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Abstract

We present a model of secured lending in which borrowers and lenders agree to disagree

about collateral values. Lenders’ beliefs distort equilibrium prices of collateralized as-

sets, and the extent to which lenders’ beliefs distort prices is mediated by borrower

riskiness. Specifically, prices are more reflective of lenders’ beliefs when borrowers are

riskier and more reflective of borrowers’ beliefs when borrowers are safer. Disagreement

in a dynamic setting can generate positive return autocorrelation that strengthens with

borrower riskiness. We use data on U.S. residential mortgages to test the model’s main

predictions, for which we find strong empirical support.
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1 Introduction

Disagreement about asset valuation between agents has proved a powerful tool in explaining

empirical puzzles such as abnormal trading volume, excess volatility, and return predictabil-

ity.1 Much of this work focuses on disagreement between agents who “agree to disagree”

about the value of an asset and who buy or sell the asset according to their beliefs. In

practice, the buyer of an asset often finances her purchase with a loan that is secured by the

asset itself. When a borrower (i.e., buyer) defaults on a secured loan, the lender may seize

the collateral from the borrower, sell the collateral, and apply the proceeds to the unpaid

balance of the loan. It is therefore important for the lender to estimate the value of collateral

at the time of loan issuance. However, borrowers and lenders may disagree about the value

of collateral. In this paper, we explore how disagreement between borrowers and lenders

distorts asset prices and affects returns.

We first develop a static model in which a borrower finances the purchase of an asset

with debt and pledges the asset as collateral. In equilibrium, asset prices are more reflective

of lenders’ beliefs when borrowers are riskier and more reflective of borrowers’ beliefs when

borrowers are safer. We then extend the model to a dynamic setting. Here, we find that

disagreement between borrowers and lenders can generate positive return autocorrelation

that strengthens with the hazard rate of default. We end the paper by empirically testing

the main predictions from each version of our model using data on U.S. residential mortgages.

Consistent with these predictions, we find that when default risk is higher, (1) asset prices

are closer to lenders’ estimated values of collateral and (2) return momentum is stronger.

Importantly, both our theoretical and empirical findings are robust to several extensions.

To understand how disagreement affects the price of a collateralized asset, we begin with

a static model. In the model, a borrower wishes to purchase an indivisible asset from a seller

and finances the purchase of the asset by borrowing from a lender. To obtain financing from

the lender, the borrower pledges the asset as collateral. If the borrower remains solvent,

she consumes the asset and makes a repayment to the lender. Conversely, if the borrower

defaults, she obtains nothing, and the lender seizes the asset. In the baseline version of

the static model, the repayment and the price of the collateralized asset are determined via

multilateral bargaining.2 Importantly, the borrower and the lender hold heterogenous beliefs

about the value of collateral.

1See Banerjee and Kremer (2010) for a review.
2In an extension to the baseline model in which we consider sequential rounds of bilateral bargaining, we
show that the assumption that all agents bargain simultaneously is not important for the results.
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In contrast to existing models of disagreement, in which wealth shares or risk-aversion

determine whose beliefs are more reflected in prices (e.g., Atmaz and Basak, 2018), our

model highlights the role of borrower riskiness in mediating whose beliefs are more reflected.

Specifically, we find that when the borrower is optimistic relative to the lender, the asset

price decreases with borrower riskiness. Conversely, when the lender is optimistic relative to

the borrower, the asset price increases with borrower’s riskiness. Taken together, our results

suggest that increasing borrower riskiness pulls the price towards the lender’s value. In other

words, we find a negative relation between borrower riskiness and the difference between the

price and the lender’s value. This finding is robust to changing the order of bargaining,

the inclusion of repossession costs, endogenizing leverage, endogenizing default probabilities,

and allowing the lender to sell the loan on a secondary market.

To develop some intuition for this result, it is helpful to decompose the lender’s value

from a loan into two parts. The first is the interest and principal repaid over the life of

the loan, which the lender obtains while the borrower is solvent. The more optimistic the

borrower is about the asset’s value, the more she is willing to repay to the lender. The

second is the value of collateral, which the lender obtains when the borrower defaults. The

more optimistic the lender is about the asset’s value, the more valuable is the collateral.

An increase in borrower riskiness affects the two parts of the loan’s value differently. On

the one hand, it decreases the expected present value of interest and principal payments.

On the other hand, it increases the likelihood that the lender repossesses the asset. The

dominant effect is determined by whether the borrower or the lender is more optimistic

about the asset’s value. If the lender is more optimistic than the borrower, the increase in

value from possible repossession is larger than the decrease in value from a smaller repayment.

Therefore, the lender’s total value from the loan increases with borrower riskiness. Since the

total value increases, the asset’s price increases as well, which keeps the lender indifferent

between lending and not. However, the opposite is true if the borrower is more optimistic

than the lender: The effect of the smaller repayment dominates, so the lender’s value – and

hence the asset price – decreases with borrower riskiness.

To explore the return implications of disagreement between borrowers and lenders in

secured lending, we extend the model to a dynamic setting. The asset’s value, which is

publicly observable, evolves with an unobserved growth rate. Whereas the static model takes

agents’ beliefs as given, we now model how agents arrive at different beliefs. Specifically,

borrowers and lenders update their beliefs about the unobserved growth rate and agree to

disagree about how much weight to place on new information. For example, borrowers and
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lenders place a weight of 25% and 15%, respectively, on new information while agreeing to

disagree about which weight is actually correct (neither borrowers’ nor lenders’ weights need

be Bayesian). The borrower makes the lender a fixed repayment until the exogenous arrival

of default, at which time the lender repossesses the asset and sells it for the current market

price.

We show that disagreement between borrowers and lenders can result in return auto-

correlation. This result highlights the importance of heterogeneous beliefs. For example,

even if one type of agent was at an informational disadvantage, a model of secured lending

under rational expectations would not be able to generate return autocorrelation. In our

setting, we find that returns are positively autocorrelated when lenders update more slowly

than borrowers and borrowers update like Bayesians. This return autocorrelation is stronger

when borrowers are riskier, which is when default and lender repossession are more likely.

Intuitively, prices are more reflective of lenders’ beliefs when borrowers are riskier, and since

lenders’ beliefs incorporate new information more slowly, prices incorporate new information

more slowly as well. Although we focus on the case in which lenders update more slowly

than borrowers, the model generates alternative return predictions for when borrowers and

lenders update their beliefs in other ways.

To demonstrate the model’s empirical relevance, we use data on U.S. residential mort-

gages. This market is an ideal setting to study disagreement between borrowers and lenders

for two reasons. First, we can observe both the equilibrium price (i.e., sale price of the home)

and the lender’s estimated value of the collateral (i.e., appraised value).3 Second, borrow-

ers and lenders come to different conclusions, which we interpret as disagreement, about

the value of collateral even though they have access to similar information. For example,

sale prices differ from appraised values 64% of the time in our sample of over 10 million

transactions.

Our first testable prediction from the model is that the difference between the appraised

value and sale price decreases with borrower riskiness. Since we do not have ex-ante estimates

of each loan’s probability of default, we proxy for default risk (i.e., borrower riskiness)

with three different variables: initial home equity, initial loan-to-value (LTV) ratio, and

FICO score at time of origination. A meta-analysis reveals that home equity and FICO are

negatively associated with default risk, and initial loan-to-value ratio is positively associated

with default risk (Jones and Sirmans, 2015). We find that in both ordinary least squares and

3If the lender sells the loan to an outside investor, the appraised value can be interpreted as the investor’s
estimate of value rather than the lender’s. We show that the same results obtain in an extension with this
interpretation.
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Poisson regressions, the coefficients on each of the three proxies, as well as the coefficient on

their first principal component, are of the expected sign and highly significant. This result is

robust to considering appraisal bias, accounting for lender repossession costs, and focusing

on loans that are more likely to be sold on the secondary market.

The second testable prediction from the model is with regards to return autocorrelation.

We focus on the scenario in which borrowers (who in practice are represented by well-

informed real estate agents) update their information set in accordance with Bayes’ rule,

but lenders update more slowly than prescribed by Bayes’ rule. This relative lag on the

part of lenders is consistent with the slow-moving nature of appraisals (Clayton et al., 2001),

which are often legally required by lenders (Eriksen et al., 2020). In this scenario, the model

predicts positive return autocorrelation (i.e., return momentum) in the time series, which

has been widely documented in the real estate market (Beracha and Skiba, 2011; Ghysels

et al., 2013). A much more novel prediction produced by the model is that return momentum

is stronger when default is more likely. Using the same three proxies for default risk (i.e.,

initial home equity, LTV ratio, credit score) and their first principal component, we find that

return momentum is indeed stronger when default risk is higher.

2 Related Literature

In this section, we review some of the key papers in the literature most closely related to

our paper and highlight our contributions.

2.1 Related studies on disagreement

Broadly speaking, the literature has focused on two reasons for disagreement. In the first,

agents have different information sets and therefore come to different conclusions about asset

values, prices, and returns. These are models of rational expectations under asymmetric

information.4 In the second, agents hold dogmatic beliefs regarding some aspect of the

economy (e.g., asset values, signal precision) and agree to disagree with other agents.5 For

example, an agent may be overconfident and place too much weight on her own information

and not enough on other agent’s information. An attractive feature of this latter approach

4See Grossman and Stiglitz (1980); Kyle (1985) for examples.
5See Harrison and Kreps (1978); Harris and Raviv (1993); Kandel and Pearson (1995); Scheinkman and
Xiong (2003); Cao and Ou-Yang (2008); Banerjee et al. (2009); Banerjee and Kremer (2010); Banerjee
(2011); Atmaz and Basak (2018); Kyle et al. (2023) for examples.
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is its ability to explain empirical puzzles, such as persistent return momentum (e.g., Kyle

et al., 2023). These papers almost always model disagreement between traders and focus on

explaining puzzles from the equity markets (i.e., return predictability, volatility, and trading

volume).6 In contrast, we model disagreement between borrowers and lenders to generate

price distortions and return predictability, and we focus on secured lending.

Our application of disagreement to secured lending is closest to that in Simsek (2013),

who also considers a static setting in which agents disagree about the value of collateral.

In his model, pessimists lend to optimists who wish to purchase an asset that will serve

as collateral. Default arises endogenously when collateral value falls below the borrower’s

repayment. He finds that what agents disagree about (e.g., the probability of good states

versus bad states and the recover values therein), matters more for asset prices than the level

of disagreement. Our focus is markedly different. Taking borrowers’ and lenders’ beliefs as

given, we study the role of borrower riskiness (rather than asset riskiness) in mediating

disagreement.

2.2 Related studies on collateral valuation

Our paper is also related to the literature on collateral valuation. Recent work has shown

that higher collateral values are associated with lower credit spreads and higher loan amounts

(Benmelech and Bergman, 2009; Cerqueiro et al., 2016; Luck and Santos, 2022). Our model

implicitly shows that higher estimates of collateral value are associated with higher loan

amounts. Stroebel (2016) shows that lenders with relatively superior information about the

value of collateral earn higher returns on their secured loans. Jiang and Zhang (2023) find

that mortgages collateralized by houses whose estimated values are more disperse, which the

authors argue may be driven by information asymmetry, receive higher interest rates and are

smaller in size. In contrast, agents in our model have the same information sets but choose

to incorporate new information into their estimates of asset values at different rates. Our

contribution to this strand of literature is to show that lenders’ estimates of collateral values

can also affect asset prices, not just loan terms.

6Additionally, Broer (2018) looks at disagreement in the context of securitization; Burnside et al. (2016)
examines the role of disagreement in creating booms and busts in the housing market; and Xiong and Yan
(2010) explores disagreement in bond markets.
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2.3 Related studies on return momentum

Lastly, we contribute to the literature on return momentum (i.e., positive return autocorre-

lation), which has been documented across asset classes and geographies (Moskowitz et al.,

2012; Asness et al., 2013). More specifically, our paper fits into the literature on return

momentum in residential real estate, which was first documented by Case and Shiller (1989,

1990).7 Explanations put forth for this phenomenon include extrapolative expectations (Case

and Shiller, 1987; Glaeser and Nathanson, 2017), information frictions (Capozza et al., 2004;

Anenberg, 2016), search costs (Head et al., 2014, 2016), and strategic complementarity

(Guren, 2018). We contribute to this literature in two ways. First, we provide a novel

mechanism (i.e., disagreement) for momentum. In our model, return momentum can be

generated when lenders incorporate new information about collateral values more slowly

than do buyers. This difference in beliefs is similar to the empirical evidence in Genesove

and Hanse (2023), who argue that return momentum in the residential housing market may

be driven by sellers updating their values much more slowly than buyers. Second, we show

that momentum is strongest when borrowers are riskier. To the best of our knowledge, we

are the first to document this stylized fact.

Martel and Van Wesep (2016) examine the effect of appraisal-based price constraints on

prices, returns, and liquidity. In their model, buyers cannot pay significantly more than

the average price in recent transactions, which causes sluggish adjustment to changes in

fundamental value. They show that in a rising market, sellers strategically delay sale, which

exacerbates the already sluggish adjustment process. In contrast to this paper, estimates of

value based on historical data arise endogenously in our model because lenders require an

estimate of collateral value. Moreover, we explore the role of borrower risk in appraisals’

affect on prices.

3 Static Model

In this section, we present a static model to illustrate how disagreement between a borrower

and a lender distorts asset prices. The main result is that the lender’s belief about an

asset’s future growth rate affects the price the borrower pays for an asset that will serve as

collateral. We go on to show that the borrower riskiness mediates disagreement between the

borrower and the lender. Specifically, a safer borrower will have her beliefs reflected more in

7See Ghysels et al. (2013) for a review.
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the price of an asset than a riskier borrower. We show that this result is robust to a number

of extensions.

3.1 Base Model

There are two dates, t = 0, 1, and three agents, which are indexed by j ∈ {B,L,S}: bor-

rower/buyer B (she), lender L (he), and seller S. Agents are risk-neutral. In this section,

we normalize the risk-free rate to zero. There is an indivisible asset for which the borrower

has unit demand. The date t = 1 value of owning the asset is

v1 = v0 + x, (1)

where v0 is a constant and x is a normally distributed growth rate. The main assumption

of the model is that agents agree to disagree about the exact distribution of x. Specifically,

agents agree that x is normally distributed with precision τ0 > 0 but agree to disagree about

the mean of x. That is, agent j believes the mean is x̂j, which need not equal x̂i for some

other agent i. Let

aj = v0 + xj, (2)

where aj represents agent j’s estimate of the asset’s value. At this point, we take as given

that agents disagree (we provide a rationale for disagreement in Section 4).

The borrower wishes to purchase the asset from the seller and seeks a loan from the lender

to finance the purchase. To secure the loan, the borrower pledges the asset as collateral. The

borrower may default on her loan, in which case the lender repossesses the asset. Let d be a

Bernoulli random variable representing default: d = 1 (default) with probability λ ∈ (0, 1),

and d = 0 (solvency) with probability 1−λ. Furthermore, let c be the borrower’s repayment

in solvency, p be the price paid by the borrower to the seller for the asset, and ℓ ∈ (0, 1) be the

percent of the purchase price financed by the lender (the remaining percent 1− ℓ is financed

by the borrower). We take ℓ to be exogenous and solve for the equilibrium repayment c and

asset price p. In an extension, we endogenize ℓ by allowing the borrower to choose it.

Suppose the three agents agree on repayment c and asset price p. The surpluses of the
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borrower, the lender, and the seller are

SB(c, p) = (1− d)(v1 − c)− (1− ℓ)p (3)

SL(c, p) = dv1 + (1− d)c− ℓp (4)

SS(c, p) = p− v1. (5)

The borrower obtains the asset value v1 less the repayment c if she is solvent and nothing if

she defaults. She has an initial outlay of (1 − ℓ)p. The lender obtains the asset value v1 if

the borrower defaults and the repayment c if she remains solvent. The lender has an initial

outlay of ℓp. The seller obtains the price p but gives up the asset, which has value v1.

We have thus far assumed that all agents value the asset at v1, even if they disagree about

its mean. In practice, the seller, the borrower, and the lender may have different values for

the asset, even if they agree about the distribution of the asset’s value. For example, a

homeowner who just took a job in another city has a lower value for her current house than

a potential buyer, regardless of her views on the local real estate market. Similarly, a lender

values a foreclosed house less than a potential homeowner (we explore this possibility in a

subsequent section). For the moment, we set aside these important issues and focus on how

disagreement affects prices.

To determine whether or not there are gains from trade, we need to evaluate the agents’

expected surpluses under their respective subjective probability measures:

EB[SB(c, p)] = (1− λ)(aB − c)− (1− ℓ)p (6)

EL[SL(c, p)] = λaL + (1− λ)c− ℓp (7)

ES [SS(c, p)] = p− aS . (8)

The total expected surplus is therefore∑
j

Ej[Sj(c, p)] = (1− λ)aB + λaL − aS . (9)

The repayment c and asset price p are determined via multilateral bargaining.8 Specif-

ically, let ηj be j’s bargaining weight where
∑

j ηj = 1. These weights may be interpreted

literally as bargaining weights or more abstractly as parameters that capture agents’ relative

8We assume that the borrower, the lender, and the seller bargain over the repayment and price simultaneously.
In an extension, we explore sequential bargaining.
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market power in a competitive market. The key assumption is that agent j obtains a frac-

tion ηj of the total surplus in equation (9). The following proposition gives the equilibrium

repayment and price.

Proposition 1. The equilibrium repayment and price are

c∗(λ) = (1− λ)−1((1− λ)ℓηSaB + λ(ℓηS − 1)aL + ℓ(1− ηS)aS) (10)

p∗(λ) = ηS((1− λ)aB + λaL) + (1− ηS)aS . (11)

From equation (11), it is clear that the equilibrium price not only reflects the beliefs of the

borrower (i.e., the buyer) and the seller but also the beliefs of the lender. Furthermore, the

lender’s beliefs are more reflected in the price when the borrower is riskier. It follows from

equation (11) that when the borrower is optimistic relative to the lender (aB > aL), the

price is decreasing in the borrower’s riskiness (p∗′(λ) < 0). Conversely, when the borrower is

pessimistic relative to the lender (aB < aL), the price is increasing in the borrower’s riskiness

(p∗′(λ) > 0).

To study the role of disagreement between the borrower and the lender, we often focus

on the case in which neither agent earns surplus (ηB = ηL = 0).9 In this case, the borrower’s

beliefs and lender’s beliefs are reflected in the asset price, but the seller’s beliefs are not.

Although we readily acknowledge that all agents may obtain surplus in practice, focusing on

this case allows us to highlight the economic forces behind Proposition 1.

To develop the intuition behind Proposition 1, consider the indifference conditions for

the borrower and the lender when neither agent obtains surplus:

Borrower: 0 = (1− λ)(aB − c(λ))− (1− ℓ)p(λ) (12)

Lender: 0 = λaL + (1− λ)c(λ)− ℓp(λ). (13)

From the borrower’s indifference condition, we see that to keep the borrower indifferent,

the unconditional expected repayment (1− λ)c(λ) must equal the unconditional asset value

(1−λ)aB less the amount of the purchase price she finances herself (1− ℓ)p(λ). Substituting

(1− λ)c(λ) into the lender’s indifference condition, we obtain

0 =

(A)︷︸︸︷
λaL +

(B)︷ ︸︸ ︷
(1− λ)aB − (1− ℓ)p(λ)−

(C)︷ ︸︸ ︷
ℓp(λ) . (14)

9Equivalently, one might imagine assets markets are competitive, loan markets are competitive, and that
the asset is in sufficiently short supply.
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From equation (14), we see that increasing borrower riskiness increases the unconditional

collateral value (A) at a rate of aL and decreases the unconditional repayment (B) at a rate

of aB+(1−ℓ)p′(λ). To keep the lender indifferent between lending and not, the loan amount

(C) must change to offset the net change of (A) and (B):

ℓp′(λ) = aL − (aB + (1− ℓ)p′(λ)), (15)

from which it follows that p′(λ) > 0 when aL > aB and p′(λ) > 0 when aL < aB.

Before concluding this section, we state an important empirical prediction of the model.

In many applications, one may observe the lender’s value of the asset and the price paid by

the borrower for the asset, but not the borrower’s value of the asset (in fact, one of the main

points of our paper is that the price paid for the asset is distorted by the lender’s beliefs and

does not fully reflect the borrower’s beliefs).

Corollary 1. If neither the borrower nor the lender earn surplus (ηB = ηL = 0), then

p∗(λ) = (1− λ)aB + λaL (16)

and hence

p∗′(λ) = aL − aB = (1− λ)−1(aL − p∗(λ)). (17)

As in Proposition 1, the price is decreasing in the borrower’s riskiness (p∗′(λ) < 0) when

the borrower is relatively optimistic (aB > aL) and increasing in the borrower’s riskiness

(p∗′(λ) > 0) when the borrower is relatively pessimistic (aB < aL). However, Corollary 1

enables us to establish that the equilibrium price is greater than the lender’s value (p∗(λ) >

aL) when the borrower is relatively optimistic, and the equilibrium price is less than the

lender’s value (p∗(λ) < aL) when the borrower is relatively pessimistic. Taken together,

these results suggest that increasing borrower riskiness pulls the price towards the lender’s

value.

3.2 Extensions

The model considered in the previous section is admittedly stylized. We therefore present a

number of extensions to demonstrate that the the basic intuition of Proposition 1 is robust

to alternative specifications of the model.
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3.2.1 Sequential Bargaining

In practice, the repayment and the price are determined through multiple rounds of bilateral

bargaining. For example, a small business owner may first determine the loan terms he will

be able to obtain before approaching the seller for a piece of equipment or vehicle. To that

end, we now consider an extension of the model in which the borrower and lender bargain

over a repayment, and the borrower can commit to the repayment in a subsequent round of

bargaining with the seller. The goal of this extension is to illustrate that the multilateral

nature of price formation in the previous section does not materially affect the equilibrium

outcome.

There are now three dates, t = 0, 1, 2. On date t = 0, the borrower and the lender bargain

over a repayment, c. On date t = 1, the borrower and the seller bargain over the price p.

On date t = 2, payoffs are realized. Since each stage of bargaining is bilateral, we appeal to

Nash (1950) directly for the bargaining solution.

Proposition 2 (Sequential Bargaining). The equilibrium repayment and price are

c∗(λ) =
(1− λ)(ℓηS + (1− ℓ)ηL)aB − λ(1− ℓ)(ηB + ηS)aL + (1− ℓ)(ℓηB + (1− ℓ)ηL)aS

(1− λ)(ηS + (1− ℓ)(1− ηS))

(18)

p∗(λ) =
ηS((1− λ)aB + λaL) + (1− ℓ)(1− ηS)aS

ηS + (1− ℓ)(1− ηS)
. (19)

Three facts follow immediately. First, the price under sequential bargaining places less weight

on the seller’s belief than under simultaneous bargaining (simply compare the coefficient on

aS in equation (11) to the corresponding coefficient in equation (19)). The borrower and

lender now enjoy a first-mover advantage relative to the seller, so the equilibrium price

reflects their views more. Second, as the surpluses of the borrower and the lender go to

zero, the prices under sequential bargaining and simultaneous bargaining converge to p(λ) =

(1−λ)aB+λaL. Third, p∗′(λ) > 0 if aL > aB and p∗′(λ) < 0 if aL < aB, just as in Proposition

1.

3.2.2 Repossession Costs

In many applications, collateral repossession is costly; lenders may incur substantial holding

costs (in the case of equipment repossession) or have to sell at a foreclosure sale discount

(Conklin et al., 2023). In this subsection, we extend the model to include repossession costs.
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We show that increasing borrower riskiness pulls the price of the asset towards the lender’s

effective value (his value net of repossession costs).

Suppose that when the borrower defaults, the lender is able to recover only a fraction

ξ ∈ (0, 1) of the collateral value. The subjective, expected surpluses of the borrower and the

seller are as before (see equations (6) and (8)), but the lender’s expected surplus is now

EL[SL(c, p)] = λξaL + (1− λ)c− ℓp. (20)

Solving for the equilibrium repayment and price amounts to substituting ξaL for aL in

Proposition 1.

Proposition 3 (Repossession Costs). The equilibrium repayment and price are

c∗(λ) = (1− λ)−1((1− λ)ℓηSaB + λ(ℓηS − 1)ξaL + ℓ(1− ηS)aS) (21)

p∗(λ) = ηS((1− λ)aB + λξaL) + (1− ηS)aS . (22)

Now p∗′(λ) > 0 if ξaL > aB, and p
∗′(λ) < 0 if ξaL < aB. The analogue of Corollary 1 follows:

Corollary 2. If neither the borrower nor the lender earn surplus (ηB = ηL = 0), then

p∗(λ) = (1− λ)aB + λξaL (23)

and hence

p∗′(λ) = ξaL − aB = (1− λ)−1(ξaL − p∗(λ)). (24)

As in Corollary 1, the price is decreasing in borrower riskiness when the price is substantially

greater than the lender’s value (p∗(λ) >> aL) and increasing in borrower riskiness when the

price is substantially less than the lender’s value (p∗(λ) << aL). Mathematically, the point

at which the sign of p∗′(λ) flips now depends on the magnitude of the repossession costs;

when repossession costs are higher, the point at which the sign of p∗′(λ) flips is lower. These

results suggest that increasing borrower riskiness pulls the price towards the lender’s value

less repossession costs. In our empirical section, we provide evidence supporting Corollary 2

assuming different estimates of repossession costs.

3.2.3 Endogenous Leverage

In the base model, the fraction of the asset price financed by the lender is taken to be

exogenous. In practice, borrowers choose how much they borrow (perhaps subject to a
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constraint on loan-to-value). In this subsection, we take the repayment c as fixed and let

agents bargain over the fraction of the purchase price to be financed ℓ as well as the asset

price p.

Proposition 4 (Endogenous Leverage). The equilibrium leverage and price are

ℓ∗(λ) =
(1− λ)(c− ηLaB) + λ(1− ηL)aL + ηLaS

ηS((1− λ)aB + λaL) + (1− ηS)aS
(25)

p∗(λ) = ηS((1− λ)aB + λaL) + (1− ηS)aS . (26)

The asset price in equation (26) of Proposition 4 is identical to the asset price in equation

(11) of Proposition 1. The reason is simple: total surplus (equation (9) in both cases is the

same. Neither the total surplus nor the seller’s surplus depend explicitly on how the borrower

finances her purchase (i.e., the fraction of the price to be financed ℓ or the repayment c). We

therefore conclude that p∗′(λ) > 0 if aL > aB and p∗′(λ) < 0 if aL < aB, just as in Proposition

1.

3.2.4 Endogenous Default Probabilities

We now consider an extension of the base model in which the probability of default is

correlated with the value of the collateral. In practice, borrowers are most likely to default

when the asset value is low, either for non-strategic reasons (asset values are low precisely

when borrowers are illiquid) or strategic reasons (the borrower is underwater and chooses

to walk away from both the loan and the asset).10 In this extension, the borrower and the

lender agree about borrower riskiness and the probabilities of good and bad states of the

world (e.g., expansions and recessions), but they disagree about the value of collateral in

these different states of the world.11

To keep the extension simple, we modify our original distributional assumptions. Suppose

there are two states indexed by s ∈ {H,L}. s = H with probability π ∈ (0, 1) and s = L

with probability 1 − π. If s = H, the borrower does not default. If s = L, the borrower

defaults with probability λ ∈ (0, 1) and remains solvent with probability 1 − λ. Agent j

believes that the asset is worth asj in state s. In general, agents believe that the asset is less

10In housing, a relatively small fraction of homeowners default explicitly because of a decline in home values
(i.e., strategic default). Estimates range from 6.4% (Foote et al., 2008) to 35.1% (Guiso et al., 2013).

11See Simsek (2013) for a thorough analysis of disagreement about the distribution of collateral values. Our
primary departure is the consideration of borrower riskiness (λ), which determines how the views of the
borrower and the lender are incorporated into the asset price.
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valuable in state L than in state H: aLj < aHj . This simple specification captures the idea

that the collateral value should be low precisely when default is most likely.

We can now write the subjective, expected surpluses of the borrower and the lender:

EB[SB(c, p)] = π(aHB − c) + (1− π)(1− λ)(aLB − c)− (1− ℓ)p (27)

EL[SL(c, p)] = πc+ (1− π)(λaLL + (1− λ)c)− ℓp. (28)

The following proposition gives the equilibrium repayment and price with endogenous default

probabilities.

Proposition 5 (Endogenous Default). If neither the borrower nor the lender earn surplus

(ηB = ηL = 0), the equilibrium repayment and price are

c∗(λ) = (1− (1− π)λ)−1(ℓ(πaHB + (1− π)(1− λ)aLB)− (1− ℓ)(1− π)λaLL) (29)

p∗(λ) = πaHB + (1− π)((1− λ)aLB + λaLL). (30)

Moreover, p∗′(λ) > 0 if the lender is optimistic, in the sense that aLL > aLB, and p
∗′(λ) < 0 if

the borrower is pessimistic, in the sense that aLL < aLB.

Although the exact notions of “optimistic” and “pessimistic” are different from those of

Proposition 1, the basic finding that prices increase with borrower riskiness when the lender

is optimistic and decrease when the borrower is optimistic survives.

3.2.5 Secondary Market

We now consider the possibility that the lender can sell the loan. We therefore add an

investor I to our model (e.g., a government-sponsored enterprise or an investor in an asset-

backed security). In this case, the lender may agree with the borrower and the seller about

the asset value. Alternatively, the lender may use his informational advantage to sell riskier

loans (Agarwal et al., 2012) or engage in lax borrower screening because the lender is going

to sell the loan to an outside investor regardless of the asset’s value (Keys et al., 2010). In

either situation, the ultimate investor holds a differing view from the borrower and the seller.

Consider a lender who originates home loans. He will not make a particular loan unless

the loan can be sold to an outside investor. However, the investor will not buy the loan unless

the originator uses a particular appraised value of the home, even if that appraised value

differs markedly from the originator’s value. In this way, an investor’s beliefs can distort the

asset price just as much as a lender’s beliefs can.
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We reiterate that although we consider a bargaining game between four agents, we could

reinterpret the bargaining weights as agents’ respective market power in a competitive mar-

ket. Let pA be the price of the asset, pL be the price of the loan, and φ ∈ (0, 1) be the

fraction of the loan retained by the lender. Let ηI be the investor’s bargaining weight, and

suppose that all agents’ weights sum to unity. The surpluses are

SB(c, pA, pL) = (1− d)(v1 − c)− (1− ℓ)pA (31)

SL(c, pA, pL) = pL + φ(dv1 + (1− d)c)− ℓpA (32)

SS(c, pA, pL) = pA − v1 (33)

SI(c, pA, pL) = (1− φ)(dv1 + (1− d)c)− pL. (34)

Therefore, the subjective, expected surpluses are

EB[SB(c, pA, pL)] = (1− λ)(aB − c)− (1− ℓ)pA (35)

EL[SL(c, pA, pL)] = pL + φ(λaL + (1− λ)c)− ℓpA (36)

ES [SS(c, pA, pL)] = pA − aS (37)

EI [SI(c, pA, pL)] = (1− φ)(λaI + (1− λ)c)− pL. (38)

The total expected surplus is therefore∑
j

Ej[Sj(c, p)] = (1− λ)aB + λ(φaL + (1− φ)aI)− aS . (39)

We characterize the equilibrium in the following proposition.

Proposition 6 (Secondary Market). If neither the borrower, the lender, nor the investor

earn surplus and the borrower and the lender agree on the estimated value of the asset, then

the equilibrium repayment, price of the asset, and price of the loan are

c∗(λ, φ) = (1− λ)−1(((1− λ)− ℓ(1− (1− φ)λ))aB − ℓ(1− φ)λaI) (40)

p∗A(λ, φ) = (1− φ)λaI + (1− (1− φ)λ)aB (41)

p∗L(λ, φ) = (1− φ)(((1− λ)− ℓ(1− (1− φ)λ))aB + (λ− ℓ(1− φ)λ)aI). (42)

Corollary 3. If neither the borrower, the lender, nor the investor earn surplus and the
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borrower and the lender agree on the estimated value of the asset, then

∂p∗A
∂λ

= (1− φ)(aI − aB) = (1− (1− φ)λ)−1(1− φ)(aI − p∗A(λ, φ)). (43)

Corollary 3 states that even if the lender has the option to sell the loan on a secondary market,

there is still an effect of borrower riskiness on the asset price as mediated by disagreement

between the borrower and the ultimate investor. That is, the price is decreasing in borrower

riskiness when the price is greater than the investor’s value (p∗A(λ, φ) > aI) and increasing

in borrower riskiness when the price is less than the investor’s value (p∗A(λ, φ) < aI).

4 Dynamic Model

To understand the consequences of disagreement for return dynamics, we extend the static

model developed in Section 3 to continuous time. Importantly, we now model the source of

disagreement. We assume that borrowers and lenders disagree because they place different

weights on new information when updating their beliefs about collateral values. The dynamic

model introduces other realistic features, such as estimates of value based on historical data,

uncertainty about the arrival time of default, and recovery values based on market prices for

the asset. The model combines the price structure of Glaeser and Nathanson (2017) with

the non-Bayesian information processing of Berrada (2009).

4.1 Setup

Time is continuous and indexed by t ∈ (−∞,∞). There are two types of agents: borrowers

(B) and lenders (L). As in a number of iterations of the static model, neither borrowers

nor lenders earn surplus, so we omit the seller. Agents are risk-neutral and discount utility

flows at a rate r > 0. There is an indivisible asset for which borrowers have unit demand.

Suppose that the common stock value of the asset Vt evolves according to

dVt = Xtdt+ σV dB
V
t (44)

dXt = −κXtdt+
√
2κσXdB

X
t , (45)

where BV
t and BX

t are standard and uncorrelated one-dimensional Brownian motions, and

κ, σV , and σX are positive, known constants (let τV = 1/σ2
V and τX = 1/σ2

X be the corre-

sponding precisions). Vt is observed by all agents, and Xt is observed by none. Let τ0 be the
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positive root of

0 = τXτV + 2κ(τX − τ0)τ0. (46)

To obtain a steady-state equilibrium, we assume that the unconditional prior belief is that Xt

is normally distributed with mean zero and precision τ0. Let X̂
j
t denote agent j’s subjective

expectation of Xt at time t. For j ∈ {B,L}, we assume that X̂j
t evolves according to

dX̂j
t = −κX̂j

t dt+ wj(dVt − X̂j
t dt), (47)

where wj is constant. Equation (47) nests the Kalman-Bucy filter, which has coefficient

w0 ≡ τV /τ0. Following the disagreement literature, we assume that B knows that L’s growth
rate estimate is X̂L

t , L knows that B’s growth rate estimate is X̂B
t , and B and L agree

to disagree (e.g., Banerjee and Kremer, 2010). The primary friction in the model is the

possibility that wB and wL differ from each other and differ from the Bayesian weight w0.

This assumption is similar to that made by Berrada (2009), who studies securities trading.

Consider a borrower who buys the asset at time t. The lender finances a fraction ℓ ∈
(0, 1) of the loan. The time of default T ≥ t arrives exogenously with rate λ > 0.12 Let

Ct be the perpetuity value of repayment (over a time interval of length ds, the borrower

makes a repayment of rCtds to the lender), Pt be the price of the collateral asset at time t,

UB
s = UB(s, Ct, Pt) be the borrower’s value, and UL

s = UL(s, Ct, Pt) be the lender’s value.

UB
s and UL

s evolve according to the following Bellman equations:

rUB
s ds = (rVs − rCt)ds− λUB

s ds+ EB
s [dU

B
s ] (48)

rUL
s ds = rCtds+ λ(Ps − UL

s )ds+ EL
s [dU

L
s ]. (49)

The borrower’s flow utility rUB
s ds equals the flow utility she obtains from the asset rVsds

less the fixed repayment rCtds she makes to the lender. With probability λds, she defaults

and loses everything. Her continuation value is EB
s [dU

B
s ]. The lender earns fixed payment

rCtds, and with probability λds, the borrower defaults, the lender seizes the collateral, and

the lender sells it for Pt. His continuation value is EL
s [dU

L
s ].

12In practice, borrowers are likely to default when the asset value is low, either strategically or non-
strategically. If we were to endogenize default (as in Section 3.2.4), the equilibrium price of the asset
would be lower, but the main result (i.e., return autocorrelation), which we detail in Section 4.2.3, would
be preserved.
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Integrating equations (48) and (49) yields

UB(t, Ct, Pt) = EB
t

[∫ T

t

r(Vs − Ct)e
−r(s−t)ds

]
. (50)

UL(t, Ct, Pt) = EL
t

[∫ T

t

rCte
−r(s−t)ds+ PT e

−r(T−t)

]
. (51)

To better study the role of disagreement between borrowers and lenders, we focus our analysis

on the case in which neither type of agent earns surplus:

0 = UB(t, Ct, Pt)− (1− ℓ)Pt (52)

0 = UL(t, Ct, Pt)− ℓPt. (53)

Equations (52) and (53) are the continuous-time analogues of equations (12) and (13).

Adding equations (52) and (53), it follows that

Pt = Et

[∫ T

t

rEB
t [Vs|T ]e−r(s−t)ds+ EL

t [PT |T ]e−r(T−t)

]
. (54)

Equation (54) illustrates how the differing beliefs of borrowers and lenders are incorporated

into prices. Up until default, the borrower expects to obtain a flow utility of rEB
t [Vs|T ]. In

the event of default, the lender seizes the collateral and sells it for an expected market price

of EL
t [PT |T ]. In the next subsection, we show precisely how the agents’ beliefs about the

growth rate are reflected in the price of the collateral asset.

We have thus far been silent on why transactions occur, why buyers and sellers transact

when they do, and how many transactions occur during a particular period of time. Suffice it

to say, buyers and sellers are assumed to transact at a particular time for exogenous reasons

(e.g., a firm acquires a vehicle or a piece of equipment to finish a project). Transactions

are assumed to be sufficiently frequent so that agents can, in principle, extract the asset

value from the history of asset prices. Although lack of liquidity is undoubtedly important

in housing markets (Sagi, 2021), our goal is simply to illustrate how disagreement affects

returns of collateralized assets, absent search frictions.

4.2 Equilibrium

Following standard practice, we restrict attention to equilibria in which the price is linear in

the state variables Vt, X̂
B
t , and X̂

B
t .
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Proposition 7. The unique linear equilibrium repayment C∗
t and price P ∗

t are

C∗
t = bV (λ)Vt + bB(λ)X̂

B
t + bL(λ)X̂

L
t and (55)

P ∗
t = Vt + cB(λ)X̂

B
t + cL(λ)X̂

L
t , (56)

where

bV (λ) = 1− r−1(r + λ)(1− ℓ) (57)

bB(λ) = (r + κ+ λ)−1 − r−1(r + λ)(1− ℓ)cB(λ) (58)

bL(λ) = −r−1(r + λ)(1− ℓ)cL(λ) (59)

cB(λ) = r((wB + κ) + r)−1(r + λ)−1(r + κ+ λ)−1((wB + κ) + r + λ) (60)

cL(λ) = λ(r + κ)−1(r + λ)−1
(
1 + wBr((wB + κ) + r)−1(r + κ+ λ)−1

)
. (61)

Moreover, cB(λ) + cL(λ) = 1/(r + κ), c′B(λ) < 0, and c′L(λ) > 0.

Proposition 7 generalizes Proposition 1 to the dynamic setting. In particular, it retains

the feature that lenders’ beliefs are more reflected in equilibrium prices when borrowers are

riskier (i.e., c′B(λ) < 0 and c′L(λ) > 0).

4.2.1 Price and Lenders’ Value

In the model, the lender’s estimate of value is

AL
t = EL

t

[∫ ∞

t

rVse
−r(s−t)ds

]
= Vt + (r + κ)−1X̂L

t . (62)

From Proposition 7, it follows that

Pt − At = cB(λ)(X̂
B
t − X̂L

t ). (63)

Equation (63) is the continuous-time analogue of Corollary 1. If lenders are more optimistic

than borrowers (X̂L
t > X̂B

t ), then the price is less than the lender’s value (Pt < At). Since cB

is decreasing in λ, Pt−At is increasing in λ (Pt increases towards At from below). If instead

borrowers are more optimistic than lenders (X̂B
t > X̂L

t ), then the price is greater than the

lender’s value (Pt > At). Again, since cB is decreasing in λ, Pt − At is decreasing in λ

(Pt decreases towards At from above). Taken together, these results suggest that increasing

borrower riskiness pulls the price towards the lender’s value.
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4.2.2 Return Predictability

If agents follow Bayes’ rule, they place a weight of w0 on new information (specifically,

wj = w0 in Equation (47)). However, we consider the possibility that agents place different

weights on new information than each other and than that prescribed by Bayes’ rule. In

this way, disagreement about growth rates stems from disagreement about how much weight

to place on new information. In this subsection, we explain why this type of disagreement

generates return predictability. This discussion will lay the groundwork for our discussion

of return autocorrelation in the next subsection.

For each agent i ∈ {B,L}, let
Zi

t = Xt − X̂ i
t . (64)

Zi
t is the difference between the true growth rate Xt and agent i’s estimate of the growth

rate X̂ i
t . Z

i
t evolves according to

dZi
t = −(κ+ wi)Ztdt− wiσV dB

V
t +

√
2κσXdB

X
t . (65)

Let

αi(λ) = (r + κ+ wi)ci(λ). (66)

From equation (56) in Proposition 7 and the dynamics for the borrowers’ and lenders’ beliefs

in equation (47), it follows that

dPt + r(Vt − Pt)dt = dVt + cB(λ)dX̂
B
t + cL(λ)dX̂

L
t − r(cB(λ)X̂

B
t + cL(λ)X̂

L
t )dt (67)

= αB(λ)(dVt − X̂B
t dt) + αL(λ)(dVt − X̂L

t dt) (68)

= αB(λ)(Z
B
t dt+ σV dB

V
t ) + αL(λ)(Z

L
t dt+ σV dB

V
t ). (69)

Note that dPt+r(Vt−Pt)dt represents the instantaneous total return. During a time interval

of length dt, the owner of the asset enjoys a capital gain of dPt plus utility from the asset

rVtdt, minus the financing (or opportunity) cost rPtdt. Under the objective probability

measure,

E[dPt + r(Vt − Pt)dt] = αB(λ)(E[Xt]− X̂B
t ) + αL(λ)(E[Xt]− X̂L

t ). (70)

Pessimism (in the sense that E[Xt] > X̂j
t ), from either the borrower or the lender, predicts

positive future returns, and optimism (E[Xt] < X̂j
t ) predicts negative future returns. Since

αB is decreasing in λ and αL is increasing in λ, we additionally have that when borrowers are
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relatively safer (riskier), borrowers’ sentiment (i.e., optimism or pessimism) is more (less)

predictive of returns than lenders’ sentiment.

4.2.3 Return Autocorrelation

We now turn to the central question of the dynamic model: How does disagreement about

how much weight to place on new information affect return autocorrelation? To maintain

tractability, we define the holding period return as in Kyle et al. (2023). The return to an

investor who finances the purchase of the asset at the risk-free rate at time t, “reinvests”

utility flows during the holding period at the risk-free, and sells the asset at time t+ θ is

Rt,t+θ ≡ Pt+θ − Pte
rθ + erθ

∫ t+θ

t

rVse
−r(s−t)ds. (71)

Note that limθ→0Rt,t+θ = dPt + rVtdt − rPtdt. Under no-arbitrage, limθ→0Rt,t+θ should be

identically zero.

The unconditional return autocorrelation is

ρt−θ,t+θ(λ,wL, wB) =
Cov(Rt,t+θ, Rt−θ,t)

Var(Rt−θ,t)
. (72)

As we show in the proposition that follows, return autocorrelation is time-invariant. We

therefore omit the time dependence in the discussion that follows. We are interested in the

sign of the autocorrelation ρ(λ;wB, wL) and the sign of its derivative with respect to borrower

riskiness ∂λρ(λ;wB, wL).

Before deriving any analytical results, we first consider a numerical simulation. Figure

1 shows the sign of the autocorrelation and the sign of its derivative with respect to λ in

the wB-wL plane for a particular set of parameters. The plane is demarcated into four

regions, which correspond to the four combinations of signs. When the sum (or average) of

borrowers’ and lenders’ weights (wB+wL) is large (i.e., regions (2) and (3)), there is reversal

(negative return autocorrelation). Here, agents place “too much” weight on new information.

Conversely, when wB + wL is small (i.e., regions (1) and (4)), there is momentum (positive

return autocorrelation). Here, agents place “too little” weight on new information. When

the difference between borrowers’ weights and lenders’ weights (wB−wL) is large (i.e., regions

(1) and (2)), momentum (or reversal) increases with the hazard rate of default, but when

wB − wL is small (i.e., regions (3) and (4)), it decreases with the hazard rate.

To develop intuition and prepare for the empirical work that follows, we focus on region
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(1). In this region, there is momentum (positive return autocorrelation) because borrowers

are updating approximately like a Bayesian, but lenders are always updating more slowly

than a Bayesian. From an econometrician’s point of view, prices adjust too slowly and

returns exhibit momentum. When the hazard rate of default is small, prices do not reflect

lenders’ slow moving beliefs because they are unlikely to repossess the collateral anytime

soon (see Proposition 7). When the hazard rate is high, prices are more reflective of lenders’

beliefs’ relative to buyers’ beliefs, and returns exhibit strong momentum.

To conclude this section, we formally state our result regarding return autocorrelation.

Proposition 8 (Return Autocorrelation). The unconditional return autocorrelation is time-

invariant. If lenders update more slowly than borrowers (wL < wB) and borrowers update

like Bayesians (wB = w0), returns are positively autocorrelated. Moreover, if θ is sufficiently

small, the autocorrelation is strictly increasing in the hazard rate of default.

The condition that θ be sufficiently small does not appear to be necessary but greatly sim-

plifies the proof.

4.2.4 Capital Gain Rate Autocorrelation

In many applications, utility flows or lease rates are difficult to observe, so returns are

expressed exclusively in terms of capital gains. We therefore conclude this section with a

discussion of the applicability of the previous results to such applications. Let R̃t,t+θ be the

change in the log-price:

R̃t,t+θ ≡ log(Pt+θ)− log(Pt). (73)

The unconditional autocorrelation of the log price changes is

ρ̃t−θ,t+θ(λ,wL, wB) =
Cov(R̃t,t+θ, R̃t−θ,t)

Var(R̃t−θ,t)
. (74)

In Figure 2, we plot the autocorrelation ρ̃ for different values of λ under the assumptions that

wB = w0 and wL < wB. We draw two observations from Figure 2. First, the autocorrelation

is increasing in borrower riskiness, just as in Proposition 8. Increasing borrower riskiness

increases the extent to which the price reflects lenders’ beliefs, which update more slowly

than prescribed by Bayes’ rule. Second, the autocorrelation is non-zero when borrowers do

not default (λ = 0) and the price fully reflects borrowers’ Bayesian beliefs. This result follows

is because, even under no-arbitrage, capital gain rates are predictable.

22



5 Residential Real Estate

In this section, we use U.S. residential real estate as a laboratory to test the model’s predic-

tions.

5.1 Institutional Details

In real estate, outside appraisers are used for at least two reasons. First, an outside appraiser

helps the lender obtain an independent opinion of the market value of the property that a

borrower pledges as collateral for a home loan (Eriksen et al., 2019, 2020). These valuations

are important because they are used by lenders, investors, and other appraisers. Second,

a home appraisal is often required by law. The Real Estate Appraisal Reform Act of 1988

requires that an appraisal be conducted by an independent and qualified appraiser for all

federally-related mortgage loans. A federally-related mortgage loan includes any loan that

is secured by a first lien or subordinate lien on residential real property and falls into one of

the following categories: a loan made by a lender that is regulated by or whose deposits are

insured by any agency of the federal government; a loan made by or insured by an agency

of the federal government; a loan made in connection with a housing or urban development

program administered by an agency of the federal government; a loan made and intended

to be sold by the originating lender to FNMA, Government National Mortgage Association

(GNMA), or FHLMC; or a loan that is the subject of a home equity conversion mortgage or

reverse mortgage issued by a lender or creditor subject to the regulation.13 These mortgages

accounted for at least 75% of all active single-family mortgages as of early 2021 (Pendleton,

2021).

Although the requirements to become a licensed appraiser vary across states, most states

require a combination of coursework and apprenticeships (Eriksen et al., 2020). Appraisers

must follow the Universal Standards of Professional Appraisal Practice, which was adopted

by Congress in 1989, in reaching an estimated value of the property. There are a number of

valuation methods available to the appraiser, but the comparable sales method of valuation

is the near universally-adopted approach used by appraisers to value residential property

(Eriksen et al., 2020). This method can be described in three steps (Eriksen et al., 2019):

1. Find transactions of comparable properties that best match the subject property in

physical attributes, geographic proximity, and temporal proximity.

13See RESPA and 12 USC §2602 for more details.
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2. Adjust for differences in attributes between each comparable transaction and the sub-

ject property to estimate an adjusted value for each transaction.

3. Apply weights to each comparable transaction to arrive at an appraised value of the

subject property.

Upon completion of the above steps, the appraiser provides the lender an appraised value of

the subject property.

In summary, lenders who use outside appraisals in the residential real estate market likely

update their estimated collateral values using a different methodology than do borrowers.

Since the resulting estimates of collateral values likely differ, we argue that residential real

estate is an appropriate setting to test the model’s predictions.

5.2 Prices and Lenders’ Values

In this subsection, we empirically test the hypothesis that greater borrower riskiness is

associated with a smaller difference between the lender’s estimate of value and the asset

price. Unlike data on secured lending in most settings, data on mortgages for residential

real estate are unique in that they allow us to observe both the equilibrium price (i.e., sale

price) and the lender’s estimate of value (i.e., appraised value). Although we are unable to

observe an objective estimate of borrower riskiness, we are able to observe variables that

are highly correlated with borrowers’ default risk. A meta-analysis of the determinants

of residential mortgage default shows that home equity and FICO score are consistently

negatively associated with default risk, and LTV ratio is consistently positively associated

with default risk (Jones and Sirmans, 2015). We use these three variables as proxies for

default risk.

5.2.1 Empirical Specification

To see the relation between borrower riskiness and the difference between the lender’s value

and the price of the asset, we consider two cases. Suppose the appraised value is greater

than the sale price: aL > p∗(λ). According to Corollary 1, the lender is optimistic relative

to the borrower (i.e., aL > aB). Rearranging and taking the natural logarithm of Equation
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(17), we obtain

log(aL − p∗(λ)) = log(1− λ) + log(p∗′(λ)) (75)

= log(1− λ) + log(aL − aB) (76)

= β0 + β1 log(1/(1− λ)) + ε, (77)

where β0 = E[log(aL − aB)], β1 = −1, and ε = log(aL − aB) − β0 represents an error term.

Therefore, this equation predicts a negative relation between borrower riskiness and the

difference between the appraised value and the sale price.

Conversely, suppose p∗(λ) > aL. According to Corollary 1, the borrower is optimistic

relative to the lender (i.e., aB > aL). Rearranging and taking the natural logarithm of

Equation (17), we obtain

log(p∗(λ)− aL) = log(1− λ) + log(−p∗′(λ)) (78)

= log(1− λ) + log(aB − aL) (79)

= β0 + β1 log(1/(1− λ)) + ε, (80)

where β0 = E[log(aB − aL)], β1 = −1, and ε = log(aB − aL) − β0 represents an error term.

Therefore, this equation also predicts a negative relation between borrower riskiness and the

difference between the appraised value and the sale price.

The identifying assumption, from the perspective of the model, is that the difference

between the borrower’s belief and the lender’s belief is uncorrelated with the borrower’s

riskiness (i.e., home equity, LTV, or FICO score at origination). Therefore, we test Corollary

1 by simply regressing the difference between appraised value and sale price (log(A− P ) or

log(P − A), where A and P are the appraised value and sale price) on each of our three

proxies for default risk.14

A number of real-world frictions complicate the basic prediction of Corollary 1. Specif-

ically, we consider the role of appraisal bias, repossession costs (see Corollary 2), and a

secondary markets for loans (see Corollary 3).

14We note that since ‘value’ in the LTV ratio is the lesser of appraised value and sale price, the left-hand side
and right-hand side of our regressions that include the LTV ratio include some of the same information.
As a result, the relation between the LTV ratio and the difference between appraised value and sale price
could be, but is not necessarily, mechanical in some instances. Therefore, any results that include the LTV
ratio as a regressor should be interpreted with caution.
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5.2.2 Data: Corelogic

For each of the tests in this subsection, we use data from CoreLogic Loan-Level Market

Analytics.15 Since the home price indexes we use in later tests are for single-family homes

whose mortgages were originated for purchase, we focus our loan-level analysis on the same

types of mortgages. We exclude observations for which any of the following are missing:

appraised value, sale price, original loan balance, original loan-to-value, zip code. Since loan-

to-value ratios use the lesser of appraised value and sale price, we use original loan balances,

appraised values, and sale prices to check the integrity of the original loan-to-value ratios

provided by CoreLogic. If the loan-to-value ratio we estimate using the variables individually

are not within one percent of the original loan-to-value ratio provided by CoreLogic, we

drop the observation. We assume that loans whose loan-to-value ratios are above 100% are

collateralized in part with assets we cannot observe, so we drop those observations. We also

drop observations that, in our estimation, likely have wrong values for appraised value or

sale price. That includes observations for which appraised value is less than or equal to 20%

of the sale price or greater than or equal to 500% of the sale price. Lastly, we drop singleton

observations.16

We present summary statistics of our variables in Table 1. Panel A focuses on observations

for which appraised value is larger than sale price. The first two rows of Panel A show that

the distributions of both appraised values and sale prices are right-skewed. The dependent

variable for these regressions, log(A − P ), is relatively normally distributed. Average LTV

is higher than the traditional 80% LTV threshold, and both Home Equity and FICO are

slightly left-skewed but close to normally distributed.

Panel B of Table 1 focuses on observations for which sale price is larger than appraised

value. The distributions of both appraised value and sale price are again right-skewed.

Interestingly, the distributions of both these variables are larger than they are in Panel A.

Intuitively, instances in which the sales price is larger than the appraised value are more

likely to occur with higher-priced homes because the buyers of those homes are more likely

to be wealthy, and thus, be less constrained by low appraisals (via the LTV channel). We

see further evidence of this lack of financial constraints in Panel B with relatively lower LTV

ratios.

To better understand the distribution of the difference between appraised values and sale

15CoreLogic collects detailed data on both conforming and non-conforming mortgages (appraised value, sale
price, loan-to-value, FICO score, etc.) at origination from the 25 largest mortgages servicers in the U.S.
(Lewis, 2023).

16Singleton observations can overstate statistical significance and lead to incorrect inferences (Correia, 2015).
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prices, we present four histograms of the difference in Figure 3. Panel A presents the raw

difference between appraised values and sale prices (bin width of $1,000). Nearly 50% of all

raw differences between the appraised value and sale price are between $0 and $1,000. This
concentration is being driven by observations in which the appraised value and sale price are

identical, which occurs in 36% of all observations. Just over 60% of all appraised values are

greater than the sale price, and 4% of the appraised values are below the sale price. These

percentages are similar to those in previous work (e.g., Chinloy et al., 1997, Eriksen et al.,

2020, Calem et al., 2021). We also present a trimmed version of the distribution of the raw

differences in Panel B. The data are trimmed at raw differences of $0 and $25,000, relative
differences of 0% and 15%, and comprise 89% of the overall sample. Of these differences,

over 50% are between $0 and $1,000.
Panel C presents the relative difference between appraised values and sale prices (bin

width of 0.5%). Nearly 40% of all differences are between 0% and 0.5%, and of course,

the overwhelming majority of these differences are 0%. Panel D shows that in the trimmed

data, there is a similarly steep decline in the distribution of differences from the concentration

around zero.

There are several reasons why there are many more observations with appraised value

greater than sale price. One reason for this asymmetry is that when the appraised value is

lower than the sale price, the buyer can use the low appraisal to successfully renegotiate a

lower sale price, which will lead to more observations in which the appraised value equals the

sale price (Calem et al., 2021). Another reason for this distribution asymmetry is when the

appraised value is lower than the sale price, renegotiation fails, and no mortgage is originated

(Nakamura, 2010; Fout and Yao, 2016). These observations do not show up in our data. The

last reason for this distribution asymmetry is the upward bias in appraised values.17 This

bias has been estimated to be about 5% to 6% (Agarwal et al., 2015; Eriksen et al., 2020).

Based on Figure 2 of Eriksen et al. (2020), it appears that the bias predominantly affects

observations in which the appraised value is at most 5% higher than the sale price.

The reasons for this distribution asymmetry can therefore affect our results if the reasons

are in some way correlated with our proxies for default risk. We discuss and address this

potential issue below.

17See Cho and Megbolugbe (1996), Chinloy et al. (1997), Nakamura (2010), Agarwal et al. (2015), Ding and
Nakamura (2016), Fout and Yao (2016), Eriksen et al. (2019, 2020), Calem et al. (2021), and Mayer and
Nothaft (2022) for examples.
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5.2.3 Appraisal, Price, and Default Risk

Table 2 presents results of our empirical tests of Corollary 1. We take the negative of Home

Equity and FICO, so that the predicted sign of the coefficient is negative for all proxies for

default risk. Since the relation between the difference in appraised value and sale price and

default risk likely varies by geographic area and time, we include zip code by year by month

fixed effects in all of our specifications. Standard errors are likely to be correlated in both

the cross section and the time series, so we cluster standard errors by zip code, year, and

month.

Panel A of Table 2 focuses on observations in which the appraised value is at least as

large as the price, so the dependent variable is either log(A − P ) (for OLS) or A − P (for

Poisson). The first four columns present results from our OLS regressions. As predicted by

Corollary 1, the first three columns show that the coefficient estimates on all three proxies

for default risk are negative and highly significant. For example, the coefficient on LTV is

-0.134, which implies that a one standard deviation increase in the LTV ratio is associated

with a 13.4% decline in the difference between appraised value and sale price.

Our three proxies for default risk are highly correlated with each other, so including them

all in the same regression leads to multicollinearity issues. To include information from all

three proxies in the same specification and avoid these issues, we use the first principal

component (i.e., PC1 ) from a principal component analysis of the three proxies.18 The

fourth column shows that the coefficient on PC1 is -0.169, which implies that a one standard

deviation increase in the first principal component is associated with a 16.9% decrease in

the difference between appraised value and sale price. Since PC1 is 91%, 89%, and 64%

correlated with Home Equity, LTV, and FICO, respectively, the results are consistent with

Corollary 1.

Using OLS allows us to better map the dependent variable in Corollary 1 to our empirical

test, but since the appraised value often equals the sale price, we must drop a significant

number of observations when taking the natural log of the difference between the two. To

avoid dropping these observations, we also estimate our specification using Poisson regres-

sions, which are well suited to accommodate outcomes with a value of zero (Cohn et al.,

2022).

In the last four columns in Panel A of Table 2, we present results from our Poisson

regressions. In these specifications, we include all observations from the first four columns

and all observations in which the appraised value equals the sale price. Importantly, the

18The first principal component contains nearly 70% of the explained variance.
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last four columns of Panel A show that coefficients obtained from estimating our Poisson

regressions are also negative and highly significant, which is consistent with our results

obtained from our OLS regressions and Corollary 1.

Panel B focuses on observations in which sale price is at least as large as the appraised

value. Since sale prices are seldomly higher than appraised values, the number of observations

in these regressions is much smaller. Nonetheless, the results are largely consistent with those

in Panel A. Specifically, all coefficient estimates from both OLS regressions and Poisson

regressions are negative, and most are highly significant.

Overall, the results in Table 2 provide evidence consistent with Corollary 1, which implies

that the difference between appraised value and sale price is smaller when default risk is

higher.

5.2.4 Appraisal, Price, and Default Risk: Appraisal Bias

As mentioned above, a significant portion of our observations might be affected by appraisal

bias or renegotiation, and these affected observations might lead to a mechanical relation

between our dependent variable and independent variables. To alleviate this concern, we

separately estimate our specification for subsamples that include less affected observations

and more affected observations. Less affected observations are defined to be those for which

the appraised value is at least 5% higher than the sale price, and more affected observations

are those for which the appraised value is at most 5% higher than the sale price. We present

the results in Table 3.

Panel A presents results for less affected observations. Since these observations are less

likely to be affected by appraisal bias, the dependent variable is unchanged relative to that in

Table 2 (i.e., log(A−P ) for OLS, A−P for Poisson). Consistent with Corollary 1, coefficient

estimates on all proxies for default risk and their first principal component are negative and

highly significant.

In Panel B of Table 3, we focus on observations that are likely more affected by appraisal

bias. As mentioned above, this bias has been estimated to be about 5% to 6%. Therefore,

the dependent variable in these regressions is log(P − A/1.05) in our OLS regressions and

P − A/1.05 in our Poisson regressions.19 Importantly, Panel B shows that after accounting

for appraisal bias in the difference between sale price and appraised value, the estimates

19We recognize that appraisal bias is likely more than 5% for observations whose sales price is further from
the unobservable, unbiased appraised value and likely less than 5% for observations whose sales price is
closer to the unobservable, unbiased appraised value. However, without more details on the amount of
bias of different types of observations, we use the average bias of 5% as a rough estimate.
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on all proxies for default risk and their first principal component are negative and highly

significant.

In summary, Table 3 shows that our results are robust to adjusting appraised values for

the well-documented appraisal bias.

5.2.5 Appraisal, Price, and Default Risk: Repossession Costs

In Corollary 2, we consider the possibility that the lender is unable to recover the full value

of the asset in the event of default. Specifically, Equation (24) in Corollary 2 states that

borrower riskiness is negatively associated with the difference between the equilibrium price

and the lender’s effective value, which we define as the lender’s value net of repossession costs.

In housing, these costs are largely driven by a foreclosure sale discount. There are four broad

reasons for this discount (Conklin et al., 2023). First, there are observable and unobservable

prior differences between distressed and non-distressed properties (Frame, 2010). Second,

there are differences in the condition of the house that is caused by distressed homeowners’

reduction in maintenance (Lambie-Hanson, 2015). Third, distressed sellers, which are often

financial institutions (i.e., lenders) have greater urgency, and the briefer time the house is

on the market is correlated with lower price (Clauretie and Daneshvary, 2009). Fourth,

there is a stigma associated with distressed sales, which is often driven by the asymmetric

information endemic to real estate transactions (Stroebel, 2016; Lopez, 2021).

Although there is wide agreement that there is a material foreclosure sale discount, there

is no consensus on the size of the discount (Conklin et al., 2023). Some estimates been shown

to be as high as 25% or 30% (e.g., Campbell et al., 2011), but others have found discounts to

be as low as 5% or 10% (e.g., Conklin et al., 2023, Clauretie and Daneshvary, 2009). Given

that 5% is perhaps the most recent discount put forth in the literature, we use that figure

as our estimate of repossession costs. However, as we show in the Internet Appendix, our

results are not dependent on this 5% estimate. Note that regardless of the exact value of

repossession costs, Corollaries 1 and 2 make the same prediction when the appraised value

and sale price are sufficiently far from each other.

Table 4 presents results from our tests of Corollary 2, which is essentially a robustness

test of Corollary 1. Panel A focuses on observations in which sale price is equal to or less than

95% of appraised value. The dependent variable is log(0.95×A-P) for our OLS regressions

and 0.95×A-P for our Poisson regressions. All coefficient estimates across all proxies for

default risk and both types of specifications are negative and highly significant.

Panel B of Table 4 considers observations in which sale price is equal to or greater than
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95% of appraised value and includes the overwhelming number of observations in the sample.

The dependent variable here is log(P-0.95×A) for our OLS regressions and P-0.95×A for

our Poisson regressions. Consistent with both Panel A and Corollary 2, coefficient estimates

on each proxy for default risk and on their first principal component are negative and highly

significant.

Overall, the results in Table 4 are consistent with Corollary 2. Furthermore, as mentioned

above, results presented in the Internet Appendix (Table IA1) show that our results are not

dependent on repossession costs of 5%.

5.2.6 Appraisal, Price, and Default Risk: Secondary Market

In Corollary 3, we focus on the situation in which the lender can sell the loan. In this setting,

the lender agrees with the borrower and seller about the value of the asset, but the investor

holds a different view on the value of the asset. The investor is able to impose her beliefs on

the value of the asset, because if those beliefs are not reflected, the investor will not purchase

the loan. Corollary 3 therefore implies that borrower riskiness is negatively associated with

the difference between appraised value and sale price among loans that are sold to outside

investors.

To empirically test this implication, we would ideally have information on which loan is

sold to an outside investor and which loan is kept on the lender’s balance sheet. Although we

unfortunately do not have that information, we can proxy for this delineation by using the

GSE Eligible Flag provided by CoreLogic. This flag turns on when the loan conforms to the

GSE standard eligible requirements criteria. The GSEs do not buy every conforming loan,

but according to the Federal Housing Finance Agency (FHFA), GSE share of all conforming

mortgages has been between 50% and 65% over the past fifteen years.20 Therefore, we

estimate our baseline specification on the subsample of conforming loans. We present the

results in Table 5.

Since almost 90% of all mortgages in our main sample are conforming mortgages, the

results in Table 5 are very similar to those in Table 3. Specifically, Panel A, which focuses

on observations in which appraised value is at least as large as sale price, shows that the

coefficients on all proxies for default risk and their first principal component are negative

and highly significant. The coefficient estimates in Panel B, which focuses on all other

observations, are not all statistically significant, but they are almost all the correct sign.

20See https://www.fhfa.gov/Media/Blog/Pages/What-Types-of-Mortgages-Do-Fannie-Mae-and-Freddie-Mac-Acquire.
aspx for more details.
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Overall, Table 5 shows that our baseline prediction holds for mortgages that are likely to

be sold to outside investors.

5.3 Return Autocorrelation

Thus far, we have empirically evaluated three corollaries from our static model. In this

subsection, we test Proposition 8, which states that if lenders update their beliefs more slowly

than borrowers and borrowers update like Bayesians, returns are positively autocorrelated,

and this autocorrelation increases in borrower riskiness.

5.3.1 Slow Appraisals

As discussed above, the near universally-adopted approach used by appraisers to value resi-

dential property is the comparable sales valuation method. However, this method is likely a

major contributor for why appraisers engage in appraisal smoothing, or appraisal lag (Clay-

ton et al., 2001).21 Appraisal lag leads to appraised values that tend to lag the real estate

price cycle (Matysiak and Wang, 1995). Appraisers tend to underestimate value in rising

markets and overestimate value in falling markets (Diaz III and Wolverton, 1998). In other

words, appraisers, and by extension lenders, update their estimates of asset values more

slowly than buyers and sellers.22

This phenomenon can be seen in Figure 4, which plots two national FHFA Home Price

Indexes (HPIs). The FHFA HPIs are weighted, repeat-sales indexes estimated from repeat

mortgage transactions on single-family properties whose mortgages have been purchased or

securitized by Fannie Mae or Freddie Mac. The all-transactions index is estimated using

appraised values and sale prices, and the purchase-only index is estimated using only sale

prices.23 Since the all-transactions index includes estimates from both appraisals and sales,

and not just appraisals, we can interpret any differences between the two indexes as a lower

bound on the actual difference between a hypothetical appraisal-only index and the purchase-

only index.

21See Geltner et al. (2003) and the references therein for a review of the literature on appraisal smoothing.
22It is important to note that appraisal lag and appraisal bias are not incompatible with each other. Ap-
praised values may be systematically higher than sale prices but changes in appraised values may still lag
changes in sale prices. Since indexes, such as those in Figure 4, are estimated as a function of the starting
value of the same series, only comparisons of changes, and not levels, can be made between indexes.

23Both indexes, which are at the national level, have been indexed to 100 beginning the first quarter of 1991,
for that is the first available data for the purchase-only index. See https://www.fhfa.gov/DataTools/

Downloads/Pages/House-Price-Index-Datasets.aspx#mpo for more details.
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With that interpretation in mind, Figure 4 shows that after home prices peaked in early

2007, the all-transactions index stayed above the purchase-only index for several years (i.e.,

overestimated value in falling markets). Once the purchase-only index started to rise again

at the beginning of 2012, it quickly surpassed the all-transactions index and stayed above it

through 2021 (i.e., underestimated value in rising markets).

In summary, lenders who use appraised values update their estimates of asset values more

slowly than buyers and sellers. According to Proposition 8, these more slowly updating

beliefs should lead to positive return autocorrelation, and this return autocorrelation should

increase with the hazard rate of default.

5.3.2 Return Autocorrelation and Borrower Riskiness

For our test of Proposition 8, we obtain data on our proxies for default risk (i.e., initial

home equity, LTV, and credit score) from Freddie Mac.24 Freddie Mac is one of two sources

of mortgages for the FHFA HPI, which we use to estimate housing returns. In this test,

we focus on the quarterly purchase-only indexes of the 100 largest metropolitan statistical

areas.

We present summary statistics of the data in Table 6. Estimates of Log return, which is

the annual change in the log value of the FHFA HPI at the CBSA level (Guren, 2018), are

mostly positive and slightly right-skewed. For each of our proxies for default risk, we estimate

weighted quarterly averages within each CBSA (i.e., Census Bureau-defined area) with value

used as the weight. The distributions are similar to those in Table 1, but since we average

loan-level observations at the CBSA×quarter level before estimating the distribution, the

ranges and standard deviations are smaller.

Table 7 presents results of our test of Proposition 8. Rather than simply interact our

proxies with lagged return, as stated in Proposition 8, we interact lagged return with dummy

variables that turn on when our proxies are in a given part of the distribution. Specifically,

we interact lagged return with Low, Mid, and High, which are dummy variables indicating

whether the sorting variable of interest is in the lowest, middle, or highest tercile within

a given CBSA. Using dummies allows us to account for any non-linearities in the relation

between returns and the interaction of our proxies and lagged return. Since standard errors

are likely to be correlated in both the cross section and the time series, we cluster standard

errors by CBSA, year, and quarter.

24We use quarterly loan-level data on loans for purchase of single-family homes. These data span 1999
through 2021. See https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset for more
details.
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The first column of Table 7 shows that annual returns are autocorrelated, which is con-

sistent with previous work. In the next three columns, we create dummies using our proxies

for default risk and interact them with lagged return. Recall that default risk is higher when

home equity is lower, LTV is higher, and credit score is lower. Therefore, the results in these

three columns show that return autocorrelation increases nearly monotonically as default

risk (as captured by our proxies) increases.

In the last column, we sort by PC1, which is the first principal component of the three

variables. We find that return autocorrelation increases as PC1 decreases. Since PC1 is

positively correlated with both Home Equity and Credit Score and negatively correlated

with LTV, the results in the last column also show that return autocorrelation increases as

default risk increases.25

In summary, the results in Table 7 provide evidence consistent with Proposition 8, which

states that return autocorrelation is higher when default is more likely.

6 Conclusion

In this paper, we present a model of secured lending in which borrowers and lenders disagree

about the value of collateral. The prices of collateralized assets reflect the beliefs of both bor-

rowers and lenders. Specifically, prices are more reflective of lender’s beliefs when borrowers

are riskier and more reflective of borrower’s beliefs when borrowers are safer. In a dynamic

version of the model, we consider the possibility that borrowers and lenders place different

(and potentially non-Bayesian) weights on new information. We establish conditions under

which returns exhibit momentum or reversal. Most relevant for collateralized lending, we

explore the role of default risk as a mediating factor. Specifically, we investigate conditions

under which default risk exacerbates or attenuates momentum/reversal.

To demonstrate the model’s empirical relevance, we investigate the model’s implications

for the U.S. residential real estate market. Using a large sample of U.S. home loans, we show

that sale prices are closer to appraised values when default risk is higher. Using housing

returns in the 100 largest U.S. metro areas, we show that momentum is strongest when

loans are riskier. Taken together, our evidence is consistent with a specification of the model

in which borrowers update more-or-less like Bayesians, and lenders update less aggressively

than prescribed by Bayes’ rule. Although we focus on residential real estate, the model

25Table IA2 in the Internet Appendix shows that our results are nearly identical when using simple, rather
than weighted, averages to calculate our quarter-level proxies for default risk.
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applies to any setting in which an asset collateralizes its own financing, such as accounts

receivable, buildings, equipment, inventory, land, and vehicles.
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Figure 1: Return Autocorrelation

This figure shows how return autocorrelation (ρ(λ,wB, wL)) in our model changes as
borrowers’ weight on new information (wB) and lenders’ weight on new information (wL)
change. The parameters used in the simulation to generate this figure are r = κ = 0.1,
τX = τV = 1, λ = 0.05, and θ = 0.2. The hatched line in Region 1 is the beliefs space we
consider in Proposition 8.
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Figure 2: Capital Gain Rate Autocorrelation

This figure presents the log capital gain rate autocorrelation for different values of the
hazard rate of default λ. The parameters used in the simulation to generate this fig-
ure are r = κ = 0.1, τX = τV = 1, θ = 0.2, wB = w0, and wL = w0/2. For each λ, we
simulate 10 million return series over the time interval [0, 20] to compute the autocorrelation.
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Figure 3: Appraised Value and Sale Price

This figure presents differences between appraised values and sale prices in our loan-level
data from CoreLogic. Panel A presents the raw difference (in thousands of dollars). Panel
B presents the raw difference (in thousands of dollars) after trimming the data. Panel C
presents the relative difference. Panel D presents the relative difference after trimming the
data. In Panels A and C, both Appraised Value and Sale Price are winsorized at the 0.5%
and 99.5% levels. In Panels B and D, data are trimmed at raw differences of $0 and $25,000
and relative differences of 0% and 15%.
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Figure 4: Slow Appraisals

This figure presents two price indexes from the Federal Housing Finance Agency. The All-
Transactions Index is estimated using appraised values and sale prices. The Purchase-Only
Index is estimated using sales prices. Both indexes are at the national level (i.e., United
States), indexed to 100 beginning 1991, and are at the quarterly level.
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Table 1: Summary Statistics: CoreLogic

This table presents summary statistics of our loan-level data from CoreLogic. Panel A
presents summary statistics for variables when appraised value is larger than sale price.
Panel B presents summary statistics for variables when sale price is larger than appraised
value. Appraised Value is the reported fair market value of the property (presented in
thousands). Sale Price is the sale price of the property (presented in thousands). log(A−P )
is the natural logarithm of the Appraised Value less Sale Price. log(P − A) is the natural
logarithm of the opposite. Home Equity is the natural logarithm of sale price minus loan
amount at the time of loan origination (presented in thousands). LTV is the original
mortgage amount divided by the lesser of Appraised Value or Sale Price. FICO is the
borrower’s FICO score at the time of loan origination. All variables but Appraised Value
and Sale Price are winsorized at the 0.5% and 99.5% levels.

Panel A: Appraised value larger than price

Mean SD 10th 25th Median 75th 90th Obs.
Appraised value (A) 230.8 211.7 82.0 117.0 171.0 275.0 430.0 11,030,416
Sale price (P) 222.8 203.9 78.5 112.9 165.6 267.0 419.0 11,030,416
log(A-P) 7.79 1.65 5.52 6.91 8.01 8.85 9.77 11,030,416
Home equity 9.67 1.73 7.27 8.60 10.04 10.90 11.57 11,030,416
LTV 83.8% 14.3% 67.2% 80.0% 80.0% 95.0% 98.6% 11,030,416
FICO 711 66.6 619 666 720 766 790 7,274,646

Panel B: Price larger than appraised value

Mean SD 10th 25th Median 75th 90th Obs.
Appraised value (A) 283.4 278.1 92.5 137.5 215.0 345.0 522.4 309,186
Sale price (P) 318.8 309.4 106.5 155.0 243.2 389.0 590.2 309,186
log(P-A) 9.04 2.00 6.40 7.82 9.21 10.55 11.52 309,186
Home equity 10.99 1.25 9.29 10.38 11.84 12.39 12.71 309,186
LTV 77.5% 16.4% 54.8% 71.2% 80.0% 90.0% 96.5% 309,186
FICO 721 63.8 631 680 732 774 795 126,969
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Table 2: Appraisal, Price, and Default Risk

This table presents results from our tests of Corollary 1. In our ordinary least squares (OLS)
regressions, the dependent variable is log(A − P ) in Panel A and log(P − A) in Panel B.
In our Poisson regressions, the dependent variable is A-P in Panel A and P-A in Panel B.
A is Appraised Value (i.e., lender’s value), and P is Sale Price (i.e., price). Our proxies for
default risk are Home Equity, LTV, and FICO. We take the negative of Home Equity and
FICO so that the sign of the predicted coefficient is the same across all variables. PC1 is
the first principal component of the three proxies. See Table 1 for variable definitions. All
regression variables are winsorized at the 0.5% and 99.5% levels. LTV, FICO, and PC1 are
standardized to zero mean and unit standard deviation. Standard errors below coefficient
estimates are adjusted for clustering at the zip code, year, and month levels. Statistical
significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

Panel A: Appraised value at least as large as price

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.122*** -0.079***
(0.006) (0.005)

LTV -0.134*** -0.058***
(0.005) (0.008)

FICO -0.076*** -0.060***
(0.007) (0.008)

PC1 -0.169*** -0.120***
(0.007) (0.007)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 17.8% 16.5% 15.0% 15.9%
Pseudo R2 37.2% 34.9% 35.7% 36.3%
Observations 11,030,416 11,030,416 7,274,646 7,274,646 20,095,354 20,095,354 12,318,206 12,318,206

Panel B: Price at least as large as appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.988*** -1.967***
(0.065) (0.098)

LTV -0.069 -0.055
(0.051) (0.048)

FICO -0.083* -0.016
(0.038) (0.081)

PC1 -0.521*** -0.771***
(0.022) (0.051)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 56.8% 39.4% 34.3% 39.0%
Pseudo R2 72.2% 45.1% 45.0% 50.3%
Observations 309,186 309,186 126,969 126,969 3,524,647 3,524,647 1,532,085 1,532,085
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Table 3: Appraisal, Price, and Default Risk: Appraisal bias

This table presents results from our tests of Corollary 1 after adjusting for appraisal bias.
Panel A includes observations that are less affected by appraisal bias, which we define as
observations in which the appraised value is equal to or greater than 5% greater than the
sale price. Panel B includes observations that are more affected by appraisal bias, which
we define as observations in which the appraised value is equal to or less than 5% greater
than the sale price. In our ordinary least squares (OLS) regressions, the dependent variable
is log(A − P ) in Panel A and log(P-A/1.05) in Panel B. In our Poisson regressions, the
dependent variable is A-P in Panel A and P-A/1.05 in Panel B. A is Appraised Value (i.e.,
lender’s value), and P is Sale Price (i.e., price). Our proxies for default risk are Home Equity,
LTV, and FICO. We take the negative of Home Equity and FICO so that the sign of the
predicted coefficient is the same across all variables. PC1 is the first principal component of
the three proxies. See Table 1 for variable definitions. All regression variables are winsorized
at the 0.5% and 99.5% levels. LTV, FICO, and PC1 are standardized to zero mean and unit
standard deviation. Standard errors below coefficient estimates are adjusted for clustering
at the zip code, year, and month levels. Statistical significance at the 1%, 5%, and 10%
levels is denoted by ***, **, and *.

Panel A: Less affected by appraisal bias

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.147*** -0.174***
(0.007) (0.005)

LTV -0.128*** -0.135***
(0.004) (0.005)

FICO -0.060*** -0.067***
(0.004) (0.006)

PC1 -0.170*** -0.186***
(0.003) (0.005)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 51.1% 48.5% 45.6% 47.8%
Pseudo R2 70.2% 68.8% 67.3% 68.7%
Observations 1,603,591 1,603,591 1,032,505 1,032,505 1,603,591 1,603,591 1,032,505 1,032,505

Panel B: More affected by appraisal bias

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.192*** -0.317***
(0.014) (0.027)

LTV -0.137*** -0.129***
(0.004) (0.006)

FICO -0.063*** -0.064***
(0.004) (0.006)

PC1 -0.209*** -0.246***
(0.006) (0.006)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 54.3% 48.6% 47.7% 50.7%
Pseudo R2 72.0% 62.5% 65.1% 65.1%
Observations 19,118,683 19,118,683 11,364,711 11,364,711 19,153,826 19,153,826 11,389,122 11,389,122
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Table 4: Appraisal, Price, and Default Risk: Repossession Costs

This table presents results from our tests of Corollary 2, which states that the difference
between the lender’s effective estimate of collateral value (i.e., estimate of collateral value
less repossession costs) and equilibrium price is negatively associated with borrower riskiness.
We assume repossession costs are 5% of the appraised value. In our ordinary least squares
(OLS) regressions, the dependent variable is log(0.95×A-P) in Panel A and log(P-0.95×A)
in Panel B. In our Poisson regressions, the dependent variable is 0.95×A-P in Panel A and
P-0.95×A in Panel B. A is Appraised Value (i.e., lender’s value), and P is Sale Price (i.e.,
price). Our proxies for default risk are Home Equity, LTV, and FICO. We take the negative
of Home Equity and FICO so that the sign of the predicted coefficient is the same across
all variables. PC1 is the first principal component of the three proxies. See Table 1 for
variable definitions. All regression variables are winsorized at the 0.5% and 99.5% levels.
LTV, FICO, and PC1 are standardized to zero mean and unit standard deviation. Standard
errors below coefficient estimates are adjusted for clustering at the zip code, year, and month
levels. Statistical significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

Panel A: Sale price equal to or less than 95% of appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.131*** -0.141***
(0.004) (0.006)

LTV -0.146*** -0.144***
(0.006) (0.005)

FICO -0.075*** -0.072***
(0.008) (0.009)

PC1 -0.164*** -0.166***
(0.006) (0.008)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 25.2% 24.8% 22.5% 23.1%
Pseudo R2 62.0% 61.8% 60.4% 61.0%
Observations 1,460,622 1,460,622 940,219 940,219 1,489,309 1,489,309 958,997 958,997

Panel B: Sale price equal to or greater than 95% of appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.191*** -0.313***
(0.014) (0.026)

LTV -0.137*** -0.128***
(0.004) (0.006)

FICO -0.063*** -0.064***
(0.004) (0.006)

PC1 -0.208*** -0.244***
(0.006) (0.005)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 54.8% 49.0% 48.1% 51.2%
Pseudo R2 72.4% 62.9% 65.5% 69.0%
Observations 19,255,219 19,255,219 11,459,270 11,459,270 19,292,239 19,292,239 11,485,196 11,485,196
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Table 5: Appraisal, Price, and Default Risk: Secondary Market

This table presents results from our tests of Corollary 3, which states that the difference
between the lender’s estimate of collateral value and equilibrium price is negatively associated
with borrower riskiness among mortgages that are likely to be sold to an outside investor. In
our ordinary least squares (OLS) regressions, the dependent variable is log(A− P ) in Panel
A and log(P − A) in Panel B. In our Poisson regressions, the dependent variable is A-P in
Panel A and P-A in Panel B. A is Appraised Value (i.e., lender’s value), and P is Sale Price
(i.e., price). Our proxies for default risk are Home Equity, LTV, and FICO. We take the
negative of Home Equity and FICO so that the sign of the predicted coefficient is the same
across all variables. PC1 is the first principal component of the three proxies. See Table 1
for variable definitions. All regression variables are winsorized at the 0.5% and 99.5% levels.
LTV, FICO, and PC1 are standardized to zero mean and unit standard deviation. Standard
errors below coefficient estimates are adjusted for clustering at the zip code, year, and month
levels. Statistical significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

Panel A: Appraised value at least as large as price

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.108*** -0.050***
(0.006) (0.006)

LTV -0.131*** -0.048***
(0.006) (0.008)

FICO -0.077*** -0.062***
(0.007) (0.009)

PC1 -0.156*** -0.097***
(0.007) (0.009)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 15.3% 15.1% 14.1% 14.6%
Pseudo R2 33.8% 33.7% 35.9% 36.0%
Observations 10,206,248 10,206,248 6,747,257 6,747,257 18,232,404 18,232,404 11,217,204 11,217,204

Panel B: Price at least as large as appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.978*** -2.057***
(0.070) (0.121)

LTV -0.050 -0.015
(0.056) (0.054)

FICO -0.074 0.002
(0.042) (0.088)

PC1 -0.503*** -0.770***
(0.022) (0.057)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 58.5% 41.1% 36.3% 40.8%
Pseudo R2 75.3% 46.6% 46.3% 51.8%
Observations 267,148 267,148 108,721 108,721 2,972,029 2,972,029 1,279,052 1,279,052
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Table 6: Summary Statistics: Freddie Mac and FHFA HPI

This table presents summary statistics of returns derived from FHFA HPI and our loan
data from Freddie Mac. Log return is the annual change in log value of the non-seasonally
adjusted FHFA HPI. Home Equity is the weighted average of quarterly home equity values
(i.e., natural logarithm of home equity estimated from LTV and the loan amount at the time
of loan origination) within a CBSA. LTV is the weighted average of quarterly loan-to-value
ratios within a CBSA. Credit Score is the weighted average of quarterly credit scores within
a CBSA. All averages are calculated with value used as the weight. Each data set focuses on
single-family homes that were purchased, not refinanced. Our sample spans 2000 through
2021 and includes 8,772 quarterly observations from the 100 largest CBSAs.

Mean SD 10th 25th Median 75th 90th

Log return 4.40% 8.02% -0.05% 1.33% 4.67% 8.34% 13.30%
Home Equity 11.30 0.53 10.72 10.92 11.21 11.58 12.04
LTV 76.6% 6.1% 70.1% 74.1% 77.3% 80.6% 82.9%
Credit Score 744 17.3 720 730 749 757 763
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Table 7: Return Autocorrelation

This table presents results from our tests of Proposition 8, which we test by regressing Log
return on the one-year lag of itself interacted with dummies for our different proxies for
default risk. Log Return is the annual change in log value of the non-seasonally adjusted
FHFA HPI. Low, Mid, and High are dummy variables indicating whether the proxy in that
column is in the lowest, middle, or highest tercile within a given CBSA. Our proxies for
default risk are Home Equity, LTV, and Credit Score. PC1 is the first principal component
of the three proxies. See Table 6 for variable definitions. Standard errors below coefficient
estimates are adjusted for clustering at the CBSA, year, and quarter levels. Statistical
significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

No Sort Home Equity LTV Credit Score PC1
(1) (2) (3) (4) (5)

ρ 0.68***
(0.08)

ρ × Low 0.79*** 0.56*** 0.78*** 0.90***
(0.10) (0.09) (0.12) (0.12)

ρ × Mid 0.73*** 0.72*** 0.65*** 0.78***
(0.09) (0.09) (0.07) (0.09)

ρ × High 0.58** 0.93** 0.58** 0.52**
(0.11) (0.17) (0.18) (0.08)

Adjusted R2 41.4% 42.3% 43.6% 42.1% 44.1%
Observations 8,772 8,772 8,772 8,772 8,772

51



A Proofs

A.1 Proof of Proposition 1

Require that equation (6) equal ηB times equation (9) and equation (7) equal ηL times

equation (9). Solve for c and p. ■

A.2 Proof of Proposition 2

We proceed by backwards induction, starting on date t = 1. Suppose that the borrower had

committed to a repayment c on date t = 0. The seller’s and borrower’s surpluses are

SS(c, p) = p− v1 (81)

SB(c, p) = (1− d)(v1 − c(p))− (1− ℓ)p. (82)

The seller’s and borrower’s expected surpluses

ES [SS(c, p)] = p− aS (83)

EB[SB(c, p)] = (1− λ)(aB − c)− (1− ℓ)p. (84)

As a function of the repayment c, the price p(c) that maximizes the Nash product is

p(c) =
ηB

ηB + ηS
· aS +

ηS
ηB + ηS

· (1− λ)(aB − c)

(1− ℓ)
. (85)

Now on date t = 0, the borrower’s and lender’s surpluses are

SB(c, p(c)) = (1− d)(v1 − c)− (1− ℓ)p(c) (86)

SL(c, p(c)) = dv1 + (1− d)c− ℓp(c) (87)

Therefore, the borrower’s and lender’s subjective, expected surpluses are

EB[SB(c, p(c))] = (1− λ)(aB − c)− (1− ℓ)p(c) (88)

EL[SL(c, p(c))] = λaL + (1− λ)c− ℓp(c). (89)

The equilibrium c maximizes the Nash product. ■
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A.3 Proof of Proposition 3

Just as in the proof of Proposition 1, but now substitute ξaL for aL. ■

A.4 Proof of Proposition 4

Just as in the proof of Proposition 1, but now solve for ℓ and p (rather than c and p). ■

A.5 Proof of Proposition 5

Set equations (27) and (28) equal to zero and solve for c and p. ■

A.6 Proof of Proposition 6

Set equations (38), (36), and (35) equal to zero and solve for c, pL, and pA. ■

A.7 Proof of Proposition 7

Conjecture a linear equilibrium of the form

Pt = cV Vt + cBX̂
B
t + cLX̂

L
t , (90)

where cV , cB, and cL are known constants. Integrating equation (45) from t to s > t, we

obtain

Xs = Xte
−κ(s−t) +

√
2κσX

∫ s

t

e−κ(s−τ)dBX
τ . (91)

Therefore,

Ej
t [Xs] = X̂j

t e
−κ(s−t). (92)

Integrating equation (47) from t to T , we obtain

X̂j
T = e−(κ+wj)(T−t)X̂j

t + wj

∫ T

t

e−(κ+wj)(T−s)dVs. (93)

Therefore, i’s expectation of j’s belief is

Ei
t[X̂

j
T |T ] = e−(κ+wj)(T−t)X̂j

t + wj

∫ T

t

e−(κ+wj)(T−s)X̂ i
te

−κ(s−t)ds (94)

= e−(κ+wj)(T−t)X̂j
t +

(
e−κ(T−t) − e−(κ+wj)(T−t)

)
X̂ i

t , (95)
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having used the fact that

Ei
t[dVs] = Ei

t[Xsds+ σV dB
V
s ] = X̂ i

te
−κ(s−t)ds. (96)

The value at time T is given by

VT = Vt +

∫ T

t

Xsds+ σV
(
BV

T −BV
t

)
. (97)

Hence,

Ej
t [VT ] = Vt +

∫ T

t

Ej
t [Xs]ds = Vt +

∫ T

t

X̂j
t e

−κ(s−t)ds = Vt + κ−1
(
1− e−κ(T−t)

)
X̂j

t . (98)

For any constant a > 0,

Et

[
e−a(T−t)

]
=

∫ ∞

t

λe−(a+λ)(T−t)dT =
λ

a+ λ
. (99)

First, the buyer’s expected value from owning the asset is

Vt = Et

[∫ T

t

rEB
t [Vs|T ]e−r(s−t)ds

]
(100)

= Et

[∫ T

t

r
(
Vt + κ−1

(
1− e−κ(s−t)

)
X̂B

t

)
e−r(s−t)ds

]
(101)

= r(r + λ)−1Vt + r(r + λ)−1(r + κ+ λ)−1X̂B
t . (102)

Next, we compute the lender’s expected recovery value. From equation (95),

EL
t [VT |T ] = Vt + κ−1

(
1− e−κ(T−t)

)
X̂L

t (103)

EL
t [X̂

B
T |T ] = e−(wB+κ)(T−t)X̂B

t +
(
e−κ(T−t) − e−(wB+κ)(T−t)

)
X̂L

t (104)

EL
t [X̂

L
T |T ] = e−κ(T−t)X̂L

t . (105)

54



Therefore,

Et

[
EL

t [VT |T ]e−r(T−t)
]
= λ(r + λ)−1Vt + λ(r + λ)−1(r + κ+ λ)−1X̂L

t (106)

Et

[
EL

t [X̂
B
T |T ]e−r(T−t)

]
= λ(wB + κ+ r + λ)−1X̂B

t

+ λwB(r + κ+ λ)−1(r + wB + κ+ λ)−1X̂L
t (107)

Et

[
EL

t [X̂
L
T |T ]e−r(T−t)

]
= λ(r + κ+ λ)−1X̂L

t (108)

and therefore, the expected recovery value is

Rt = Et

[
EL

t [PT |T ]e−r(T−t)
]

(109)

= Et

[(
cVEL

t [VT |T ] + cBEL
t [X̂

B
T |T ] + cLEL

t [X̂
L
T |T ]

)
e−r(T−t)

]
, (110)

which can be computed using equations (106) through (108). Rewriting equation (54),

Pt = Vt +Rt (111)

=
(
r(r + λ)−1 + cV λ(r + λ)−1

)
Vt

+
(
r(r + λ)−1(r + κ+ λ)−1 + cBλ((wB + κ) + r + λ)−1

)
X̂B

t

+ λ(r + κ+ λ)−1
(
cV (r + λ)−1 + cBwB(r + (wB + κ) + λ)−1 + cL

)
X̂L

t . (112)

Comparing terms, we have that cV (λ) = 1, and cB and cL are given by the expressions in

equations (60) and (61) respectively. It follows that

c′L(λ) =
r (wB(κ+ 2(λ+ r)) + (κ+ λ+ r)2)

(λ+ r)2(κ+ λ+ r)2(κ+ r + wB)
> 0. (113)

and

(r + κ)(cB(λ) + cL(λ)) = 1. (114)

It remains to compute the equilibrium repayment. Rearranging the no-surplus condition for

the borrower, we obtain

(1− ℓ)Pt = Et

[∫ T

t

rEB
t [Vs|T ]e−r(s−t)ds

]
+ Et

[∫ T

t

rCte
−r(s−t)

]
(115)

= r(r + λ)−1Vt + r(r + λ)−1(r + κ+ λ)−1X̂B
t − r(r + λ)−1Ct, (116)
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and hence

Ct = Vt + (r + κ+ λ)−1X̂B
t − r−1(r + λ)(1− ℓ)Pt (117)

= bV (λ)Vt + bB(λ)X̂
B
t + bL(λ)X̂

L
t , (118)

where bV , bB, and bL are given by equations (57), (58), and (59) respectively. This concludes

the proof. ■

A.8 Proof of Proposition 8

We begin by establishing some facts about several unconditional expectations that will ap-

pear later in the proof. For each i ∈ {B,L}, let ηi = r + wi, ζi,j = (r + ηi)(r + ηj),

hi(s, t, τ) = er(τ−t)+(κ+wi)(s−t), and (119)

Hi,τ0,τ1(s, τ) =

∫ τ1

τ0

hi(s, t, τ)dt. (120)

In particular,

Hi,s,τ (s, τ) = (r + κ+ wi)
−1(er(τ−s) − e−(κ+wi)(τ−s)) (121)

Hi,τ−θ,τ (s, τ) = (r + κ+ wi)
−1(e(r+κ+wi)θ − 1)e−(κ+wi)(τ−s) (122)

Hi,τ,τ+θ(s, τ) = (r + κ+ wi)
−1(1− e−(r+κ+wi)θ)e−(κ+wi)(τ−s). (123)

In what follows, we omit arguments for parsimony. For a standard 1-dimensional Brownian

motion Bt, one can write∫ τ

τ−θ

∫ t

−∞
hidBsdt =

∫ τ−θ

−∞
Hi,τ−θ,τdBs +

∫ τ

τ−θ

Hi,s,τdBs (124)∫ τ+θ

τ

∫ t

−∞
hidBsdt =

∫ τ−θ

−∞
Hi,τ,τ+θdBs +

∫ τ

τ−θ

Hi,τ,τ+θdBs +

∫ τ+θ

τ

Hi,s,τ+θdBs. (125)
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Consider the following unconditional expectations:

I(1) ≡ E

[(∫ τ

τ−θ

er(τ−t)dBt

)2
]

(126)

I(2)
i ≡ E

[∫ τ

τ−θ

er(τ−t)dBt ·
∫ τ

τ−θ

∫ t

−∞
hidBsdt

]
(127)

I(3)
i,j ≡ E

[∫ τ

τ−θ

∫ t

−∞
hidBsdt ·

∫ τ

τ−θ

∫ t

−∞
hjdBsdt

]
(128)

I(4)
i ≡ E

[∫ τ

τ−θ

er(τ−t)dBt ·
∫ τ+θ

τ

∫ t

−∞
hidBsdt

]
(129)

I(5)
i,j ≡ E

[∫ τ

τ−θ

∫ t

−∞
hidBsdt ·

∫ τ+θ

τ

∫ t

−∞
hjdBsdt

]
. (130)

By the Itô isometry (and equations (124) and (125)), we have

I(1) =

∫ τ

τ−θ

e2r(τ−s)ds =
e2rθ − 1

2r
(131)

I(2)
i =

∫ τ

τ−θ

er(τ−s)Hi,s,τds =
1

r + ηi

(
I(1) +

1− e(r−ηi)θ

r − ηi

)
(132)

I(3,a)
i,j ≡

∫ τ−θ

−∞
Hi,τ−θ,τHj,τ−θ,τds =

(e(r+ηi)θ − 1)(e(r+ηj)θ − 1)e−(ηi+ηj)θ

(ηi + ηj)ζi,j
(133)

I(3,b)
i,j ≡

∫ τ

τ−θ

Hi,s,τHj,s,τds =
e2rθ − 1

2rζi,j
− e(r−ηi)θ − 1

(r − ηi)ζi,j
− e(r−ηj)θ − 1

(r − ηj)ζi,j
+

1− e−(ηi+ηj)θ

(ηi + ηj)ζi,j
(134)

I(3)
i,j = I(3,a)

i,j + I(3,b)
i,j (135)

and

I(4)
i =

∫ τ

τ−θ

er(τ−s)Hi,τ,τ+θds =
2(cosh(rθ)− cosh(ηiθ))e

−ηiθ

(r + ηi)(r − ηi)
(136)

I(5,a)
i,j =

∫ τ−θ

−∞
Hi,τ−θ,τHj,τ,τ+θds (137)

I(5,b)
i,j =

∫ τ

τ−θ

Hi,s,τHj,τ,τ+θds (138)

I(5)
i,j = I(5,a)

i,j + I(5,b)
i,j =

2(cosh(rθ)− cosh(ηjθ))e
−ηjθ

(ηi + ηj)(r + ηj)(r − ηj)
. (139)
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Note that
I(2)
i + I(2)

j

I(3)
i,j

=
I(4)
j

I(5)
i,j

= ηi + ηj (140)

and

I(1)′(θ) = e2rθ (141)

I(2)′
i (θ) =

1

r + ηi

(
e2rθ − e(r−ηi)θ

)
(142)

I(3)′
i,j (θ) =

1

ηi + ηj

(
I(2)′
i (θ) + I(2)′

j (θ)
)
. (143)

In particular, I(1)′(θ) = 1 and I(2)′
i (θ) = I(3)′

i,j (θ) = 0. Having established these facts, we

now turn our attention to the error in borrowers’ and lenders’ estimates of the growth rate.

Integrating equation (65) from −∞ to t, we obtain

Zi
t =

√
2κσXM

X,i
t − wiσVM

V,i
t , (144)

where

MX,j
t ≡

∫ t

−∞
e(κ+wj)(s−t)dBX

s (145)

MV,j
t ≡

∫ t

−∞
e(κ+wj)(s−t)dBV

s . (146)

Importantly, E[MX,j
τ0
MV,j

τ1
] = 0 for any times τ0 and τ1. Define the integrands

NZj

τ−θ,τ ≡ αj(λ)

∫ τ

τ−θ

er(τ−t)Zj
t dt (147)

NV
τ−θ,τ ≡ α

∫ τ

τ−θ

er(τ−t)dBV
t , (148)

where α = (ηB + ηL)σV . It follows that

NZj

τ−θ,τ = αj(λ)

∫ τ

τ−θ

er(τ−t)
(√

2κσXM
X,j
t − wjσVM

V,j
t

)
dt. (149)
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Now consider the return from time τ to time τ + θ as defined by equation (71):

Rτ,τ+θ =

∫ τ+θ

τ

er((τ+θ)−t)(dPt + r(Vt − Pt)dt) (150)

= ηB(λ)

∫ τ+θ

τ

er((τ+θ)−t)(ZB
t dt+ σV dB

V
t )

+ ηL(λ)

∫ τ+θ

τ

er((τ+θ)−t)(ZL
t dt+ σV dB

V
t ) (151)

= NZB

τ,τ+θ +NZL

τ,τ+θ +NV
τ,τ+θ. (152)

It follows immediately that Rτ−θ,τ = NZB

τ−θ,τ +NZL

τ−θ,τ +NV
τ−θ,τ . Let

φi,j = 2κτ−1
X + wiwjτ

−1
V . (153)

Consider the following variances and covariances:

E[(NV
τ−θ,τ )

2] = (ηB(λ) + ηL(λ))
2τ−1

V I(1) (154)

E[NZi

τ−θ,τN
V
τ−θ,τ ] = −wiαi(λ)(ηB(λ) + ηL(λ))τ

−1
V I(2)

i (155)

E[NZi

τ−θ,τN
Zj

τ−θ,τ ] = φi,jαi(λ)αj(λ)I(3)
i,j (156)

E[NV
τ−θ,τN

Zi

τ,τ+θ] = −wiαi(λ)(ηB(λ) + ηL(λ))τ
−1
V erθI(4)

i (157)

E[NZi

τ−θ,τN
Zj

τ,τ+θ] = φi,jαi(λ)αj(λ)e
rθI(5)

i,j . (158)

The unconditional variance of Rτ−θ,τ is

σ2
1(λ, θ) ≡ E[(Rτ−θ,τ )

2] (159)

= E[(NZB

τ−θ,τ )
2] + E[(NZL

τ−θ,τ )
2] + E[(NV

τ−θ,τ )
2]

+ 2E[NZB

τ−θ,τN
ZL

τ−θ,τ ] + 2E[NV
τ−θ,τN

ZB

τ−θ,τ ] + 2E[NV
τ−θ,τN

ZL

τ−θ,τ ] (160)

= φB,BηB(λ)
2I(3)

B,B(θ) + φL,LηL(λ)
2I(3)

L,L(θ) + (ηB(λ) + ηL(λ))
2τ−1

V I(1)(θ)

+ 2φB,LηB(λ)ηL(λ)I(3)
B,L(θ)− 2wBηB(λ)(ηB(λ) + ηL(λ))τ

−1
V I(2)

B (θ)

− 2wLηL(λ)(ηB(λ) + ηL(λ))τ
−1
V I(2)

L (θ) (161)

= ψ(wB)I(3)
B,BηB(λ)

2 + ψ(wL)I(3)
L,LηL(λ)

2 + τ−1
V I(1)(ηB(λ) + ηB(λ))

2

+ 2(ψ(wB)I(3)
B,I + τ−1

V (wB − wL)I(2)
L )ηB(λ)ηL(λ) (162)
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which does not depend on τ . Let

βi,j(λ) = α′
i(λ)αj(λ) + αi(λ)α

′
j(λ). (163)

Differentiating with respect to λ:

∂λσ
2
1(λ) = ψ(wB)I(3)

B,BβB,B(λ) + ψ(wL)I(3)
L,LβL,L(λ)

+ τ−1
V I(1)(βB,B(λ) + 2βB,L(λ) + βL,L(λ))

+ 2(ψ(wB)I(3)
B,L + τ−1

V (wB − wL)I(2)
L )βB,L(λ). (164)

Define

ψ(w) = 2κτ−1
X − w(w + 2κ)τ−1

V . (165)

Recall that w0 is the positive root of ψ. Let w−1 denote the negative root so that

ψ(w) = (w0 − w)(w − w−1). (166)

Note that ψ(w) > 0 for w ∈ [0, w0), ψ(w0) = 0, and ψ(w) < 0 for w > w0. Let

Di(λ) =
αi(λ)(wiα−i(λ) + w−iαi(λ) + (2κ+ wi)(αi(λ) + α−i(λ)))ψ(wi)

ηi + η−i

. (167)

We have written Di as a function of λ as we will need the derivative of Di with respect to λ:

D′
i(λ) =

(wiβi,−i(λ) + w−iβi,i(λ) + (2κ+ wi)(βi,i(λ) + βi,−i(λ)))ψ(wi)

ηi + η−i

. (168)

The unconditional auto-covariance is

σ1,2(λ, θ) ≡ E[Rτ−θ,τRτ,τ+θ] (169)

=
∑

j∈{B,L}

E[NZB

τ−θ,τN
Zj

τ,τ+θ] + E[NZL

τ−θ,τN
Zj

τ,τ+θ] + E[NV
τ−θ,τN

Zj

τ,τ+θ] (170)

= φB,BηB(λ)
2erθI(5)

B,B + φB,LηB(λ)ηL(λ)e
rθ(I(5)

B,L + I(5)
L,B)

+ φL,LηL(λ)
2erθI(5)

L,L − wBηB(λ)(ηB(λ) + ηL(λ))τ
−1
V erθI(4)

B

− wLηL(λ)(ηB(λ) + ηL(λ))τ
−1
V erθI(4)

L (171)

= (DB(λ)I(5)
B,B(θ) +DL(λ)I(5)

L,L(θ))e
rθ, (172)
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having used the fact that E[NZB

τ−θ,τN
V
τ,τ+θ] = E[NZL

τ−θ,τN
V
τ,τ+θ] = E[NV

τ−θ,τN
V
τ,τ+θ] = 0. There-

fore,

∂λσ1,2(λ) = (D′
B(λ)I(5)

B,B +D′
L(λ)I(5)

L,L)e
rθ. (173)

Finally,

ρ(λ, θ;wB, wL) =
σ1,2(λ, θ;wB, wL)

σ1(λ, θ;wB, wL)σ2(λ,wB, wL)
=
σ1,2(λ, θ;wB, wL)

σ2
1(λ, θ;wB, wL)

. (174)

Now consider the case in which wB = w0. Then DB(λ;w0, wL) = D′
B(λ;w0, wL) = 0 and

hence

σ1,2(λ, θ;w0, wL) = DL(λ;w0, wL)I(5)
L,L(θ;w0, wL)e

rθ (175)

∂λσ1,2(λ, θ;w0, wL) = D′
L(λ;w0, wL)I(5)

L,L(θ;w0, wL)e
rθ. (176)

We now wish to show that if wL < w0 as assumed, then σ1,2(λ;w0, wL) > 0. Note first that

since wL < w0, DL(λ;w0, wL) > 0. Next,

I(5)
L,L =

2(cosh(rθ)− cosh(ηLθ))e
−ηLθ

(ηL + ηL)(r + ηL)(r − ηL)
> 0, (177)

which follows from the fact that (cosh(rθ) − cosh(ηLθ))/(rθ − ηLθ) > 0. We conclude that

σ1,2(λ;w0, wL) > 0. We have that DL(λ) = ηL(λ)D̃L(λ)ψ(wL)/(2κ+ wB + wL), where

D̃L(λ) = wLηB(λ) + wBηL(λ) + (2κ+ wL)(ηL(λ) + ηB(λ)) (178)

= (2κ+ w0 + wL)ηB(λ) + 2(κ+ wL)ηL(λ). (179)

Let

m0 = 2(2κ+ w0 + wL)(r + κ+ wL) (180)

m1 = 2(κ+ wL)(r + κ+ w0)(r + κ+ wL) (181)

so that

(ηLD̃L)
′(λ) = m0cL(λ)c

′
L(λ) +m1(cB(λ)c

′
L(λ) + c′B(λ)cL(λ)) (182)

= (m0cL(λ) +m1(cB(λ)− cL(λ)))c
′
L(λ) (183)

= (m1cB(λ) + (m0 −m1)cL(λ))c
′
L(λ) (184)

> 0, (185)
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which follows from the fact that m0 − m1 = 2(r(κ + w0) + (κ + wL)
2). We conclude that

∂λσ1,2(λ;w0, wL) > 0. Finally, we consider

∂λσ
2
1(λ, θ;w0, wL) = ψ(wL)βL,L(λ)I(3)

L,L(θ) + τ−1
V (βB,B(λ) + 2βB,L(λ) + βL,L(λ))I(1)(θ)

+ 2τ−1
V (w0 − wL)βB,L(λ)I(2)

L (θ) (186)

= (ψ(wL)βL,L(λ) + 2(κ+ wL)τ
−1
V (w0 − wL)βB,L(λ))I(3)

L,L(θ)

+ τ−1
V (βB,B(λ) + 2βB,L(λ) + βL,L(λ))I(1)(θ). (187)

Note that

βL,L(λ) + 2βB,L(λ) + βB,B(λ)

= 2(ηL(λ) + ηB(λ))(η
′
L(λ) + η′B(λ)) (188)

= 2(ηL(λ) + ηB(λ))((r + κ+ wL)c
′
L(λ) + (r + κ+ w0)c

′
B(λ)) (189)

= 2(ηL(λ) + ηB(λ))((r + κ+ wL)− (r + κ+ w0))c
′
L(λ) (190)

= 2(ηL(λ) + ηB(λ))(wL − w0)c
′
L(λ) (191)

< 0. (192)

Since I(1)(0) = I(3)
L,L(0) = I(3)′

L,L(0) = 0 and I(1)′(0) = 1, we have ∂λσ
2
1(λ, 0;w0, wL) = 0 and

∂θλσ
2
1(λ, 0;w0, wL) = βL,L(λ) + 2βB,L(λ) + βB,B(λ) < 0. (193)

Therefore, ∂λσ
2
1 is strictly less than zero in a neighborhood of θ = 0. ■
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Table IA1: Appraisal, Price, and Default Risk: Repossession Costs

This table presents results from our tests of Corollary 2, which states that the difference
between the lender’s effective estimate of collateral value (i.e., estimate of collateral value
less repossession costs) and equilibrium price is negatively associated with borrower riskiness.
We assume repossession costs are 10% of the appraised value. In our ordinary least squares
(OLS) regressions, the dependent variable is log(0.90×A-P) in Panel A and log(P-0.90×A)
in Panel B. In our Poisson regressions, the dependent variable is 0.90×A-P in Panel A and
P-0.90×A in Panel B. A is Appraised Value (i.e., lender’s value), and P is Sale Price (i.e.,
price). Our proxies for default risk are Home Equity, LTV, and FICO. We take the negative
of Home Equity and FICO so that the sign of the predicted coefficient is the same across
all variables. PC1 is the first principal component of the three proxies. See Table 1 for
variable definitions. All regression variables are winsorized at the 0.5% and 99.5% levels.
LTV, FICO, and PC1 are standardized to zero mean and unit standard deviation. Standard
errors below coefficient estimates are adjusted for clustering at the zip code, year, and month
levels. Statistical significance at the 1%, 5%, and 10% levels is denoted by ***, **, and *.

Panel A: Sale price at most as large as 90% of appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.125*** -0.129***
(0.006) (0.010)

LTV -0.143*** -0.135***
(0.007) (0.006)

FICO -0.070*** -0.061***
(0.009) (0.011)

PC1 -0.147*** -0.147***
(0.010) (0.012)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 31.9% 31.7% 27.5% 28.0%
Pseudo R2 67.5% 67.4% 65.1% 65.6%
Observations 418,699 418,699 266,132 266,132 431,213 431,213 274,489 274,489

Panel B: Sale price at least as large as 90% of appraised value

OLS Poisson

(1) (2) (3) (4) (5) (6) (7) (8)

Home equity -0.180*** -0.268***
(0.012) (0.019)

LTV -0.128*** -0.122***
(0.003) (0.005)

FICO -0.062*** -0.064***
(0.004) (0.005)

PC1 -0.201*** -0.227***
(0.005) (0.004)

Zip×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Adjusted R2 63.3% 57.0% 55.5% 59.0%
Pseudo R2 77.5% 69.0% 70.2% 73.7%
Observations 20,702,445 20,702,445 12,477,035 12,477,035 20,726,204 20,726,204 12,493,944 12,493,944
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Table IA2: Return Autocorrelation: Simple Averages

This table presents results from additional tests of Proposition 8, which we test by regressing
Log return on the one-year lag of itself interacted with dummies for our different proxies
for default risk. Log return is the annual change in log value of the non-seasonally adjusted
FHFA HPI. Our proxies for default risk are Home Equity, LTV, and Credit Score. Home
Equity is the simple average of quarterly home equity values (i.e., natural logarithm of
home equity estimated from LTV and the loan amount at the time of loan origination)
within a CBSA. LTV is the simple average of quarterly loan-to-value ratios within a CBSA.
Credit Score is the simple average of quarterly credit scores within a CBSA. PC1 is the
first principal component of the three proxies. Low, Mid, and High are dummy variables
indicating whether the proxy in that column is in the lowest, middle, or highest tercile
within a given CBSA. Standard errors below coefficient estimates are adjusted for clustering
at the CBSA, year, and quarter levels. Statistical significance at the 1%, 5%, and 10%
levels is denoted by ***, **, and *.

No Sort Home Equity LTV Credit Score PC1
(1) (2) (3) (4) (5)

ρ 0.68***
(0.08)

ρ × Low 0.73*** 0.54*** 0.78*** 0.91***
(0.11) (0.08) (0.12) (0.12)

ρ × Mid 0.73*** 0.73*** 0.65*** 0.78***
(0.09) (0.09) (0.07) (0.10)

ρ × High 0.60** 0.98** 0.58** 0.51***
(0.12) (0.17) (0.17) (0.08)

Adjusted R2 41.4% 41.8% 44.4% 42.1% 44.4%
Observations 8,772 8,772 8,772 8,772 8,772
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