed variable definitions are provided in Appendix A. The standard errors are double clustered by bond
and week, and the t-statistics are reported in parentheses. *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.

Panel A: Baseline model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj ) Price impact (δj)

Average number of cancellationsj 0.172*** -0.014*** -0.173***
(68.05) (-7.78) (-44.94)

Offering amount 0.872*** -0.176*** -0.976***
(148.85) (-47.46) (-123.41)

Bond-level controls except OAj & OA−j Y Y Y
Year-week FE Y Y Y
Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.511 0.231 0.215

Panel B: Full model

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Average number of cancellationsj 0.177*** -0.009*** -0.169***
(69.25) (-4.71) (-44.29)

Average number of cancellations−j -0.081* 0.371*** 0.323***
(-1.75) (14.17) (12.18)

Offering amount 0.871*** -0.174*** -0.975***
(147.53) (-46.43) (-122.97)

Offering amount, other bonds -0.355*** -0.171*** 0.193***
(-8.33) (-7.98) (6.76)

Bond-level controls except OAj & OA−j Y Y Y
Market-level controls Y Y Y
Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.493 0.219 0.210
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D.5 Linear functional form

Table D.4: Determinants of liquidity in the cross section and over time, linear functional form

This table presents determinants of liquidity in the cross section of OTC-traded corporate bonds under a linear
functional form assumption. The single-letter name of each variable, as used in the theoretical model, is provided
in the parenthesis adjacent to the variable. The subscript j refers to bond j, and the subscript −j refers to
all other bonds except bond j. Detailed variable definitions are provided in Appendix A. In this table only, all
variables are winsorized at the 1% and 99% levels. The standard errors are double clustered by bond and week,
and the t-statistics are reported in parentheses. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

(1) (2) (3)
Trade volume (Vj) Price dispersion (σPj

) Price impact (δj)

Offering amount (λj) 12.3451*** -0.1309*** -21.0816***
(52.20) (-24.34) (-34.63)

Offering amount, other bonds (λ−j) -0.0014*** -0.0001*** -0.0028***
(-17.10) (-20.72) (-19.90)

Volatility beta (ψj) 0.0481 0.0202*** 5.6668***
(1.59) (15.65) (36.12)

Average number of trades (ANTj) 0.1804*** 0.0047*** 0.0570***
(42.82) (52.14) (10.10)

GDP forecast dispersion (ση) -1.0561*** -0.0515*** -1.4109***
(-7.62) (-7.85) (-7.70)

Treasury rate (r) 0.2004*** -0.0045** 0.1263
(3.06) (-2.35) (1.19)

Implied market volatility (σ) -1.6136 1.5006*** 54.8467***
(-1.06) (16.45) (19.10)

Intercept 4.6767*** 0.4446*** 33.1316***
(8.77) (17.67) (35.16)

Observations 4,912,241 4,912,241 4,912,241
Adjusted R2 0.300 0.163 0.101

In this section, we alternatively run the following regression assuming a linear functional

form:

Liquidityj,t = α + β1λj,t + β2λ−j,t + β3ψj,t + β4ANTj,t + β5ση,t + β6rt + β7σt + εj,t,

where “Liquidityj,t” of bond j in week t denotes the liquidity measure; trade volume (Vj), price

dispersion (σPj), or price impact (δj). We run this regression separately for each measure.

An important limitation of this näıve specification is that it does not account for the pro-

portionality between the liquidity measures and the predictors as uncovered by our theoretical

formulas. In other words, the specified linear functional form does not capture the multiplica-

tive relation between the predictors in jointly determining the liquidity measures, and so, may

be inconsistent with the actual data generating processes. While being mindful of this possibil-

ity, we present the results of this estimation in Table D.4. The adjusted R2s are 0.300, 0.163,

and 0.101 in Table D.4, which are, as expected, low in comparison to 0.484, 0.216, and 0.204 of
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Table 4, respectively. Although the coefficients have similar signs in both tables, we base our

main conclusions on Table 4, which more accurately corresponds to the functional form of the

theoretical model.

E Non-cross-sectional predictors of liquidity

For completeness of our Table 4 discussion, we next consider the non-cross-sectional predictors

in Table 4, while noting the high degree of overlap in the information content of the empirical

counterparts of these variables. For example, although we can isolate σ and ση in theory,

this is difficult in practice. As such, we view these variables as jointly controlling for the

fuzzy macroeconomic factors, rather than distinctly identifying economic channels and sharply

corresponding to the variables in theory.

As part of our non-cross-sectional predictors in Table 4, we use the implied market volatility,

the GDP forecast dispersion among the professional forecasters, and the treasury rate as proxies

for the aggregate volatility (σ), the hedging need dispersion (ση) among investors in our model,

and the investors’ discount rate (r), respectively. As predicted by our model, the implied market

volatility is strongly and positively related with price dispersion and price impact. According

to the model, the implied market volatility is not supposed to affect trade volume because it

only scales up and down all investors’ exposure to the aggregate systematic risk endowment,

while what matters for trade volume is only the dispersion in their exposure to systematic risk,

which is not affected by σ, but by ση. However, Table 4 indicates that both implied market

market volatility and GDP forecast dispersion reduce trade volume, instead of GDP forecast

dispersion only. We suspect that this is because the implied market volatility and the GDP

forecast dispersion have overlapping information content while σ and ση are easily distinguished

in our model by construction. In terms of price dispersion, the GDP forecast dispersion has the

opposite sign of what is predicted by the model. Another failure of GDP forecast dispersion

shows up in the price impact regression. That is, while the model predicts no relation between

price impact and the GDP forecast dispersion, its regression coefficient turns out to be negative

and significant. Therefore, only the empirical relationship between trade volume and GDP

forecast dispersion is consistent with our model’s prediction among the predictions for ση.

The last and perhaps the least curious case is the implications regarding the treasury rate,

which we designate as a proxy for investors’ discount rate. The implications of discount rate

have typically very natural interpretations in this class of models. As discount rate increases,
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investors care more for quick trading and so they start trading as if frictions got more severe.3

Accordingly, as discount rate increases, the sensitivity of investors’ marginal valuation to their

excess risk exposure increases in our model, and this leads to larger price dispersion and price

impact. However, signs of the coefficients of treasury rate reported in the price dispersion

and price impact regressions in Table 4 are exactly the opposite of the signs predicted by our

theory. This is not a very curious case because treasury rate is a highly contaminated proxy

for discount rate due to time-varying liquidity premia of the treasury securities.4 Indeed, it

is very possible that the time-variation of liquidity premia is stronger than the time-variation

of investors’ discount rate, and so, a larger treasury rate typically captures a smaller liquidity

premium rather than a larger discount rate. With this interpretation in mind, the regression

coefficients become less confusing, because it is natural to think that times of larger liquidity

premia are associated with large price dispersion and price impact in the OTC markets.

To sum up, our cross-sectional results from empirical tests of liquidity are mostly consis-

tent with the implications of the theoretical model, both with time fixed effects and with a

model-informed set of macroeconomic indicators. Because our model is developed mainly to

obtain precise cross-sectional implications, we interpret this empirical consistency as pointing

to the success and usefulness of the search-theoretic approach in uncovering the determinants of

endogenous liquidity differentials across OTC assets. There is no question, however, that there

is an obvious need for determining better proxies for aggregate parameters such as investors’

hedging need dispersion and discount rate. Because these are typically important parameters

in many dynamic search models, we believe our results point to a room for improvement in

future research that takes seriously testing this class of models.

3Indeed, the limiting cases as frictions vanish and as discount rate goes to zero typically coincide with each
other.

4See Lagos (2010) for a discussion.
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