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1 Introduction

L’enfer est plein de bonnes volontés ou désirs
[The road to hell is paved with good intentions]

- Bernard of Clairvaux (1090 – 1153)

The prevention of runs on financial institutions such as banks, money market mutual
funds, and, more recently, stablecoins and central bank digital currency (CBDC) concerns
a vast academic literature1 and policy institutions today (?). This paper contributes to
a critical debate on financial regulation aimed at reducing a firm’s run-propensity and
its unintended consequences. The paper develops a flexible framework for analyzing the
effectiveness of a large class of financial policy interventions at preventing runs on firms.
Because the framework is general, I can identify features of regulation, and ultimately
classify common policy regulation according to types that improve versus reduce firm
stability.

The paper makes three contributions. The main contribution stems from characteriz-
ing policy interventions that improve versus deteriorate firm stability based on how the
policy acts on the investors’ withdrawal-contingent payoffs to roll over versus withdraw
their funds. Policy-driven changes in the relative payoffs to roll-over versus withdrawal
alter the investors’ ex ante run-propensity, and thus the firm’s proneness to runs. I deter-
mine two large classes of policy, “smooth” and “harsh.” Both smooth and harsh policies
can be of two types, “adverse” and “prudent.” I show, the range of policy interventions
that worsen stability ex ante is large and can be of two different types: “adverse smooth”
and “adverse harsh”, to be explained below. Among regulation that possibly worsens sta-
bility are bailouts and emergency liquidity assistance because both interventions have the
potential to benefit the “wrong” investor group, that is, those that decide to withdraw.

To classify policy and determine how policy impacts firm stability, I consider the rela-
tive investor payoffs to roll over versus withdraw as a function of aggregate withdrawals,
where high aggregate withdrawals implicate a run on the firm. Absent regulation and
intervention (the status quo), the payoff difference (PI) to roll-over versus withdrawal
is generally a continuous function of the aggregate withdrawals, see ?. I define “smooth
policy intervention” as a regulation that acts on the PI by shifting relative incentives grad-
ually while preserving the continuity of the PI in the withdrawals. In contrast, “harsh
policy” causes discontinuities (jumps) in the PI at certain withdrawal thresholds, and
possibly shifts these jump points as policy intensity picks up. For intuition on the differ-
ence between smooth and harsh intervention, any policy intervention needs to start and
finish at some aggregate withdrawal threshold. These thresholds have an interpretation
as withdrawal-contingent entry and exit points to intervention. A smooth policy may set
or shift these entry and exit points to intervention but only in a way that preserves the

1See ???????????????????????
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continuity of the PI in the withdrawals. That is, entry and exit to intervention shall not
be too abrupt with regard to its impact on investor payoffs, otherwise a discontinuity in
the PI arises, and policy intervention becomes harsh.

A smooth policy is not always beneficial to firm stability, and a harsh policy is not al-
ways detrimental. There are two types of policy intervention that monotonically improve
firm stability ex ante, which I call “prudent (piecewise) smooth” and “prudent harsh,” see
Proposition 4.1 and Proposition 5.2. Prudent smooth policy strictly raises the PI to roll
over versus withdraw over an interval of aggregate withdrawals (intervention interval) and
nowhere lowers the PI. Prudent harsh policy is a policy that causes at least one upwards
jump and no downwards jump of the PI, meaning that there exists a withdrawal threshold
at which the policy intervention increases the favorability of roll-over versus withdraw in
an ad-hoc way. A change in harsh policy can occur in two forms: Either in the form of
a “piecewise smooth policy” that shifts payoffs gradually between jump points without
causing additional jumps, and acts prudently if the PI is shifted upwards. Alternatively,
a change in harsh policy can occur due to a shift in the jump-point. “Jump-shifts” act
“prudently harsh”, raising stability ex ante, only if the policy shifts a down-jump point of
the PI up to a higher withdrawal level or an up-jump point down to a lower withdrawal
level. An adverse policy that monotonically lowers firm stability ex ante can equally be of
two types, either “adverse (piecewise) smooth,” shifting the PI down, or “adverse harsh”
by causing a down-jump in the PI, shifting a down-jump down to a lower or an up-jump
upwards to a higher withdrawal level. These abstract concepts are brought to life in the
application section 7 where I assess existing policy methods.

As the second contribution, the generality of the framework allows me to study the
equivalence of policies, and provide conditions under which different policy types offset
each other, see section 6. This equivalence analysis is important because many common
policies belong to multiple classes, for instance, exhibiting adverse harsh and prudent
piecewise smooth features such as Emergency Liquidity Assistance. Within the class of
smooth policies the paper points out that bail-ins of investors that roll over act like bail-
outs of withdrawing investors and vice versa, and both bail-ins and bail-outs can either
increase or lower firm stability depending on the investor group they benefit. Therefore,
generically a bailout does not improve firm stability, moreover, it lowers firm stability
when paid to the withdrawing agent group. As an application of my equivalence result
in subsection 7.1, I demonstrate that imposing and raising a fee on withdrawals is not an
effective policy because it gives rise to adverse and prudent effects on firm stability that
offset each other. There, I also show that lowering the entry threshold to the withdrawal
fee is more effective, because it avoids these offsetting effects. Likewise, the provision
of Emergency Liquidity Loans to a bank during a fire sale can in fact lower instead of
raise bank stability ex ante because the loan constitutes a transfer from the roll-over to
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the withdrawing agent group, acting like a bail-in to roll-over agents and a bail-out of
withdrawing agents, as discussed in section 7.2. As the second type of equivalence, I show
that policy that acts harshly (causes or shifts jumps) can undo smooth policy and vice
versa. As an application of this equivalence type, section 7.2 shows that providing and
raising Emergency Liquidity Loans to a bank can lower instead of raise bank stability
ex ante because the ELA provision causes a jump in the payoff difference function if
the lender of last resort charges interest on the loan. Likewise, section 7.3 discusses
that the suspension of convertibility of deposits can lower stability because it creates
adverse jumps that offset the stabilizing effect of the intervention. The stability analysis
of imposing and raising withdrawal fees or granting and raising an ELA loan at a varying
entry threshold are contributions of their own in section 7.1 and 7.2.

Last, this paper makes a technical contribution by extending the jump-free ? model
to general payoff functions with finitely many jump points.

This framework is widely applicable. The firm I consider can be any institution that
is exposed to its investors’ decision whether to roll over funds or withdraw. Therefore,
the firm can be a bank, a money market mutual fund (MMF), a central bank, a stable-
coin, or a start-up that requires the roll-over of seed money. Funds can be short-term
debt, long-term debt, commercial papers, seed money of start-ups, cryptocurrency and
stablecoins, CBDC, or money market mututal fund shares. The framework solely requires
that the payoffs to roll over versus withdraw be denominated in the real unit of account
(consumption units). Therefore, payoffs need to be pinned down after an adjustment for
inflation or an exchange rate.

The framework is general in that the types of regulation and contracts that are studied
here solely need a description of the ex post payoffs to investors after the contract, asset
returns, and regulation have been applied. More specifically, for the classification of
regulation into classes that do improve versus those that lower firm stability, it is sufficient
to observe how regulation acts on the investors’ payoffs to roll over versus withraw funds,
depending on the aggregate withdrawals of all firm investors. The types of regulation and
policy interventions that are included in this framework are, though not limited to, bail-
ins, bail-outs, emergency liquidity assistance (ELA) by a lender of last resort, suspension
of convertibility of deposits or gates or withdrawal fees for money market mutual fund
redemptions, and deposit insurance (guarantees), all possibly in a withdrawal contingent
way.

The framework is specific in that it imposes sufficient structure on the payoffs to
guarantee the selection of a unique equilibrium of the investor’s coordination game in a
global games framework (??), and thus a unique, model-implied ex ante run probability
on the firm. For this purpose, I generalize the ? framework to a setting that considers
general withdrawal-contingent payoffs to investors, and allows for jumps in the payoff
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differences.

1.1 Literature

The paper contributes to three strands of literature, namely the literature on runs on
financial firms, the literature on global games, and the literature on financial regulation
to improve the resilience of the financial sector. The closest related papers are the bank
run global game model in ?, the run model with a lender of last resort application in
?, the firm-regulator interaction with subsidies and runs in ?, and the book chapter on
global games in ?.

This paper adds to the literature on bank and money market mutual fund runs and
their prevention. In ?, a sufficiently conservative suspension policy deters runs com-
pletely. ? study the prevention of panic runs via suspension policies when depositors
have asymmetric information. ? study bank runs with and without lender of last resort
policies. ? consider ex-post optimal intervention delay when a run happens. ? study
dynamic rumor-based bank runs with endogenous information acquisition. ? study the
prevention of runs by allowing agents to report that a run is happening. ? studies mutual
fund runs in a dynamic model but does not consider intervention or run prevention. ??
studies the impact of suspension of convertibility policies on bank stability. ? study the
impact of bankruptcy code design on run incentives in a dynamic setting. Unlike all
these papers, this paper analyzes a very general framework that allows for a wide range
of policy interventions and contracts.

Unlike the majority of the mentioned papers, this paper employs a global games
information environment (????????) for attaining a unique equilibrium which enables me
to conduct unique comparative statics in the ex ante run likelihood under policy changes.
In the context of runs on firms, global games have been employed as an equilibrium
selection device by ???????????. This paper deviates from the existing global games
literature by analyzing a general global games environment into which I build different
types of regulation that impact firm stability. In doing so I build on the general structure
in ? to generalize the payoff functions of the classic run model by ?. I then define
types of policy by how they act on the payoff difference function under the constraint
of maintaining the global games equilibrium selection. In doing so I explicitly allow for
regulation that causes jumps in the payoff difference function while maintaining action
single-crossing and (one-sided) strategic complementarity. In the global game by ?, a
regulator can set transfers to investors to implement the efficient equilibrium whereas the
firm can shirk the transfer by altering the contract with its investors. This paper differs
from ? by focussing on different types of transfers to and across the coordinating investors.
I show, depending on whether transfers are continuity-preserving or discontinuity-causing,
positive or negative, they impact stability differently, either improving or deteriorating
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stability. I show that different types of transfers can, nevertheless, have equivalent effects
on stability and I show that commonly applied intervention methods such as emergency
loans, and the imposition of withdrawal fees are policies that exhibit mixed features,
some improving and some lowering stability ex ante. ? explicitly allows for moral hazard
whereas I abstract from that. Similar to ?, this paper studies how a firm’s proneness
to runs changes with policy. In ?, however, the policy maker observes a payoff-relevant
state realization which is not observed by the coordinating investors. Therefore, the
policy conveys additional information which gives rise to equilibrium multiplicity. Here,
in contrast, the policy does not serve as a signal, and a unique equilibrium attains. ?
and ? consider the regulation of intermediary balance sheets to impact insolvency and
illiquidity risk. I study regulation in a broader sense where I do not pin down balance
sheets, contracts and regulation explicitly but rather consider very general payoffs to
investors ex post of asset returns, contracts, seniority and regulation. This allows me to
nest many common bank run models and regulation, and characterize stability improving
regulation on a more abstract level without pinning down the regulation and contracts
in detail.

With regard to the literature on unintended consequences of financial regulation, in
a setting of self-fulfilling runs, ? shows that if financial intermediaries expect bailouts in
times of crises, the anticipation of bailouts causes intermediaries to choose illiquid and
fragile asset positions. In the context of sovereign debt crises, ? show that the prevention
of sovereign default via bailouts in the short run may come at the cost of a higher default
probability in the long run. ? show that private leverage choices of banks become
strategic complements if the policy response during crises is imperfectly targeted. This
model features a simultaneous-move game, as in ? and ?. The withdrawal-contingent
intervention policies considered here, however, resemble the literature on random and
sequential withdrawals where each arriving depositor obtains a distinct allocation (????).

2 Model

I first introduce the model, and then discuss its assumptions in section 2.1.
There are three time periods, t = 0, 1, 2, and no explicit discounting. Implicitly, a

discount factor can be accommodated via the payoffs to investors, as described below.
There exists a firm, a regulator and a continuum of investors i ∈ [0, 1]. All of them
are risk-neutral. The firm can be a bank, a money market mututal fund, a stablecoin,
a central bank issuing CBDC, or a start-up that requires investors and the roll-over
of funding seeds. Likewise one can think of the investors as depositors, investors in a
money market mututal fund or general investors who at a future point in time need to
decide whether to roll-over funds or withdraw. The regulator can represent the FDIC,
the government or the lender of last resort (central bank). There is a single good in the
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economy that agents value for consumption. All payoffs are denominated in terms of that
good.

At time zero, the investors are symmetric, and each is endowed with one unit to invest.
All investors enjoy consumption at both t = 1 and t = 2. The firm requires funding for
investment, and for that purpose collects endowments from the investors in t = 0. I
assume that investing is individually rational to investors. Returns to scale are constant.
The initial firm investment and thus funding via investors is normalized to one unit.

I do not model the firm and the regulator separately but rather think of them as one
entity that jointly provides payoffs to investors. Therefore, in the benchmark model I do
not model the firm’s investment payoff structure, the contracts between investors and the
firm, and the regulator’s subsidy explicitly. Rather, I pin down investor payoffs condi-
tional on the choice of action, ex post of firm revenue, contract payments and regulatory
intervention. On an abstract level, I can collapse payoffs because, as I will outline below
in the analysis, optimal investor behavior does not depend on the origin of payoffs rather
than joint payoffs provided by the firm and the regulator conditional on an action. This
stark abstraction has pros and cons. On the positive side, it allows me to analyze a very
general policy framework that nests many common intervention methods, contracts, and
asset payoff structures. But the collapse of firm-regulator payoffs requires me to abstract
from moral hazard from the side of the firm towards its investors or between the firm and
the regulator. The firm-regulator entity has aligned incentives to maximize firm stability,
to be defined below. This set-up does nest a model where the firm and the regulator
are modeled separately, as long as the firm faces no moral hazard problem towards the
regulator or its investors, see the application section 7 for examples. For a nice example
where the firm can shirk a regulatory intervention, see ?.

I follow and outline the information structure in ? but generalize firm (bank) and
investor payoffs.

State Let θ ∼ U [0, 1] denote the unobservable, random state of the economy. Gen-
eralizing ?, as stated above, I do not impose a particular state-dependent firm asset payoff
structure. Yet, I assume that the state realization is payoff relevant to investors. One
may think of θ as parametrizing the payoff probability of a risky firm asset or a random
asset return.

Contract and payoffs In t = 0, the firm offers a contract to the investors to
raise funds for investment in the risky asset. All investors invest their endowment in the
contract with the firm. At t = 1, an investor needs to decide on her action. She either
“withdraws” her investment and thus opts for the short-term payoff u1(n, θ) payable in
t = 1, or she “rolls over” her investment until t = 2, opting for the payoff u2(n, θ) payable
in t = 2 where n ∈ [0, 1] denotes the endogenous share of investors who withdraw in
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t = 1 (aggregate withdrawals). One should think about the payoffs u1(n, θ) and u2(n, θ)
not only as functions of firm asset payoffs, the contract and withdrawals but also ex
post of firm profits and regulatory intervention, that is, the payment of bail-outs, bailins,
suspension or withdrawal fees. The payoffs u1 and u2 are denominated in real terms.
Therefore, if the firm is a stablecoin or a CBDC-issuing central bank, then u1 and u2 are
ex post of a correction for the exchange rate and the price level (inflation). The payoff u2
can be thought of incorporating a discount factor. The reason for why this generality is
possible is because the investors’ only care for final per period consumption and due to
rational expectations. For roll-over incentives, only final real payoffs matter. The firm and
the regulator jointly have deep pockets so that payoffs u1(n, θ) and u2(n, θ) at a given state
θ and aggregate withdrawal level n are feasible, and this is common knowledge among all
investors. Observe that the payoffs are not necessarily hard claims but can be state- and
withdrawal-contingent. Therefore, the contract I am considering here is not necessarily
a demand-deposit or debt contract. The payoffs satisfy monotonicity conditions in the
state θ, and the aggregate withdrawals n, as summarized below in assumption 2.1. The
functional forms of u1(n, θ) and u2(n, θ) are known to the depositors ex ante.

Signals Before the investors choose actions in t = 1, they observe noisy, private signals
about the state θ,

θi = θ + εi. (1)

The idiosyncratic noise term εi is independent of the state θ and is distributed iid ac-
cording to the uniform distribution εi ∼ U [−ε,+ε].

Policy and Regulatory Intervention I assume that at t = 0, the regulator sets and
commits to a policy parameter p ∈ [0,∞) where p = 0 corresponds to a committment
to not interfere, or alternatively the absence of a regulatory institution. One can think
of p as a policy intensity that is raised under policy intervention. The policy parameter
is common knowledge among all investors. A change in p is supposed to act on the
investors’ payoffs u1 and u2 which is why, from now on, I subindex investor payoffs with
p. For the first part of the paper, I study investor behavior for a general, given policy
intensity p ∈ [0,∞), and then characterize different types of policy and policy changes by
how they act on the investors’ payoffs. Define the payoff difference of rolling over versus
withdrawing as

υp(n, θ) = u2,p(n, θ)− u1,p(n, θ). (2)

Note, that the aggregate withdrawals n and the state θ are random in t = 0. Following
? section 2.2.2. and 2.2.3., I impose monotonicity conditions on the investor’s relative
payoffs that guarantee equilibrium existence and uniqueness. That is, this model tries
to attain maximum generality with regard to the payoffs u2 and u1 and thus possible
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regulatory interventions but within the class of global games.

Assumption 2.1. Fix policy intensity p ∈ [0,∞). It holds
(1) (Strict state Monotonicity:) υp(n, θ) is non-decreasing in θ, and strictly increasing in
θ for all θ ∈ [θp, θp].
(2a) (Action single crossing:) For every state θ ∈ [θp, θp], there exists n∗(p) ∈ (0, 1) such
that υp(n, θ) > 0 for n < n∗(p) and υp(n, θ) < 0 for n > n∗(p).
(2b) (One-sided strategic complementarity:) For every state θ ∈ [θp, θp], whenever n is
such that υp(n, θ) > 0, then υp(n, θ) is strictly decreasing in n.
(3) (Uniform limit dominance:) There exist upper and lower regions of action dominance:
There exist θp, θp ∈ (0, 1) and ε > 0 such that: if θ ∈ [0, θp], then withdraw is dominant,
υp(n, θ) < −ε, for all n ∈ [0, 1] while for θ ∈ [θp, 1], roll-over is dominant υp(n, θ) >
ε, for all n ∈ [0, 1].

Note that assumption 2.1 includes global strategic complementarity in actions. But
the assumption imposes sufficiently strong additional structure to also guarantee equi-
librium existence and uniqueness under one-sided strategic complementarity which is
common in games of runs on financial institutions.

Timing

• In t = 0, the regulator sets and fully commits to her policy p without observing the
state. The policy p is common knowledge among all agents, and the policy choice
conveys no information. Then, the state θ realizes unobservably to all agents. All
investors invest in the firm contract.

• In t = 1, all investors observe their private signal θi. Based on the signal and
the policy, they decide whether to request withdrawal. The firm and the regulator
jointly observe the aggregate withdrawal requests n ∈ [0, 1], and depending on
the policy p, allocate payoffs u1(n, θ) to depositors who withdraw, where the state
realization θ ∈ [0, 1] remains unobserved by all agents until t = 2.

• In t = 2, θ is revealed, and payoff u2(n, θ) is paid to investors that chose roll-over.

The equilibrium concept is perfect Bayes Nash. Proofs that are not in the main text
can be found in the appendix.

2.1 Discussion of model assumptions

Generically, I allow the payoff to withdrawal, u1(n, θ), to depend on state θ since the
payoff may be paid in t = 2 due to regulatory intervention even though the choice to
withdraw was made in t = 1. One may consider here a mandatory deposit stay where a
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depositor chooses to withdraw but an intervention in t = 1 prevents her from doing so. If
the payoff to withdraw is paid in t = 1, it cannot depend on θ since the state is revealed
only later in t = 2. The payoff to roll over is paid in t = 2 and therefore can always
depend on the state. I allow the payoffs to depend on aggregate withdrawals since in
classic bank run models (???), regulatory intervention is triggered by high withdrawals,
thus, altering the payoffs to all agents.

To gain intuition for Assumption 2.1, state monotonicity means that the action to
“roll over” becomes relatively more favorable than withdraw for high state realizations.

One-sided strategic complementarity and single-crossing mean that, unless the state
realizes in either of the dominance regions, for low withdrawals, roll over is optimal, but
the optimality of roll over strictly declines in the withdrawals until a critical withdrawal
level n∗(p) is reached where the optimal response flips to “withdraw.” For all higher
withdrawals, withdraw is optimal, and the critical withdrawal level n∗(p) is unique. To
put these assumptions in context, in the bank run literature, at policy intensity p, the
aggregate investor withdrawals determine whether a run occurs or not. The critical
withdrawal level n∗(p) is known as the critical withdrawal level at which the bank becomes
illiquid, meaning for higher withdrawals n ≥ n∗(p) the bank is unable to fully serve
depositors who roll over and withdrawal becomes optimal to depositors. To understand
the single-crossing condition, note that policy impacts the relative favorability of roll-over
versus withdrawal by altering the payoffs u2,p and u1,p. Thus, changes in policy can or are
supposed to cause changes in optimal behavior by investors. Alternatively, the threshold
n∗(p) can be understood as a regulatory intervention that occurs once withdrawals exceed
n∗(p), which may cause optimal investor behavior to switch at the intervention threshold,
see section 5. In applications, the threshold n∗(p) depends on the asset payoffs, budget
constraints, the contracted investor’s payoffs, the discount factor, and in case of nominal
contracts, the price level or an exchange rate.2

The assumption on action single-crossing, introduces a coordination game among the
investors.3 The existence of dominance regions is important for the equilibrium selection

2In classic bank run appliations, for instance, a run occurs if aggregate cash withdrawals nu1(n, p)
exceed a budget B1(p) available to early withdrawing agents. For attaining equilibrium uniqueness of
the coordination game, a classic assumption yielding action single-crossing is that the product nu1(n, p)
be strictly increasing in the aggregate withdrawals n. Therefore, at fixed policy p there exists a unique
critical withdrawal level n̂(p) such that if and only if n ≥ n̂(p) then nu1(n, p) ≥ B1(p). In that case,
there exists a unique n∗(p) ≤ n̂(p) for which n∗(p)u1(n∗(p), p) ≤ B1(p) and the payoff difference changes
sign in n∗(p).

3As one interpretation for n∗(p) one can imagine depositors that finance a bank’s investment in illiquid
assets. The depositors have the possibility to withdraw from the bank at the interim stage if they believe
that the asset quality θ will realize low. If the state θ realizes above the lower dominance region θ ∈ [θ, 1]
and as long as the aggregate withdrawals are sufficiently low, n < n∗, the bank can finance all withdrawals
by selling assets, and rolling over yields a higher payoff than withdraw. Therefore, υp(n, θ) > 0 and “roll
over” is the best response to the aggregate action n < n∗. If however the withdrawals pick up, the bank
needs to liquidate many illiquid assets, and the remaining investment is insufficient to pay a high payoff
to depositors who roll over. That is, “withdraw” is the optimal response to high withdrawals n > n∗(p),
υp(n, θ) < 0.
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argument. The subscript p clarifies that policy intensity impacts not only investor payoffs
but can also determine the regions of states, [0, θp] and [θp, 1], for which investors have
dominant actions.

Allover, assumption 2.1 is important to attain a unique coordination equilibrium and
later, for maintaining equilibrium uniqueness under policy changes.

3 Status quo: Equilibrium Existence and Uniqueness

Any policy intervention is relative to a prevailing status quo. This benchmark status
quo needs to be clearly defined so that I can compare equilibrium outcomes before and
after a policy intervention or change in policy. A comparison of outcomes, in particular,
requires that I start at a unique equilibrium and do not jump to multiple equilibria as
policy changes.

Assumption 3.1. Fix policy p. At p the payoff difference function υp(n, θ) is continuous
in (n, θ) ∈ [0, 1]× [0, 1], and differentiable in θ ∈ (θ, θ).

Assumption 3.1 is important for equilibrium existence and uniqueness because it es-
tablishes continuity of the expected payoffs in the signal observed by investors. Because
continuous functions on compact intervals are bounded, the assumption also implies that
the payoff difference υp(n, θ) is Lebesgue intergrable for all (n, θ) ∈ [0, 1] × [0, 1]. De-
pending on the policy type I introduce below, I may need to strengthen or complement
assumption 3.1 for guaranteeing equilibrium existence and uniqueness.

One can imagine the status quo to be the case where a bank is on its own when
faced with a run, that is, no regulator exists to intervene (p = 0). This status quo is
for instance analyzed in ?, and features a continuous payoff difference function, see also
the applications section 7. Alternatively, an intervention mechanism may already be
implemented, p > 0, in a way that the resulting payoff difference is continuous. I relax
assumption 3.1 below in section 5 to allow for hash policy intervention that causes jumps,
that is, discontinuous changes in the relative payoff to roll-over versus withdrawal. The
following result is a version of ? but for general payoffs.

Proposition 3.1 (Equilibrium Existence and Uniquness at status quo)
Fix policy intensity p ∈ [0,∞). Assume, the preferences of investors satisfy assumptions
(2.1) and (3.1). As noise vanishes, ε → 0, the investor’s coordination game has a
unique equilibrium, and the equilibrium is in trigger strategies. There exists a unique
trigger signal θ∗(p) that makes an investor indifferent between rolling over the deposit or
withdraw. For signals below the trigger θi < θ∗(p) an investor optimally withdraws. For
signals above the trigger θi > θ∗(p), roll-over is optimal.
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For tie-breaking reasons, I assume that an investor rolls over the investment whenever
observing the equilibrium trigger, θi = θ∗(p). Given an equilibrium trigger θ∗(p), the
equilibrium withdrawals are described by a deterministic function of the state, n(θ, θ∗),
given in the appendix, equation (25). As is standard in global games theory, for a given
policy parameter p ∈ [0,∞), the equilibrium trigger signal θ∗(p) is implicitly characterized
as the zero to the expected payoff difference equation

H(p, θ∗(p)) =

∫ 1

0

υp(n, θ(n, θ
∗(p))) dn (3)

where θ(n, θ∗(p)) is the inverse of n(θ, θ∗), that is, the state consistent with measure n
withdrawals if all depositors play the equilibrium trigger strategy around θ∗,

θ(n, θ∗) = θ∗ + ε(1− 2n), θ∗ ∈ [θ − ε, θ + ε] (4)

By the single-crossing assumption, the optimality of roll-over versus withdraw switches
if the aggregate withdrawals n(θ, θ∗) exceed the critical withdrawal level n∗(p). In the
remaining part of the paper, I say that “a run on the firm occurs” if the withdrawals
exceed the critical withdrawal level n∗(p).4 Given the trigger signal θ∗(p), a unique cut-
off state θb(p) ∈ [θ, θ], the critical state, exists at which the aggregate withdrawals push
the firm to the edge of a run:

n(θb(p), θ
∗(p)) = n∗(p). (5)

For a given trigger signal, state realizations below θb(p) imply lower signal realizations
and thus higher aggregate withdrawals. If and only if θ < θb(p), a run occurs because
sufficiently many investors receive a signal below the trigger θ∗(p). Because the state is
uniformly distributed, the ex-ante probability of a run equals θb. But as noise vanishes,
ε→ 0, the equilibrium trigger θ∗(p) converges to the critical state θb(p). I therefore write:

Definition 3.1 (Bank stability). Bank stability increases in policy p if the ex-ante prob-
ability of a run θb(p) or equivalently5 the equilibrium trigger θ∗(p) declines in p. In that
case, policy acts “prudently.”

Generically, the regulator wants to design policy p in a way that reduces the ex ante
run-likelihood. If an increase in policy intensity however increases the run likelihood, I
call this phenomenon “preemptive investor behavior”:

4In contrast, the bank run literature often defines a run as the incident where withdrawals reach the
level at which the bank runs out of assets to liquidate, that is, as u2(n) hits zero. This however occurs
at a withdrawal level n > n∗ where the optimal response has already switched to “withdraw”.

5As noise vanishes, ε→ 0, the trigger and the critical state are undistinguishable and their derivatives
coincide.
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Definition 3.2 (Preemptive investor behavior). Investors preempt the regulator under
policy p if an increase in policy intensity p ≥ 0 impacts investor incentives adversely,
lowering bank stability ex ante.

The main focus of this paper is to determine what types of policy lower versus raise the
probability of runs and thus firm stability. Note, generically, the objective to maximize
stability is different from efficiency maximization.6

4 Smooth policy intervention

Having clarified that at a given status quo with policy intensity p ∈ [0,∞) a unique
trigger equilibrium θ∗(p) exists, I now start the main analysis. Recall that at status
quo p, the payoff difference υp(n, θ) is continuous in the withdrawals under assumption
3.1. The following definition of policy is concerned with the maintenance of continuity
as a regulatory intervention takes place (going from p = 0 to p > 0), or, as a policy
intervention changes intensity (increasing p).

Definition 4.1 (Smooth policy intervention). Let p ≥ 0. A regulator conducts “smooth
policy intervention” via setting and increasing p if:
(i) a marginal increase in policy p alters the payoffs ro roll-over or withdrawal in a way
that preserves the continuity of the payoff difference function, υp(n, θ), in the aggregate
withdrawals n ∈ [0, 1] for all θ ∈ [0, 1] and
(ii) the change in payoffs due to the marginal change in policy p preserves the properties
of υp(n, θ) stated in assumption 2.1 and 3.1.

The requirement that the policy intervention preserves the continuity of the payoff
difference is crucial. It means the policy does not cause harsh changes in the investors’
incentives at single withdrawal points.

The assumption that smooth policy intervention preserves the payoff properties stated
in assumptions 2.1 and 3.1 is important for maintaining equilibrium uniqueness. It means,
generically, a policy intervention must be carefully designed. Consider, for instance,
increasing the relative favorability to “roll over” versus “withdraw” via the provision of a
bailout. If roll over becomes as favorable as withdrawal for low but also for high aggregate
withdrawals, equilibrium uniqueness is lost because the payoff difference function is no
longer strictly decreasing in the withdrawals when positive, or lacks the single-crossing

6See for instance (?) where the provision of high deposit insurance can lead to inefficient losses to
the deposit insurance fund because the depositors roll over their deposits for bad signals. For analyzing
efficiency, one would need to explicitly model the asset’s state-contingent payoffs and liquidation values
which would impose additional structure on the investor payoffs and the economy. I prefer to keep the
payoffs more general for now. An efficiency analysis can be reintroduced once the policy is explicit such
as in the application section 7.
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property. In that case, the global games equilibrium selection approach is no longer
applicable, and the impact of policy on firm stability is undetermined.

Definition 4.2 (Prudent smooth policy intervention). A regulator conducts “prudent
smooth policy intervention” via setting p if the policy intervention is smooth, and the
policy intervention changes the relative payoffs to investors for aggregate withdrawals n
in a non-empty, open interval N (p) ⊆ [0, 1], called “intervention interval,” such that:
(i) ∂

∂p
υp(n, θ) ≥ 0, for all withdrawals n ∈ [0, 1] and

(ii) ∂
∂p
υp(n, θ) > 0 for withdrawals n ∈ N (p).

I allow the intervention interval N (p) to depend on p, meaning that a change in
policy p can widen the intervention interval, see for instance sections 7.1 and 7.2 where
a change in policy lowers the entry threshold to imposing a withdrawal fee respectively
an emergency liquidity loan. The intervention interval cannot depend on the state since
otherwise the regulator’s announcement of the interval in t = 0 would convey information
on the state, which would give rise to equilibrium multiplicity, see (?). Technically, and
included in the definition to prudent smooth intervention, a policy can act on two disjoint
and disconnected intervalsN1(p) andN2(p) simultaneously, meaning that the intervention
interval becomes an intervention set N (p) = N1(p)∪N2(p). Important for the definition
of prudent smooth intervention is that there exists no subinterval of [0, 1], on which that
same policy acts adverselely via ∂

∂p
υp(n) < 0. Likewise, N (p) cannot be a point threshold

since this creates discontinuity, see section 5 on harsh intervention.
A prudent smooth policy intervention marginally raises the relative favorability of

“roll-over” versus “withdraw” by gradually shifting the according payoffs over the interval
of withdrawalsN (p) in a way that preserves the continuity of the payoff difference function
υp(n). A smooth policy change can be attained by either increasing the payoffs to roll-over
(bailout to investors who roll over), u2, or equivalently by reducing the payoffs to withdraw
(bail-in of investors that withdraw, suspension or withdrawal fee), u1. This equivalence
demonstrates the power of this approach using general payoffs: To the investors, only
relative payoffs matter. Irrespective of whether policy marginally raises u2 or lowers u1,
the investors react in the same way so that the impact on firm stability will be equivalent,
see section 6 on policy equivalence.

Definition 4.3 (Adverse smooth policy intervention). A regulator conducts “adverse
smooth policy intervention” via an increase in p if the policy intervention is smooth, and
the open intervention interval N (p) ⊂ [0, 1] satisfies:
(i) ∂

∂p
υp(n, θ) ≤ 0, for all withdrawals n ∈ [0, 1] and

(ii) ∂
∂p
υp(n, θ) < 0 for withdrawals n ∈ N (p).

While prudent smooth policy intervention gradually raises the favorability of roll-over
versus withdrawal over the interval N (p), adverse smooth policy, perhaps by mistake,
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does the opposite. The adverse smooth policy increases u1 via, for instance, a lender of
last resort emergency liquidity provision, see section 7.2 or equivalently, by lowering u2
via a bail-in of investors that roll over.

Obviously, there can exist policy interventions that are mixtures between prudent and
adverse smooth policy in the sense that there exist intervals Np(p) and Na(p) such that
the payoff difference of roll-over versus withdrawal, υp(n, θ), strictly increases in p on
Np(p) but strictly declines on Na(p). These cases are not clear-cut, and require a more
thorough analysis, see for instance the application section 7.

The reader might wonder why adverse smooth policy is discussed here at all, given
that is is simply the reversal of a prudent smooth policy. As it turns out, though, several
applied policies have unintended consequences, as demonstrated in section 7, and it is
important to have a label for the origin of these.

Both prudent and adverse smooth policies change relative payoffs conditional on the
realization of withdrawals. Ex ante, because withdrawals are random, prudent and ad-
verse smooth policy alter the expected value to “roll over” versus withdraw. As a conse-
quence, the equilibrium trigger signal θ∗(p) needs to adjust. The change in the trigger,
in return, alters ex ante firm stability.

As my first main result, the next result states how prudent and adverse smooth policy
intervention impact the investor’s incentive to run on the firm and thus firm stability.

Proposition 4.1 (Firm stability under Prudent and Adverse Smooth Policy)
Assume that in status quo p, assumptions 2.1 and 3.1 hold.
(i) Prudent smooth policy intervention according to Defintion 4.1 strictly improves ex
ante firm stability: The trigger θ∗(p) and the critical state θb(p) strictly decline in p.
(ii) Adverse smooth policy intervention according to Definition 4.3 strictly lowers ex ante
firm stability: the trigger θ∗(p) and the critical state θb(p) strictly increase in p.

The result says, if policy intervention raises the favorability of roll-over versus with-
drawal without causing harsh changes in incentives (jumps), then policy improves bank
stability monotonically, and preemptive behavior by investors does not arise. Adverse
smooth policy intervention preserves continuity but raises the favorability of withdraw
rather than roll-over. As a consequence, adverse smooth policy must lower stability as
investors preempt the increase in policy intensity.

The preservation of continuity is crucial. Such smoothness of incentives requires in
particular that entry and exit to an intervention do not occur too sudden at the boundaries
to the intervention interval N (p). But there are intervention types where the immediacy
of the intervention cannot preserve continuity. The case where intervention is harsh in
a way that causes discontinuities in the payoff difference function is subject of the next
section.
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5 Harsh policy and preference-jumps

By Proposition 4.1, sufficiently smooth policy intervention that raises the favorability of
roll-over versus withdrawal improves firm stability. Often, however, policy intervention
is full-on once triggered. If such policy intervention causes jumps in the payoff difference
function, or when a change in policy even shifts these jump points, the previous frame-
work no longer applies, and cannot be used for measuring the effectiveness of policy.
Therefore, I next introduce a general framework to study harsh policies that may cause
stark alterations (jumps) in the investor’s preferences at single withdrawal thresholds.

For that purpose, I generalize the status quo at a given policy p ≥ 0 in a way that
allows for jumps in the payoff difference function.

Assumption 5.1 (Discontinuous payoff difference). Fix policy p ∈ [0,∞).
(i) The payoff difference function υp(n, θ) is continuous in (n, θ) on [0, 1]\{n1, . . . , nk}×
[0, 1], and differentiable in θ on (θp, θp), where n1 < · · · < nk ∈ [0, 1], k ∈ N, k < ∞
denote finitely many withdrawal thresholds at which the payoff difference function jumps.
(ii) For all jump-points {(n)i}i=1,...,k the left- and right-sided limits of the payoff difference
function exist (are finite)

| lim
n↗(n)i

υp(n, θ(n, θ
∗
p))| =: ci,l <∞, | lim

n↘(n)i
υp(n, θ(n, θ

∗
p))| =: ci,r <∞ (6)

For intuition on the possible causes of these preference jumps, one can imagine a
threshold intervention such as the suspension of convertibility, a sudden bail-in or a
lender of last resort emergency liquidity provision that occurs when withdrawals realize
above a particular withdrawal level.

Let m with 0 ≤ m ≤ k the number of policy-dependent withdrawal jump-thresholds,
that shift with the policy. Let (k − m) the number of policy-independent withdrawal
jump-thresholds. For m > 0, without loss of generality, I reorder the policy-dependent
jump points by (n)1 < . . . , < (n)m. Set (n)0 = 0 and (n)k+1 = 1. The renaming of
jump points to (n)1, . . . , (n)m allows me to directly address all of the policy-dependent
jump-points.

Before studying shifts in the jump points, I need to establish further conditions to
attain equilibrium existence and uniqueness of the trigger equilibrium under jumps. I
maintain assumption 2.1 but need to adopt the one-sided strategic complementarity as-
sumption.

Assumption 5.2 (Single-crossing with jumps). The payoff difference function υp(n, θ)

is strictly decreasing in the aggregate withdrawals n whenever υp(n, θ) is non-negative:
(i) For withdrawals n between adjacent jump points (ni, ni+1), i = 0, . . . , k it holds:
whenever υ(n, θ) ≥ 0 then υ(n, θ) > υ(n+ h, θ) for all h > 0 with n+ h < ni+1

(ii) If the left-sided limit of the payoff difference function in a jump point ni, i = 1, . . . , k
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is non-negative, limn↗ni
υp(n, θ) ≥ 0, then that jump point must be a downwards jump,

ci,l − ci,r > 0.

The assumptions (i) and (ii) of assumption 5.2 imply single-crossing of the payoff
difference function while allowing for discontinuities. The requirement (ii) imposes that
the payoff difference may jump upwards only across negative values of the payoff difference
function. Jumps across positive values or from a positive to a negative value must be
downwards jumps.

Assumptions 5.2 and 5.1 generalize the ? environment further, beyond general pay-
offs, allowing for discontinuities of the payoff difference function. Both assumptions are
necessary for preserving the equilibrium existence and uniqueness of a trigger equilibrium
when allowing for the jumps.7 Both the continuous environment studied in the previ-
ous section, and the ? model are nested in the environment described in this section.
Observe that assumption 3.1 is nested in assumption 5.1 when setting k = 0. Likewise,
assumption 5.2 nests the standard one-sided strategic complementarity assumption in 5.2
for k = 0. Therefore, the status quo discussed in section 3 is contained in the generalized
status quo environment of this section.

5.1 Harsh Policy Intervention

A smooth policy intervention shifts the payoff difference function gradually in the policy
over a fixed interval of withdrawals and preserves contintuity in the withdrawals. In
contrast, the following definition of a policy intervention captures the idea that policy
may initiate or finish abruptly at some entry or exit threshold in a way that causes
discontinuities of the payoff difference function.

Definition 5.1 (Harsh policy intervention). Fix the status quo policy p ≥ 0 at which
the payoff difference function υp(n, θ) is continuous. A policy intervention is “harsh” if
its implementation causes discontinuities (jumps) of the payoff difference function in the
aggregate withdrawals n ∈ [0, 1], exhibiting at least one up- or downwards jump point
ni ∈ (0, 1), i = 1, . . . , k, k ≥ 1. I call a policy intervention “adverse harsh” if it causes a
downwards jump and “prudent harsh” if it causes an upwards jump of the payoff difference
function in some withdrawal level.

For an intuition of why I call downwards jumps adverseley and upwards jumps pru-
dent, I refer the reader to Proposition 5.2 (i) and the discussion there below. One might
be tempted to call this harsh intervention type “threshold intervention.” Note, however

7By assumption 5.1, the payoff difference υp(n, θ) is bounded in n over the interval [0, 1] because the
jumps are finite and because the payoff difference is continuous over the intervals (ni, ni+1), i = 0, . . . , k.
Therefore, and because the discontinuities have measure zero, the payoff difference function remains
integrable over [0, 1].
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that smooth policy intervention likewise starts at a threshold (left endpoint of Np) and
ends at a threshold (right endpoint of Np).

In section 7, I show that the imposition of withdrawal fees, an ELA provision via the
lender of last resort, or the suspension of convertibility of deposits are examples of harsh
intervention.

The next result states that under the right monotonicity assumptions, the existence
and uniqueness of equilibrium is preserved under harsh policy intervention.

Proposition 5.1 (Equilibrium existence and uniqueness under jumps)
Fix the status quo p ≥ 0. Assume the payoff difference function υp(n, θ) exhibits jump-
points {(n)i}i=1,...,k, and assumptions 2.1, 5.1 and 5.2 hold. As noise vanishes, ε → 0,
there exists a unique equilibrium and the equilibrium is in threshold strategies θ∗(p) where
all investors withdraw if they observe a signal below the trigger and otherwise roll over.

The proof to Proposition 5.1 is a contribution to the global games literature beyond
the general characterization in ?. It generalizes the existence and uniqueness proof of
the model in ? to allow for finitely many jumps in the payoff difference function in
addition to having general payoffs, subject to assumptions 5.1 and 5.2. Essentially the
proof amounts to showing that expected relative payoffs conditional on a signal realization
remain continuous, and strictly increasing in the signal when having finitely many jumps
in withdrawal points of the payoff difference function.

Definition 5.2 (Change in harsh policy intensity). Fix policy p ≥ 0, and let assumption
5.1 hold so that the payoff difference function υp(n, θ) exhibits at least one jump point,
k > 0. Denote by {n1, . . . , nk} the jump points of the payoff difference function. A change
in harsh policy via p can occur in two kinds of ways:

1. Jump-shifts: The change in p alters at least one jump point, shifting it up or down,
meaning the jump occurs at a higher or lower withdrawal level of the PI. That is,
it holds m > 0 and ∂

∂p
(n)i 6= 0 for i ∈ {1, . . . ,m}, m ≤ k (control of entry and exit

points to harsh intervention)

(a) Adverse jump-shift: A jump-shift is called “adverse” if jump i is a down-jump,
ci,l − ci,r > 0 and the policy shifts the jump point downwards to a lower with-
drawal level, ∂

∂p
(n)i < 0, or jump i is an up-jump, ci,l − ci,r < 0, which the

policy shifts upwards to a higher withdrawal level, ∂
∂p

(n)i > 0.

(b) Prudent jump-shift: A jump-shift is “prudent” if the policy shifts a down-jump
to a higher or an up-jump to a lower withdrawal level.

2. Piecewise smooth policy: There exists an open interval of withdrawals N (p) ⊂ [0, 1]

on which the payoff difference function is continuous in n, and differentiable in p

such that: A change in p alters the payoffs to withdrawal or roll-over gradually along
n ∈ N (p) in a way that preserves the continuity of the payoff difference on N (p).
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(a) Prudent piecewise smooth policy: A piecewise smooth policy is called “prudent”
if it pushes the PI upwards with
(i) ∂

∂p
υp(n, θ) ≥ 0, for all withdrawals n ∈ [0, 1] \ {n1, . . . , nk} and

(ii) ∂
∂p
υp(n, θ) > 0 for withdrawals n ∈ N (p).

(b) Adverse piecewise smooth policy: A piecewise smooth policy is called “adverse”
if it pushes the PI downwards with
(i) ∂

∂p
υp(n, θ) ≤ 0, for all withdrawals n ∈ [0, 1] \ {n1, . . . , nk} and

(ii) ∂
∂p
υp(n, θ) < 0 for withdrawals n ∈ N (p).

Again, the intervention set N (p) can be disconnected, that is, the union of several
disjoint smaller open intervention intervals. The intervention set N (p) cannot contain
any jump points.

Under a jump-shift, a change in (harsh) policy alters the payoff difference function only
at discrete points, the jump points, while under a (piecewise) smooth policy intervention
the payoff difference function is shifted over entire intervals of withdrawals, as in the case
of smooth intervention policy. Every jump-shift is either prudent or adverse. In contrast,
there exist mixtures of prudent and adverse piecewise smooth policies. While I do not
formally define these, their analysis is included in Proposition 5.2 and its proof below.

Changes in harsh policy that constitute combinations of jump-shifts and piecewise
smooth policy are common in applied settings, see section 7, which is why they deserve
a definition of its own:

Definition 5.3 (Harsh combination policy change). A harsh combination policy change
in p is a policy change that shifts a jump point and simultaneously shifts the payoff
difference function gradually over some intervention set N (p) in a piecewise smooth way.

A simple intuitive example is the case where the regulatory policy intervention starts
harsh at a withdrawal threshold n1, causing a jump, but simultaneously raises the payoff
difference function on the interval N (p) = (n1, 1], see subsection 7.3.

Section 7 demonstrates that ELA provision via a lender of last resort or the suspension
of convertibility of deposits constitute harsh combination policy that causes and shifts a
jump point while also conducting piecewise smooth policy on subintervals of withdrawals.

The next proposition is my second main result. It shows that changes in harsh policy
via policy-driven jump-shifts can have adverse consequences for the investors’ incentives
to withdraw from the firm.

Proposition 5.2 (Stability under harsh policy change)
Let {(ni)}mi=1, m > 0 denote the policy-dependent jump points of the payoff difference
function, of which each is either an up- or a down-jump point.
(ia) If the policy change in p causes an adverse jump-shift without acting piecewise
smoothly, that is, weakly lowers all down-jump points, weakly raises all up-jump points,
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and either strictly lowers at least one down-jump point or strictly raises at least one up-
jump point, or both, then the equilibrium trigger strictly increases, meaning that bank
stability strictly declines.
(ib) If the policy change in p causes a prudent jump-shift without acting piecewise smoothly,
then bank stability strictly increases.
(ii) If the policy change in p acts prudent piecewise smoothly and holds all jump points
fixed, then bank stability strictly increases whereas if the change acts adverse piecewise
smoothly bank stability declines.
(iii) Harsh combination policy: if a downward (upward) jump point declines (increases)
fast in the policy and if the payoff difference makes large jumps in the policy-dependent
thresholds {(ni)}mi=1, then the equilibrium trigger increases and stability drops in policy p
even though the policy may simultaneously act in a prudent piecewise smooth way over
some interval N (p).

The consequences of such harsh policy “gone wrong” are severe for two reasons: First,
harsh policy can cause deep payoff jumps, which in return have a large impact on the
ex ante roll-over incentives of investors. The depth of a jump impacts stability to a
comparable degree as the length of the intervention interval N (p) on which piecewise
smooth policy is actively conducted, see section 6 on policy equivalence. The result in
(ii) is essentially a restatement of Proposition 4.1 with the insight that the presence of
jumps in the PI do not matter for whether a piecewise smooth policy acts prudent or
adverse as long as the policy leaves the jump-points constant. The result in (iii) is part
of a more general phenomenon which I discuss in more detail in section 6.2 which deals
with policy equivalence and offsetting policies.

Proposition 5.2 not only concerns stability changes when altering existing harsh pol-
icy. It also covers stability changes when a harsh policy is imposed for the first time,
transitioning from a continuous payoff difference (absent intervention, p = 0) to a dis-
continuous PI, under harsh policy. Generically, in bank run settings absent of regulatory
policy (p = 0) the payoff difference function is continuous, that is, without jumps, see ?.
For analyzing the change in stability under the transition from no policy (continuity) to
harsh policy (with jumps) one would study the framework above (with jumps), where the
jump point is shifted from the boundary ni = 1 (no policy intervention and no jumps) to-
wards the interior, ni ∈ (0, 1) (harsh policy with jumps). We know that downwards shifts
of downwards jumps constitute adverse harsh policy. Therefore, the imposition of harsh
policy that causes a downwards jump in a previously continuous PI constitutes adverse
harsh policy, and rationalizes the Definition 5.1. The other way around, the imposition
of harsh policy that causes an upwards jump in a previously continuous PI constitutes
prudent harsh policy.

The proof to Proposition 5.2 gives insight into why shifts in the jump points of the
payoff difference function cause preemptive investor behavior. Therefore, I prove the
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proposition here in the text.

Proof. [Proposition 5.2] With jump points, I can rewrite the payoff difference equation
as

H(p, θ∗) =

∫ n1

0

υp(n, θ(n, θ
∗)) dn+ · · ·+

∫ 1

nk

υp(n, θ(n, θ
∗)) dn (7)

To prove Proposition 5.2, recall that the equilibrium trigger θ∗ is implicitly defined as the
zero of the payoff indifference equation H(θ∗, p) = 0, (7). From the proof to Proposition
4.1 we know ∂H

∂θ∗
> 0. Using the implicit function theorem, the trigger declines in p if

and only if the change in the payoff difference equation due to a change in p is positive,{
∂θ∗

∂p
< 0
}
⇔ {∂H

∂p
> 0}. By the Leibniz rule for parameter integrals, the change in the

payoff difference equation due to a change in p equals

∂

∂p
H(p, θ∗) =

∫
[0,n1]∩N (p)

∂

∂p
υp(n, θ(n, θ

∗)) dn+ · · ·+
∫
[nk,1]∩N (p)

∂

∂p
υp(n, θ(n, θ

∗)) dn

(8)

+
m∑
i=1

∂(n)i
∂p

( lim
n↗(n)i

υp(n, θ(n, θ
∗))− lim

n↘(n)i
υp(n, θ(n, θ

∗))) (9)

The integrals in (8) describe how a change in policy affects the payoff difference
function over the intervention intervals Ni(p) = [ni−1, ni] ∩ N (p), i = 1, . . . k + 1, n0 ≡
0, nk+1 ≡ 1 (adverse versus prudent piecewise smooth), while the summation term (9)
describes how the jump points, e.g. entry and exit points, shift in the policy and whether
jumps are up- or downwards jumps.

Concerning the proof of part (ii), under a pure piecewise smooth policy, a change in
the policy either leaves all jump points constant or no jump points exist, so that the
summation term (9) equals zero. The sign of the derivative ∂

∂p
H(p, θ∗) is, thus, solely

determined by the sign of the terms in (8), and is positive only if the piecewise smooth
policy is prudent. Further, if the piecewise smooth policy is prudent, then ∂θ∗

∂p
< 0, and

bank stability increases.
Concerning the proof of part (i), under a harsh policy change that is purely due to

jump-shifts, there exists no interval of withdrawals N (p) over which the payoff difference
changes gradually, and the integrals in (8) are all zero. Moreover, the payoff difference
jumps in the withdrawal points (n)i. Therefore, the left- and right-sided limits in each
jump point are distinct, implying that the differences

lim
n↗(n)i

υp(n, θ(n, θ
∗))− lim

n↘(n)i
υp(n, θ(n, θ

∗)) (10)

are non-zero. A difference is positive if the according jump point (n)i, i = 1, . . . , k, implies
a down jump, whereas a difference is negative if the jump point implies an up-jump. The
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boundary derivatives in (9) are, thus, non-zero if at least one jump point is shifted by
the policy.

If a difference (10) is positive (down jump), the boundary derivative in (9) is negative
if the jump point strictly declines in the policy ∂(n)i

∂p
< 0. If a difference (10) is negative

(up jump), the boundary derivative in (9) is negative if the jump point strictly increases
in the policy ∂(n)i

∂p
> 0.

Therefore, a jump-shift strictly increases the trigger θ∗p (lowers stability) if either all
down-jump points (weakly) decline and or all up- jump points (weakly) increase in the
policy parameter p, with at least one jump-shift being strict.

Concerning (iii), under a harsh combination policy, the intervention intervals Ni(p)
are non-empty. Further, the gradual change in payoffs ∂

∂p
υp(n, θ(n, θ

∗)) over at least one
of the intervention intervals is positive under a prudent piecewise smooth policy. Thus,
at least one of the integrals in (8) is positive. Therefore, the trigger may decline (stability
can improve) in the policy p, if the change in payoffs is stronger than the change in the
jump point. If the jump points alter fast in the policy and if the intervention causes
harsh changes in incentives (deep jumps) at the intervention points, stability can decline
in the policy under an adverse jump-shift even though the relative incentives to roll over
improve over the set of withdrawals N (p).

6 Policy Equivalence

The past sections introduced four different types of policy and their impact on stability.
But often a policy acts smoothly and harshly at the same time, exhibiting prudent and
adverse elements, see section 7 for examples. As a consequence, these different features
of policy can (partially) offset each other, rendering the policy less effective with regard
to its impact on stability than anticipated. Moreover, different policies can act alike.

6.1 Mixed smooth policies

A mixed smooth policy is a smooth policy that acts prudently over some intervention
interval and adverseley over another. I will show next, that these mixed smooth policies
are often ineffective, because the prudent and the adverse features partially offset each
other. The dominating smooth policy is either the policy with the greater intervention
interval or the more intense change in the PI.

Proposition 6.1 (Equivalence I: Mixed smooth policies across intervention intervals)
Consider a (piecewise) continuous payoff difference υp(n, θ) = u2(n, p) − u1(n, p). Con-
sider a policy that acts prudent respectively adverse piecewise smoothly on intervention
intervals Np,i ∈ [0, 1], i = 1, 2, . . . N . Then the adverse effect can entirely offset the pru-
dent effect on firm stability, depending on the length of the intervention interval and the
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average policy intensity over the intervention interval of either policy. Weak policy inten-
sity over prolonged intervals can outweigh, offset or turn less effective intense intervention
over short intervals and vice versa.

Consider the case of piecewise smooth policy that acts prudently over an intervalN1 ⊂
[0, 1] but adversely over an interval N2 ⊂ [0, 1], N1 ∩N2 = ∅. Then, the expected policy-
driven change in the payoff difference equals ∂

∂p
H(p, θ∗) =

∫
N1(p)

∂
∂p
υp(n, θ(n, θ

∗)) dn +∫
N2(p)

∂
∂p
υp(n, θ(n, θ

∗)) dn. By assumption, both integrals have opposing signs, with the
first integral being positive. By the mean value theorem for integrals, there exist points
n̄1 ∈ N1 and n̄2 ∈ N2 at which the marginal payoff difference attains its average value
over the corresponding intervention interval, so we can rewrite the expected change in
the payoff difference as

∂

∂p
H(p, θ∗) =

2∑
i=1

|Ni(p)|
∂

∂p
υp(n̄i, θ(n̄2, θ

∗)) (11)

where |Ni(p)| is the length of the intervention interval i, and ∂
∂p
υp(n̄i, θ(n̄2, θ

∗)) is the
average policy intensity over intervention interval Ni. The sign of the expected change in
the payoff difference, ∂

∂p
H(p, θ∗), and thus, whether bank stability increases or declines

equals the sign of the policy that has the greates intervention interval or the greatest
policy intensity over that interval, or both. More importantly, because the signs of the
terms are opposite, the prudent policy does not act as strongly as if the adverse effect
had been absent. In fact, the adverse effect can cancel the prudent effect entirely. The
argument easily generalizes to more than two intervention intervals. One example of
such a mixed smooth policy is given in section 7.2 which shows that raising the ELA
loan acts prudently on one withdrawal range but adversely on another. If the ELA entry
threshold is not chosen wisely, raising the ELA loan backfires, and the adverse smooth
effect dominates the prudent one, see Corollary 7.3

6.1.1 Equivalence of smooth policies over same intervention interval

A special case of mixed smooth policy equivalence occurs if policy acts ambiguously over
the same intervention interval. Consider a fixed intervention interval Np. We know
by Proposition 4.1 that a prudent smooth policy gradually shifts the payoff difference
to roll-over versus withdrawal upwards along Np. But because the payoff difference
υp(n, θ) = u2(n, p)− u1(n, p) is a difference, an upwards shift of the difference can occur
in two kinds of ways, either by augmenting the first term u2, that is paying a bailout to
investors that roll over, or by reducing the second term u1, meaning to bail-in depositors
that withdraw:

Proposition 6.2 (Equivalence IIa: Cost-reducing smooth policy within Np )
Fix an intervention interval Np and consider the (piecewise) continuous payoff difference
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υp(n, θ) = u2(n, p) − u1(n, p). Consider a bailout provision ε(n) ≥ 0 which is paid to
investors that roll over along the intervention interval Np ⊂ [0, 1] in a piecewise smooth
way. Then the ex ante stability improvement attained via this bailout is equivalent to a
stability improvement that would have been attained if instead of the bailout the regulator
had bailed in the withdrawing investors by the same amount ε(n).

The proof is easy to see: It holds

υp(n, θ) + ε(n) = (u2(n, p) + ε(n))− u1(n, p) bailout of roll-overs in t = 2

= u2(n, p)− (u1(n, p)− ε(n)) bail-in of withdrawals in t = 1

Therefore the impact on the equilibrium trigger θ∗p and thus ex ante stability θb(p) is
the same. From a policy designer’s perspective, the result is important to reduce policy
costs while keeping effectiveness with regard to stability constant. A bail-in can be
accomplished with a zero government budget, whereas bailouts require a budget and
thus taxpayer money. The argument also works the other way around. It holds υp(n, θ)−
ε(n) = u2(n, p)− (u1(n, p) + ε(n)) = (u2(n, p)− ε(n))− u1(n, p). Thus,

Proposition 6.3 (Equivalence IIb: Unintended smooth policy within Np )
Fix the intervention interval Np and consider the (piecewise) continuous payoff difference
υp(n, θ). A bailout provision ε(n) ≥ 0 paid to withdrawing investors over Np has the same
detrimental effect on firm stability as a bailin by −ε(n) ≤ 0 of investors that roll over.

Such a bailout to withdrawing investors is for instance paid implicitly and explicitly
when a lender of last resort (LOLR) provides an emergency liquidity loan, see the analysis
in section 7.2. As the LOLR raises the liquidity loan it is implicity bailing in investors
that roll-over whom need to repay the loan. Beyond that one might think that a larger
emergency loan allows the firm to survive larger runs which should stabilize the firm. But
also here, the opposite is true. A larger loan increases the payoff to withdraw because the
chance of being served the face value increases. Therefore, the ELA provision constitutes
an explicit bailout of withdrawing investors which, by the equivalence, acts like a bailin
of investors that roll over, both harming stability.

The effect is likewise active when considering a raise of a withdrawal fee, see Corollary
7.1 of section 7.1.1. Raising the fee allows the bank to slow down asset liquidations which
increases the payoff to roll-over. On the other hand, raising the fee allows the bank to
survive greater runs which increases the payoff to withdrawal because the likelihood of
being served the face value goes up. Both effects exactly offset each other so that raising
the fee has zero impact on stability in a particular withdrawal range even though the fee
is imposed.

Note, the result in Proposition 6.3 is somewhat at odds with the result in ? where a
social planner decides to liquidate additional assets in t = 1 when learning that a run is
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happening. In the context of this model, the additional asset liquidation increases payoffs
to early withdrawing agents, which raises their ex ante incentive to withdraw in the first
place. The ex ante run likelihood goes up. In ? such additional liquidation is socially
optimal since there exist impatient agent types that might not have withdrawn yet and
who would receive zero utility when not being allowed to withdraw.

6.2 Equivalence of smooth and harsh policy

Consider the case where a policy intervention shifts a jump point nk(p) of the pay-
off difference υp(n, θ) and at the same time acts piecewise smoothly on an intervention
interval Np ⊂ [0, 1]. The policy-driven change in the expected payoff difference equals
∂
∂p
H(p, θ∗) =

∫
N (p)

∂
∂p
υp(n, θ(n, θ

∗)) dn+∂nk

∂p
(limn↗nk

υp(n, θ(n, θ
∗))−limn↘nk

υp(n, θ(n, θ
∗))).

Bank stability increases, that is, θ∗(p) declines, in policy change p if ∂
∂p
H(p, θ∗) is pos-

itive. Using the intermediate value theorem for integrals, there exists a withdrawal
threshold n̄ ∈ N (p) in the intervention interval at which the marginal payoff difference,
∂
∂p
υp(n, θ(n, θ

∗)), attains its average speed. As a consequence, I can rewrite the overall
policy-driven change in the expected payoff difference as

∂

∂p
H(p, θ∗) = |N (p)| × ∂

∂p
υp(n̄, θ(n̄, θ

∗)) (12)

+
∂nk
∂p

( lim
n↗nk

υp(n, θ(n, θ
∗))− lim

n↘nk

υp(n, θ(n, θ
∗))) (13)

where |N (p)| is the length of the intervention interval, ∂
∂p
υp(n̄, θ(n̄, θ

∗)) is the average
change of the PI over intervention interval N (p, θ), ∂nk

∂p
is the speed of the policy-driven

shift in jump point nk, and (limn↗nk
υp(n, θ(n, θ

∗))− limn↘nk
υp(n, θ(n, θ

∗))) is the depth
of the jump in nk. When evaluating the impact of the (piecewise) smooth versus the
jump-shifting component of policy on ∂

∂p
H(p, θ∗) and thus firm stability, the length of the

intervention interval has a comparable impact as the depth of the jump. Likewise, the
average policy-driven change of the PI over the intervention interval has a comparable
effect on stability as the speed at which the jump-point shifts with policy. The length of
the intervention interval is always positive whereas the depth of the jump is positive for
down-jumps and negative for up-jumps. Also, the shift in the jump-point and the shift
in the PI can both go in either direction. As a corollary of Proposition 5.2 (iii),

Corollary 6.1 (Equivalence III: Ineffective adverse harsh policy)
Consider a (piecewise) continuous payoff difference υp(n, θ) with a jump point nk(p).
Consider a harsh combination policy that acts piecewise smoothly on an intervention
interval Np ∈ [0, 1] and simultaneously shifts the jump point nk(p). Assume the policy
shifts the jump-point and the payoff difference on Np in opposite ways such that exactly
one shift acts prudently. If the intervention interval is short relative to the jump depth,
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and if the jump-point shifts fast relative to the change in the PI, the jump-shift can offset
or outweigh the piecewise smooth effect of policy, and in either case, make it less effective
than had the jump been absent.

Section 7.2 provides an example, because an ELA provision causes a jump in the
payoff difference function at the ELA entry point if ELA is costly. Lowering the ELA
entry point adversely shifts the jump-point but simultaneously acts prudently piecewise
smooth because asset liquidation can be paused sooner. The jump-shift makes lowering
the ELA entry point a less effective policy because it partially offsets the prudent effect.

7 Applications

This section discusses several common policy interventions to provide examples of smooth,
and harsh policies as well as policy equivalence. To construct the examples, I need to
define a status quo where policy is absent. For that purpose, I next describe a risk-neutral
version of the banking model in ? (GP) which serves as the benchmark model before
policy intervention is introduced.

Benchmark before policy intervention (Goldstein-Pauzner)

There exists a continuum of depositors [0, 1]. Unlike in GP, all depositors are risk-neutral
and can consume in t = 1 and t = 2 (are “patient”). Let θ ∼ U [0, 1] parametrize the
random, unobservable state of the economy, and let θ ∈ (0, 1) an upper threshold state
close to 1. Besides storage, there exists a risky asset in the economy to shift consumption
across time. For every unit investment, if the state realizes in θ ∈ [0, θ) the asset pays
R > 2 in t = 2 with probability p(θ) and otherwise zero, and in case of liquidation
in t = 1 pays 1 like storage. If the state realizes high in θ ∈ [θ, 1], the asset pays R
already in t = 1 and with probability p(θ) = 1. The function p(θ) is positive, strictly
increasing, and differentiable in θ for θ ∈ [0, θ) and is constant at 1 for θ ∈ [θ, 1]. The
bank offers a demand-deposit contract to depositors to raise funds for investment in the
risky asset. Following GP, assume the contract offers a short-term coupon r1 > 1 in the
case a depositor withdraws the deposit8 in t = 1, and offers a long-term coupon R(1−nr1)

1−n

in the case a depositor rolls over the deposit to t = 2, where n ∈ [0, 1] is the endogenous
measure of depositors who withdraw in t = 1. Risk-sharing imposes a payoff externality:
As long as withdrawals are low, n < 1/r1, the bank can service all withdrawal requests
by liquidating assets. But if the withdrawals reach the threshold nIll := 1/r1, the bank
can no longer finance all withdrawals by liquidation, and becomes illiquid (bank run).

8GP show that risk-sharing, that is, setting r1 > 1 is socially optimal with risk-averse, and some
impatient depositors even though it gives rise to runs. I impose risk-sharing even though agents are
risk-neutral and patient here to keep the possibility of runs alive.
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In that case, the depositors who roll over receive zero. The depositors who withdraw
queue in front of the bank. With probability 1

nr1
, a withdrawing depositor is early in the

queue and receives the face value of the deposit r1, whereas with probability 1− 1
nr1

she
is late in the queue and receives zero. The payoff difference function in the liquid case
n ∈ [0, nIll) equals υL(n) = p(θ) R(1−nr1)

1−n − r1 whereas in the illiquid case n ∈ [nIll, 1],
υIll(n) = 0−

(
nIll

n
× r1 + (1− nIll

n
)× 0

)
.

7.1 Prudent smooth policy intervention via withdrawal fees

The following example is to the best of my knowledge new to the literature9, and analyzes
the marginal change of firm stability when the regulator imposes a withdrawal fee c ∈
(0, r1) as soon as the aggregate withdrawals n ∈ [0, 1] exceed a cutoff nc ≥ 0. The firm
can be a bank, a money market mutual fund (MMF) or a stablecoin. Henceforth, I call
the firm a bank.

Assume the imposition of the withdrawal fee attains before the bank becomes illiquid,
nc < 1/r1. The imposition of a withdrawal fee constitutes a 2-dimensional policy tool
(nc, c) because the intervention threshold and the fee can be move independently of one
another. I discuss changes in either policy variable. As long as the endogenous aggregate
withdrawals realize below the intervention threshold nc, no fee is imposed and the payoff
difference function equals

υL(n) = p(θ)
R(1− nr1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

, n ∈ [0, nc). (14)

As soon as the withdrawals are high enough to trigger the fee, n ≥ nc, the claim of a
withdrawing investor is reduced by the amount of the fee. Importantly, in my example,
the reduced claim allows the bank to reduce the speed of its asset liquidation for servicing
withdrawals.10 The reduced speed of asset liquidations pushes the illiquidity threshold of
the bank up from n = 1/r1 (when never imposing a fee) to

nIll(c) ≡ nc +
(1− r1nc)
(r1 − c)

, (15)

meaning the bank can now survive larger runs, that is, stays liquid for a greater range of
withdrawals. If the withdrawals are high enough to trigger the fee but low enough so that

9The imposition of fees to prevent MMF runs has previously been studied in ? and ? in a Diamond-
Dybvig (1983) style model. ? studies first best implementation via gates and fees when investors can
incur liquidity shocks. There, the probability of a run is, however, not uniquely determined so that
a marginal change in bank stability due to a marginal change in the fee or the threshold cannot be
analyzed.

10One could alternatively design payoffs to instead redistribute the fee from the withdrawing depositors
to depositors who roll over but the original idea of withdrawal fees is to reduce asset liquidations.
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the bank remains liquid, n ∈ [nc, nIll), a withdrawing investor receives the face value r1 if
she is sufficiently early in the queue so that she is served before the fee is imposed. The
probability of that event is nc/n. If she is late in the queue, with probability 1 − nc/n,
she is served after the fee is imposed, and receives the face value reduced by the fee. The
payoff difference for n ∈ [nc, nIll), thus, becomes

υL,c(n) = p(θ)
R(1− ncr1 − (n− nc)(r1 − c))

1− n︸ ︷︷ ︸
u2(n,θ)

−
(
nc
n
r1 +

n− nc
n

(r1 − c)
)

︸ ︷︷ ︸
u1(n)

. (16)

As soon as the bank becomes illiquid, n ∈ [nIll, 1], investors who roll-over receive zero.
Investors who withdraw receive the face value r1 if they are early in the queue before the
withdrawal fee is triggered, they receive the reduced face value r1 − c if they withdraw
after the fee is imposed but before the bank becomes illiquid, and otherwise receive zero.
The payoff difference becomes

υIll(n) = 0︸︷︷︸
u2

−
(
nc
n
r1 +

nIll(c)− nc
n

(r1 − c) +
n− nIll(c)

n
× 0

)
︸ ︷︷ ︸

u1(n)

. (17)

7.1.1 Analysis: Raising the withdrawal fee

I first consider a change in the withdrawal fee, holding the intervention threshold constant,
and consider a change in the intervention threshold in the next subsection. The imposition
of the constant withdrawal fee constitutes smooth intervention: the payoff difference
function jumps neither at the intervention threshold n = nc, where the imposition of
the fee is triggered, nor at the illiquidity threshold n = nIll. To determine whether this
smooth intervention acts prudent or adverse, consider the withdrawal range over which
the fee is imposed but the bank is not yet illiquid, n ∈ [nc, nIll). An increase in the
withdrawal fee raises the payoff difference to roll over versus withdraw, ∂

∂c
υL,c(n) > 0, for

two reasons. First, the fee reduces the payoff to withdraw directly and, second, it slows
down the required asset liquidation for servicing further withdrawals which increases the
roll-over payoff at the margin. The fee, thus, simultaneously acts like a bail-in of investors
that withdraw and a bail-out to investors that roll-over, in comparison to the benchmark
where no intervention exists. Next consider the withdrawal range where the bank is
illiquid, n ∈ [nIll, 1]. The allover impact on payoffs is zero in this withdrawal range,
∂
∂c
υIll(n) = 0, but, there are two effects at play here that cancel each other out: First,

as in the case of the range [nc, nIll), increasing the fee reduces the payoff to withdraw
directly. On the other hand, the fee pushes the illiquidity threshold nIll(c) up because
the additional slow down of asset liquidations allows the bank to survive larger runs.
Perhaps surprisingly, the latter effect acts against bank stability because it increases the
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expected payoff to withdraw11 because the positive payoff upon withdrawing r1 − c is
attained with a greater probability. In fact, this latter effect exactly undoes the stability
improving first effect, both effects offset each other such that the payoff difference stays
exactly constant, see the section on policy equivalence 6.1.1.

Consequentially, the interval on which intervention is effective is not [nc, 1] but the
smaller interval Nc = [nc, nIll], meaning the imposition of the withdrawal fee is not
effective for preventing runs on n ∈ [nIll, 1] even though the fee is imposed in this range,
see Figure 1a versus 1b. As a Corollary of Proposition 4.1(i), I obtain:

n1/r1

Payoff difference between roll-over versus withdrawal as function of withdrawal fee c
Withdrawal fee c>0, nc<1 

(Goldstein Pauzner, 2005)
No fee c=0, nc=1

(agg. withdrawals)

Payoff difference partiall shifts up and becomes flatter as the withdrawal fee c increases

nc nIll(c)nIll(c)

υL(n)

υL,c(n)
υIll(n)

(a) The payoff difference function υ(n)
shifts up in the range [nc, nIll] the larger
the withdrawal fee c.

n1/r1

Payoff difference between roll-over versus withdrawal as function of intervention entry nc

Withdrawal fee c>0, nc<1 

(Goldstein Pauzner, 2005)
No fee c=0, nc=1

(agg. withdrawals)

Payoff difference partiall shifts up and becomes flatter as the intervention entry point nc declines

nc nIll(nc)nIll(nc)

υL(n)

υL,c(n)

υIll(n)

nc

(b) The payoff difference function υ(n)
shifts up in the range [nc, 1] as the inter-
vention entry point nc is lowered.

Figure 1

Corollary 7.1 (Raising the withdrawal fee)
Assume the regulator imposes a fee on withdrawals, c ∈ [0, r1), if the aggregate withdrawals
exceed threshold nc ∈ (0, 1/r1). A policy change that raises the withdrawal fee c holding nc
constant constitutes prudent smooth intervention on Nc = [nc, nIll], and, thus, increases
bank stability ex ante monotonically. The larger fee allows the bank to survive greater
runs which is, however, a feature that acts against bank stability by increasing the expected
payoff to withdraw, which reduces the effectiveness of the intervention.

The feature that an increased survival range acts against bank stability is not unique
to withdrawal fees, see section 7.2 on raising the Emergency Liquidity Assistance by a
lender of last resort. To study the stability change when transitioning from not imposing
to imposing a withdrawal fee at nc, one can study the case c→ 0, because the PI under
fees converges to the PI of the Goldstein-Pauzner setting when not imposing a fee, where
convergence is in L1.

7.1.2 Altering the entry point to policy intervention

Next, I consider a change in policy by lowering the intervention point nc while leaving the
fee constant. Lowering the intervention point allows the bank to reduce asset liquidations

11Here, expectation is taken over the range of possible withdrawals n ∈ [0, 1].
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sooner, and consequentially, the bank can survive larger runs. Therefore, the illiquidity
threshold nIll(nc) rises as the intervention point nc declines. Because the payoff difference
is continuous in nc and nIll(nc), a change in nc will not create or shift any jumps so that
a decline in nc constitutes smooth policy intervention, if at all.

To evaluate how a change in the intervention threshold nc effects bank stability, con-
sider the change in the payoff differences due to an increase in nc. It holds ∂

∂nc
υL,c(n) < 0

because as the fee is imposed later overall more asset liquidation is required which lowers
the roll-over payoff. Further, ∂

∂nc
υIll(n) < 0 because as the intervention is delayed, a with-

drawing depositor is served with a higher probability which increases the expected payoff
to withdraw. The intervention interval when altering the intervention entry threshold
equals Np = [nc, 1] and is thus larger than the intervention interval when raising the fee.
As a consequence, altering the intervention entry point is potentially the more effective
prudent smooth policy in comparison to raising the withdrawal fee. Thus, as a Corollary
to Proposition 4.1,

Corollary 7.2 (Lowering the entry point to impose the withdrawal fee)
Assume the regulator imposes a fee on withdrawals, c ∈ [0, r1), if the aggregate withdrawals
exceed threshold nc ∈ (0, 1/r1). A policy that lowers the intervention entry threshold nc
constitutes prudent smooth policy, and, thus, raises bank stability ex ante monotonically.
The intervention interval equals Np = [nc, 1], and is larger than the intervention interval
of a policy that raises the withdrawal fee.

7.2 Harsh combination policy: Emergency Liquidity Assistance

The following example is, to the best of my knowledge, also new to the literature, and
complements the analysis of lender of last resort policies given in ?, section 6. I discuss
the connection below.

Assume that instead of imposing a withdrawal fee, there exists a lender of last resort
(LOLR) that is willing to lend a bounded amount of emergency liquidity assistance (ELA)
B > 0 at gross rate r > 1 once the bank is perceived as facing a run, and before the bank
becomes illiquid. Assume the bank is perceived as facing a run if the withdrawals exceed a
threshold nB ∈ (0, 1/r1). Akin to the imposition of a withdrawal fee, ELA provision is a 2-
dimensional policy tool (nB, B). Until ELA is triggered, the bank services withdrawals by
liquidating assets. Once ELA is active, the bank no longer needs to liquidate assets, but
can draw on the liquid resources B to repay the face value r1 to withdrawing depositors.
The borrowed amount B needs to be repaid with interest in t = 2 by the depositors
who roll over. Assume that the asset’s return is high enough to repay ELA as long as
withdrawals are sufficiently low, R > B(r−1), see the discussion on insolvency below. The
borrowed funds allow the bank to fully repay withdrawing depositors for a larger range of
withdrawals, meaning the ELA provision defers the illiquidity of the bank, pushing the
illiquidity threshold up from threshold n = 1/r1 to nIll(B) = (1+B)

r1
. If the ELA provision
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is sufficiently large, with B ≥ r1 − 1, then illiquidity of the bank is ruled out, 1+B
r1
≥ 1.

I henceforth assume that the ELA provision is partial, B < r1 − 1, because I want to
understand how the withdrawal incentives of depositors change as the ELA provision
increases from zero onwards. Because ELA is partial, the bank is forced to resume the
liquidation of assets once the resources B are used up, that is, for nr1 > nBr1 + B. I
call the withdrawal threshold at which all funds B are used up and liquidation resumes
nres(B) ≡ nB + B

r1
. The payoff difference before ELA is triggered equals

υL(n) = p(θ)
R(1− nr1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

, n ∈ [0, nB). (18)

Once the ELA intervention starts, asset liquidation is halted as long as ELA is sufficient to
serve withdrawals. The payoff difference12 on [nB, nres) becomes

υL,B(n) = p(θ) max

(
R(1− nBr1) +B − (n− nB)r1 − rB

1− n
, 0

)
︸ ︷︷ ︸

u2(n)

− r1︸︷︷︸
u1

. (19)

I assume that the bank borrows the entire funds B, and cannot borrow a withdrawal-contingent
amount. Borrowed funds that are not utilized to repay withdrawing agents in t = 1 are invested
in storage, and jointly with the returns on the asset are used to repay the loan to the LOLR in
t = 2. I apply the max operator in (19) and following because the bank has limited commitment,
and because the bank becomes insolvent before it becomes illiquid in t = 1. This is an observation
that the literature has made before, see also ?: The ELA loan allows more withdrawals at the
expense of agents who roll-over, meaning the loan is a transfer from the roll-over depositors
whom need to repay the loan to withdrawing depositors. Ultimately, this is the reason why the
ELA provision is a double-edged sword, lowering illiquidity risk in the short-run at the expense of
raising credit risk in the long run. A policy that imposes withdrawal fees, in contrast, constitutes
a transfer from the withdrawing to the roll-over agent group. Thus, its impact on stability will
turn out to be very different from ELA’s impact.

I henceforth assume nB < R−B(r−1)
Rr1−B(r−1) so that the acceptance of ELA, n ≥ nB, does not

cause the bank’s insolvency right away. This assumption can be rationalized by demanding that
ELA is provided only to illiquid but solvent banks, as in ?. If the withdrawals are so high that
the ELA funds B are insufficient to cover all withdrawals, n ≥ nres, the bank is forced to resume
the liquidation of assets and the payoff difference becomes

υL,B+(n) = p(θ) max

(
R(1− nr1 +B)− rB

1− n
, 0

)
︸ ︷︷ ︸

u2(n)

− r1︸︷︷︸
u1

, n ∈ [nres, nIll). (20)

until the bank becomes illiquid for nr1 ≥ 1 + B. As soon as the bank becomes illiquid, the

12Observe, if the ELA intervention threshold nB is chosen too high, then the bank is insolvent before
all funds are utilized.

30



payoff difference becomes

υIll(n) = 0︸︷︷︸
u2

−
(
nIll(B)

n
× r1 +

(
1− nIll(B)

n

)
× 0

)
︸ ︷︷ ︸

u1(n)

, n ∈ [nIll(B), 1] (21)

because a withdrawing depositor is served the face value only if she is early in the queue.

7.2.1 Analysis: Raising the ELA provision

First, observe that the ELA provision B > 0 causes a downward jump of the payoff difference
function as the withdrawals hit the ELA entry point nB if the LOLR charges interest on the
loan, r > 1, see Figure 2b: limn↗nB

υL(n) − limn↘nB
υL,B(n, γ) = p(θ) (r−1)B1−nB

> 0. Thus, ELA
constitutes harsh policy intervention if the LOLR charges positive net interest r > 1. The depth
of the jump increases with the ELA loan B because more interest becomes due in t = 2. If the
LOLR charges no interest, r = 1, then no jump occurs in the entry threshold nB, see Figure 2a.
There is no jump at the ELA exit point nres where the funds are used up. Therefore, raising the
ELA provision constitutes piecewise smooth policy when holding the jump point nB constant.

I next analyse how an increase in B affects the payoff difference function, holding the ELA
entry point nB fixed. I discuss shifting the ELA entry point in the next subsection. Once
ELA is triggered, n ∈ [nB, nres), the payoff to roll-over declines in the ELA provision because
depositors who roll-over need to repay more funds with interest to the LOLR given survival
of the bank, ∂

∂BυL,B(n, γ) < 0, see Figure 2b. This effect negatively affects bank stability, it,
however, becomes void if the LOLR charges zero interest, r = 1. Thus, a rise in the ELA
provision impacts the roll-over incentives adversely piecewise smooth in the range n ∈ [nB, nres)

if interest is charged, r > 1, and otherwise has no impact.

n1/r1

ELA loan B>0, nB<1, r=1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

(agg. withdrawals)

Payoff difference partially shifts to the right and down as ELA loan B is raised

nB

υL(n)

υL,B(n)

υIll(n)

nIll(B)nres(B)

-r1

υL,B+(n)

Payoff difference between roll-over versus withdrawal when introducing and raising ELA at nB

-
+

(a) Zero interest Ela loan r = 1

n1/r1

ELA loan B>0, nB<1, r>1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

(agg. withdrawals)nB

υL(n)

υL,B+(n)

υIll(n)

nIll(B)nres(B)

-r1

υL,B(n)

Payoff difference between roll-over versus withdrawal when introducing and raising ELA at nB

Payoff difference partially shifts to the right and down as ELA loan B is raised

+

-

-

(b) Interest on ELA loan, r > 1

Figure 2: When an ELA loan B is provided at threshold nB, the payoff difference function
υ(n) shifts to the right, allowing the bank to survive larger runs as B increases (the
illiquidity threshold nIll rises). The payoff difference function υ(n) shifts up for all n ∈
[nres, nIll], but the PI shifts down over the range n ∈ [nB, nres] and [nIll, 1] because ELA
is expensive and because given bank illiquidity, the payoff to withdraw increases with the
ELA provision because the likelihood of getting served in the queue goes up. If the LOLR
charges interest on the ELA loan, r > 1, a jump in the PI occurs at nB. The depth of
the down-jump increases with B.

In the withdrawal range for which the ELA provision is used up but the bank is not illiquid
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yet, n ∈ [nres, nIll) the change in relative payoffs due to an increase in ELA ∂
∂BυL,B+(n, γ) can

go in either direction: On the one hand, as the lender of last resort (LOLR) raises the ELA
provision, the depositors who roll-over need to repay more funds and interest to the LOLR given
survival. This negative effect does not vanish if the LOLR charges zero interest. On the other
hand, as more ELA is provided, the liquidation of assets can be deferred for longer. Overall,
whether the payoff to roll over increases or declines with the ELA provision in this withdrawal
range depends on whether the return on the asset R exceeds the cost of the ELA loan r. A
sufficient and reasonable condition for the latter, ∂

∂BυL,B+(n, γ) > 0, is that the LOLR charges
lower interest on the ELA loan than the return on the asset, r ≤ R, for instance, r = 1 (zero net
interest). The withdrawal threshold at which the bank needs to resume the asset liquidations,
nres, shifts upwards as more ELA is provided, see Figures 2b and 2a. Likewise, the bank’s
illiquidity is deferred: the threshold nIll increases, as the LOLR provides more ELA. That is,
the withdrawal interval for which the ELA funds are used up but the bank is not illiquid yet,
n ∈ [nres(B), nIll(B)) = NB, shifts upwards with the ELA funds B but maintains its length
constant. Even though the payoff difference is continuous at nIll, the rise in the illiquidity
threshold nIll matters directly for incentives because it increases the probability that a depositor
is served the face value when withdrawing, once the bank is illiquid: Because the ELA provision
pushes the illiquidity point nIll(B) upwards, it holds ∂

∂BυIll(n) < 0. That is, the increase in
the ELA provision constitutes adverse piecewise smooth policy and has a negative effect on the
roll-over incentives, acting like a bail-in of depositors that roll over in this withdrawal range,
see on the equivalence of policy in section 6. The intervention interval equals NB = [nB, 1] for
positive net interest r > 1, and equals NB = [nres, 1] for zero net interest, r = 1. Allover by
Proposition 5.2 (ii),

Corollary 7.3 (Increasing the ELA funds)
Assume the LOLR provides an ELA loan B > 0 at interest r ∈ [1, R) if the withdrawals realize
above a threshold nB ∈ (0, 1/r1). A policy that raises the ELA provision B, holding the entry
threshold nB constant, constitutes a mixed smooth policy, acting prudently on [nres, nIll], ad-
versely on [nIll, 1]], and for r > 1, adverseley on [nB, nres). The policy of providing and raising
an ELA loan B lowers ex ante bank stability if the entry threshold nB is set too close to the
illiquidity point 1/r1, even if the ELA loan is granted at zero net interest r = 1.

The Corollary implies that an ELA provision is an unfortunate policy because it implies the
possibility of making things worse ex ante.

Proof. [Corollary 7.3] Because providing and raising the ELA loan is a mixed policy, I need
to consider the expected change in the payoff difference for determining the overall impact of
policy on stability. Via equation (8), and with a policy variable p = B it holds ∂

∂BH(B, θ∗) =

−
∫ nres

nB
p(θ(n, θ∗)) (r−1)

1−n dn+
∫ nIll

nres
p(θ(n, θ∗))

(
R−r
1−n

)
dn−

∫ 1
nIll

1
n dn. Observe that at the margin

there is no jump or jump-shift in ∂
∂BH(B, θ∗), because for B → 0 there is no jump in the payoff

difference whereas for B > 0, the raise in B does not shift the jump point. This feature changes
when the policy variable switches to the intervention entry point nB, see the next subsection.
If the intervention threshold nB is chosen below but close to the original illiquidity threshold
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(absent intervention) 1/r1, then by Lebesgue’s dominated convergence theorem, the only prudent
effect on stability via the ELA provision vanishes, limnB→1/r1

∫ (1+B)/r1
nB+B/r1

p(θ(n, θ∗))
(
R−r
1−n

)
dn→

0, whereas all the adverse effects on stability remain. This holds even for net interest zero r = 1.
Thus, bank stability strictly declines as the LOLR increases the ELA provision B.

7.2.2 Lowering the ELA entry point

I next discuss how a policy intervention that lowers the entry point to ELA, nB, affects bank
stability, holding the liquidity provision B fixed. To determine the overall change in incentives,
I need to consider the shift in the jump point as well as changes in the payoff difference function
υB(n) due to changes in nB. First, we know that the payoff difference function jumps down in
the ELA entry point nB if the LOLR charges interest r > 1 because as ELA is granted, the
depositors that roll over additionally owe the interest on the ELA loan. Lowering the entry
point, thus, affects the roll-over incentives adversely by Proposition 5.2(i). The ELA exit point
nres depends on the ELA entry point but the payoff difference function is continuous in nres, so
its boundary derivative vanishes. Concerning changes in the payoff difference function υB(n),
when ELA is active and asset liquidation has not resumed yet, [nB, nres), lowering the ELA
entry point raises the PI because the bank can stop costly asset liquidations sooner, it holds
∂

∂nB
υL,B(n, γ) < 0, independently of interest r. Thus, lowering the entry point acts prudent

piecewise smooth on the intervention interval [nB, nres). For r > 1, the downwards shift of
the down-jump point nB and the prudent piecewise smooth effect on [nB, nres) act against one
another.

n1/r1

Payoff difference between roll-over versus withdrawal when introducing ELA at nB

ELA loan B>0 fix, nB<1, r=1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

Payoff difference partially shifts up and to the right as the ELA entry point is lowered

nB

υL(n)
υL,B(n)

υIll(n)

nIll(B)

nres

-r1

υL,B+(n)

nB

nres

 

(a) Zero interest Ela loan r = 1: no jump
at threshold nB

n1/r1

ELA loan B fix, nB<1, r>1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

nB

υL(n)

υL,B+(n)
υIll(n)

nIll(B)nres

-r1

υL,B(n)

Payoff difference between roll-over versus withdrawal when introducing ELA at nB

Payoff difference jumps in nB and partially shifts up to the right as the ELA entry point nB is lowered

nB

nres

(b) Interest on ELA loan, r > 1, causes a
jump at ELA entry point nB

Figure 3: When lowering the ELA entry point nB holding the loan amount B constant,
the interval [nB, nres] over which ELA is active shifts down but maintains its length. The
PI over [nB, nres] declines slower and thus shifts up as nB shifts down. The illiquidity
threshold is unchanged. If r > 1, the depth of the down-jump increases with nB and
lowering nB causes an adverse jump-shift which acts against bank stability, lowering the
effectiveness of ELA.

Corollary 7.4 (Lowering the ELA entry point)
Consider the provision of an ELA loan B at entry point nB at interest rate r ≥ 1. Independently
of whether interest is charged on the loan or not, lowering the ELA entry threshold nB raises bank
stability ex ante by acting prudent (piecewise) smoothly on the intervention interval N (nB) =
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[nB, nres) = [nB, nB+B/r1). If the LOLR charges interest on the loan, r > 1, the ELA provision
causes a jump in the PI at the ELA entry point nB. In that case, lowering the ELA entry jump
point nB constitutes harsh combination policy, giving rise to an additional adverse jump-shift.
The adverse jump-shift is always weaker than the main, prudent piecewise smooth effect but
makes the policy less effective to improve bank stability ex ante.

Proof. [Corollary 7.4] To determine the overall effect of this harsh combination policy on sta-
bility, I need to consider the expected change in the PI when raising nB. It turns out that the
adverse shift in the jump point is always weaker than the prudent smooth effect: Because R > r,
it holds

∫ nB+B/r1
nB

p(θ(n, θ∗)) r1(R−1)
1−n dn > p(θ(nB + B/r1, θ

∗)) B(r−1)
1−nB

→ p(θ(nB, θ
∗)) B(r−1)

1−nB
as

ε → 0. Therefore, the overall change in the expected PI when raising nB is negative for any
ELA interest rate r ≥ 1: ∂

∂nB
H(nB, θ

∗) ≤ 0. By Proposition 5.2(ii), thus, bank stability strictly
increases as the entry threshold to ELA, nB is lowered.

We can compare the policy that raises the ELA loan B to a policy that lowers the entry
threshold nB.13 Both policies have their issues. Lowering the ELA entry threshold always
improves on stability relative to a higher threshold while the policy of granting and increasing
ELA, by setting B > 0, can backfire. This makes it seem as if lowering the entry threshold is
the better policy. But intuitively, without ELA provision, lowering the entry threshold becomes
meaningless:

Proposition 7.1
If the ELA provision is small, lowering the entry threshold has no impact on stability.

As a consequence of the results in this section, the provision of ELA should be critically
reassessed. An intervention via imposing a withdrawal fee at a low threshold, for instance, has
an unambiguous positive effect on stability ex ante and no downsides.

Proof. [Proposition 7.1] This is straight forward to see: the lowering of the entry threshold is not
a strong policy since it only acts on the interval [nB, nres], and the length of this interval |nres−
nB| = B/r1 hinges on the size of the ELA loan. Even for r = 1, 0 ≥ limB→0

∂
∂nB

H(nB, θ
∗) =

0.

I next compare the model and analysis here to the LOLR model in ?, section 6. As the first
difference to my example, in ? the ELA provision is full: The amount is always large enough to
fend off the run in t = 1 but ELA is only provided to solvent banks. In their model, the LOLR
observes the asset return realization, and provides sufficient funds only if the bank is capable of
repaying in t = 2. Thus, a run under ELA never occurs if the bank is solvent. In my example
above, the ELA provision is generically not sufficient to entirely fend off the run, because I
am interested in how a gradual increase of ELA funds impacts the run incentives of all agents,
taking into account that the ELA provision requires a repayment of the loan by depositors that

13We can do that because the policy-driven change in ex ante bank stability θ∗ due to a change in
policy p = B versus p = nB only differs in the numerator ∂

∂BH(B, θ∗) versus ∂
∂nB

H(nB , θ
∗) and not in

the denominator − ∂
∂θ∗H(B, θ∗) = − ∂

∂θ∗H(nB , θ
∗), recall the proof to Proposition 5.2.
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roll-over. Moreover, in my model, ELA is triggered only once withdrawals are high enough so
that the bank always needs to liquidate some assets. The ELA entry threshold acts as a second
policy variable. In ?, the ELA provision is instantaneous, and entirely prevents asset liquidation
if the bank is solvent.

As the second difference, in my ELA model, the roll-over decisions are made by the depositors
and are not delegated to fund managers. Rather, in line with ? and ?, a depositor who rolls
over has a claim on the bank’s returns. In the context of my ELA example, this modeling choice
implies that ELA constitutes a transfer from depositors who roll over to depositors that withdraw
because the ELA loan needs to be repaid before returns are paid to roll-over depositors.

7.3 Harsh policy via Suspension and Budget Interdependence

The imposition of withdrawal fees or an ELA provision, discussed above, provide examples where
the intervention threshold and the policy-implied budget transfer across agent groups can be set
independently of one another. I next present an intervention type, the suspension of convert-
ibility followed by the bank’s resolution under receivership (in short “receivership resolution”),
where the policy jointly pins down the intervention threshold and the transfer. As a consequence,
receivership intervention is particularly tricky to handle when it comes to designing stability-
maximizing policy. The following example is based on the analysis of suspension interventions
followed by resolution under receivership in ?? for the special case of zero deposit insurance.

As previously, the depositors can withdraw the face value of their deposit r1 at the interim
period, and the bank finances withdrawals by liquidating assets. As the standard bank run
externality, high withdrawals reduce the remaining bank investment and thus the payoffs to
depositors that roll over. This payoff externality via the withdrawals creates interdependence
of budgets available to the withdrawing and the not withdrawing agent group which in return
leads to a reduction of the policy variables: A regulator observes withdrawals at the bank level,
and has the authority to stop runs by suspending the convertibility of deposits before the bank
becomes illiquid. The regulator sets the intervention delay p ∈ [0, 1] as the policy variable, where
1 − p denotes the measure of cash withdrawals the regulator tolerates until intervention. The
regulator intervenes to stop the run once the cash withdrawals reach 1 − p ∈ [0, 1], and thus
imposes the t = 1 budget constraint nr1 ≤ 1 − p. Policy p pins down the critical suspension
entry threshold

nc(p) :=
1− p
r1
∈ (0, 1/r1) (22)

at which the regulator intervenes. Absent regulatory intervention, p = 0, the bank is illiquid
if the cash withdrawals reach the liquidation value of the asset, nu1 ≥ 1. Therefore, 1 is
the maximum budget to early withdrawing investors. The policy contingent budget available
to early withdrawing investors is given as G1(p) = max(1 − p, 0). The remaining investment
in the asset accrues interest until t = 2. The budget to late withdrawing agents is given
as G2(p) = H (1−min(nr1, 1− p)) . The budgets to early and late withdrawing agents are
interdependent: As policy intensity p increases, the regulator tolerates fewer withdrawals until
intervention, thus, the budget to early withdrawing agents G1(p) declines whereas the budget to
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agents that roll over, G2(p), increases. As I will explain next, this budget interdependence makes
the suspension policy a harsh combination policy. To determine the payoff difference function:
If the aggregate cash withdrawals remain below the policy dependent budget, nr1 ≤ G1(p), then
no policy intervention occurs. In that case, investors who withdraw receive r1, and the investors
who roll over receive an equal share of the budget in t = 2, u2 satisfies (1− n)u2(n, θ) = G2(p).
Thus whenever n ≤ nc(p) (no policy intervention “np”), the payoff difference equals

υnp(n, θ) = p(θ)
H(1− nu1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

. (23)

If the cash withdrawals however reach or exceed the budget G1, the regulator intervenes, stops
the run, takes over control of the remaining assets, and continues the investment of the remaining
asset share p at a reduced return r ∈ (0, H) that is likewise subject to aggregate risk, p(θ). The
regulator’s reduced effectiveness in managing assets implies a costliness of intervention, which
in return creates a jump of the payoff difference function in the intervention threshold nc, see
below. Withdrawals that would exceed budget G1 are no longer served. Instead, these agents
enter a regulatory procedure, a “mandatory deposit stay,” jointly with the agents that rolled over.
Under a mandatory deposit stay, all these investors share the proceeds of remaining investment.
The proportion p of the asset that was protected by intervention matures, and yields a policy-
dependent, risky pro rata share to agents under the mandatory stay up = p(θ) rp

1−G1(p)/r1
. where

G1(p)/r1 = 1 − nc(p) is the share of depositors that may withdraw before policy intervention
occurs. Conditional on policy intervention, n > nc(p), the payoff difference equals

υp(n, θ) = p(θ)
pr

1−G1(p)/r1︸ ︷︷ ︸
u2

−
(
G1(p)/r1

n
r1 +

(
1− G1(p)/r1

n

)
p(θ)

pr

1−G1(p)/r1

)
︸ ︷︷ ︸

u1(n)

(24)

where G1(p)/r1
n is the probability that an investor who requests withdrawal is served the face value

r1 and thus does not enter the mandatory stay. The payoff difference conditional on intervention
is always negative because for states for which withdrawal is not dominant, θ ∈ (θ, 1], it must
hold r1 − p(θ) pr

1−G1(p)/r1
> 0.14

7.3.1 Analysis

The budget interdependence creates a harsh policy combination: The intervention jump thresh-
old nc(p) depends on and shifts in policy intensity p, and generically constitutes a discon-
tinuity. By r < H, the payoff difference jumps down in n = nc: limn↗nc(p) υnp(n, θ) −
limn↘nc(p) υp(n, θ) = p(θ) (H−r)p

1− 1−p
r1

> 0. As the regulator tolerates fewer withdrawals until in-

14For all states in the lower dominance region θ ∈ [0, θ) withdrawal (by definition) is dominant, meaning
the payoff difference is negative for all realizations of n. For all states between the upper and lower
dominance region θ ∈ [θ, θ] the sign of the payoff difference function depends on the realization of the
aggregate withdrawals n. If for some θ ∈ (θ, 1] it held r1− p(θ) pr

1−G1(p)/r1
< 0, then also r1− p(θ)H(1−nr1)

1−n < 0

for all n < nc(p), contradicting that withdrawal is not dominant, see (??) for the construction of the
lower dominance region for this example.
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n1/r1

Lax Suspension intervention, p1>0, nc(p1)<1/r1

(Goldstein Pauzner, 2005)
No suspension p=0, nc=1

Conservative Suspension intervention, p2>p1>0, 
nc(p2)< nc(p1)<1/r1

υnp(n)

υp(n)
-r1

Payoff difference between roll-over versus withdrawal when suspending convertibility at nc

nc(p1)nc(p2)

Figure 4: Assume the regulator suspends the convertibility of deposits as withdrawals
exceed nc(p). The intervention causes a down-jump in nc(p) simultaneously to an upwards
shift of the PI in the rangeNp = [nc(p), 1]. As fewer withdrawals are tolerated, p increases
from p1 to p2, corresponding to a lower intervention entry threshold nc(p2) < nc(p1), and
thus a lower jump point (adverse harsh), as well as an additional upwards shift of the PI
on Np = [nc(p), 1] (prudent piecewise smooth).

tervention, p increases, and the down-jump point nc(p) declines (comes forward), implying
an adverse harsh effect on bank stability via Proposition 5.2(ia). Simultaneously, a policy
that tolerates fewer withdrawals acts prudent piecewise smoothly on the intervention interval
N (p) = (nc, 1] because it increases the budget G2(p) to investors that roll-over by lowering the
budget available to investor that withdraw. Consequently, the payoff difference function υp(n, θ)
shifts upwards in p conditional on intervention.

Corollary 7.5 (Schilling (2019): Suspension of convertibility and receivership)
Assume a regulator sets a policy p ∈ (0, 1) whereby it stops runs by suspending the convertibility
of deposits if the cash withdrawals at the bank exceed the level 1 − p, that is, for withdrawals
above a threshold nc(p) ∈ (0, 1/r1). Lowering the suspension entry threshold nc constitutes harsh
combination policy. If r is large and close to H, lowering the entry threshold improves stability
ex ante. But if r is low, lowering the entry threshold can deteriorate stability ex ante.

Similar to an ELA provision, the suspension of convertibility is a policy that can backfire,
and a policy that imposes withdrawal fees is the the safer policy with regard to assuring a
positive impact on bank stability. The online appendix gives an additional prudent smooth
policy example, namely partial deposit insurance where the intervention interval is the full
range N (γ) = [0, 1].

8 Conclusion

This paper provides a general framework to analyze the effectiveness of policy interventions with
regard to their capacity to prevent or ease runs on firms such as banks, money market mutual
funds, or stablecoins. The paper establishes two different classes of policy based on how the
policy acts on the investor’s payoffs, “smooth” or “harsh”, where both smooth and harsh policy
can be of the type “prudent” or “adverse.” Every real-world policy exhibits at least one of the
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four features and the according effect on payoffs. For each class and type I determine how it
impacts the investors’ ex ante run propensity and, thus, firm stability. The range of policies that
lower bank stability ex ante is large and are either adverse smooth or adverse harsh, meaning
either they lower the favorability of roll-over versus withdrawal gradually or in a way that gives
rise to discontinuities in the withdrawal contingent relative payoff difference.

I then show that common policies such as emergency liquidity provision (ELA) by a lender
of last resort, the imposition of withdrawal fees or the suspension of convertibility belong to
multiple classes, and thus have mixed effects on stability. I show that if a policy belongs to
multiple classes, and exhibits the according features, it can become ineffective with regard to
improving stability since different features are equivalent to one another or can offset each other.
Bailins can act like bailouts and can both improve or deteriorate stability. An ELA provision
can lower stability, and the imposition of withdrawal fees is partially ineffective in lowering firm
stability because it allows firms to survive greater runs, thus, acting like a bailout to withdrawing
investors which is equivalent to a bail-in of investors that roll-over.

9 Appendix

9.1 Existence and Uniqueness of Equilibria (no jumps)

Proof. [Proposition 3.1] The proof largely follows ?. I first show existence and uniqueness of a
trigger equilibrium: Fix policy p ≥ 0. Assume all investors follow the same strategy that maps
signals to actions. Moreover, assume the investors follow a threshold strategy around θ∗ (for
sake of brevity, in this proof I suppress the dependence of θ∗ on the policy p). Then the measure
of agents that run at each state θ and threshold θ∗ is deterministic and continuous in either
argument,

n(θ, θ∗(p)) = P(θi < θ∗|θ) =


1
2 + θ∗(p)−θ

2ε , θ ∈ [θ∗(p)− ε, θ∗(p) + ε]

1, θ < θ∗(p)− ε
0, θ > θ∗(p) + ε

(25)

Given a signal θi and threshold signal θ∗, an agent holds the following expectation over the
payoff difference

H(θi, n(·)) =
1

2ε

∫ θi+ε

θi−ε
(u2,p(n(θ, θ

∗), θ)− u1,p(n(θ, θ∗), θ)) dθ (26)

The function H(θi, n(·)) is continuous in signal θi because by assumption 3.1, the payoff dif-
ference is Lebesgue integrable, because the functions g1(θi) = θi + ε and g2(θi) = θi − ε are
continuous, because compositions of continuous functions are continuous, and because continu-
ous functions on bounded intervals are bounded. By the same argument, an agent’s expected
payoff difference when observing the trigger signal θ∗,

H(θ∗, n(·, θ∗)) = 1

2ε

∫ θ∗+ε

θ∗−ε
(u2,p(n(θ, θ

∗), θ)− u1,p(n(θ, θ∗), θ)) dθ, (27)
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is continuous in θ∗. Also, H(θ∗, n(·, θ∗)) is strictly increasing in signal θ∗, as long as θ∗ <
θp+ε, because for larger signals θ∗ the expectation is taken over a higher range of fundamentals
θ ∈ [θ∗ − ε, θ∗ + ε]. By assumption 2.1, the payoff difference is strictly increasing in θ for
all θ ∈ [θp, θp], whereas the function n(θ, θ∗) is evaluated at the same values due to a shift
in the argument θ∗ and the range of fundamentals. By the existence of an upper and lower
dominance region, assumption 2.1, we know that υp(n(θ, θ∗), θ∗) < 0 for all θ ∈ [0, θp], whereas
υp(n(θ, θ

∗), θ∗) > 0 for all θ ∈ [θp, 1]. Thus, H(θ∗, n(·, θ∗)) < 0 for all θ∗ ∈ [0, θp − ε] and
H(θ∗, n(·, θ∗)) > 0 for all θ∗ ∈ [θp + ε, 1]. Allover, because H(θ∗, n(·, θ∗)) is continuous and
strictly increasing in θ∗, is positive for high and negative for low values of θ∗, there must exist
a unique threshold signal θ∗ that satisfies

H(θ∗, n(·, θ∗)) = 0 (28)

To show that θ∗ is an equilibrium, that is, H(θi, n(·, θ∗)) < 0 for θi < θ∗ and H(θi, n(·, θ∗)) > 0

for θi > θ∗, the proof in ? applies. Using an interval decomposition, they show that for
θi < θ∗, it must follow H(θi, n(·, θ∗)) < 0 because this expected value is taken over a lower range
of fundamentals than the expectated value H(θ∗, n(·, θ∗)), and because the payoff difference
function satisfies single-crossing in n by assumption 2.1. Last, it remains to show that there
exist no non-threshold equilibria. By assumption 2.1 and 3.1, υp(n, θ) is strictly increasing in
θ ∈ [θp, θp], is strictly decreasing in n whenever positive, and satisfies single-crossing. Therefore,
the proof in (?) applies.

9.2 Comparative statics under smooth intervention

Proof. [Proposition 4.1] By Proposition 3.1, for given p > 0 there exists a unique equilibrium
trigger θ∗ which is implicitly defined as the zero to

H(p, θ∗) ≡
∫ 1

0
υp(n, θ(n, θ

∗)) dn = 0 (29)

For sake of brevity, I suppress the dependence of θ∗ on the policy p. The implicit function
theorem delivers how θ∗ changes as a function of p. By assumption, υp(n, θ) is increasing in
the state θ while θ(n, θ∗) is strictly increasing in θ∗. Thus, ∂H

∂θ∗ > 0. Next, since υp(n, θ) is
continuous in n, the boundary derivatives are zero, and we have ∂H

∂p =
∫ 1
0

∂
∂pυp(n, θ(n, θ

∗)) dn =∫
n∈N (p)

∂
∂pυp(n, θ(n, θ

∗)) dn which is positive under a prudent and negative under an adverse
smooth policy. Altogether, ∂θ

∗

∂p = −(∂H∂p )/(
∂H
∂θ∗ ) < 0 if and only if the policy is prudent.

9.3 Equilibrium Existence and uniqueness with jumps

Proof. [Proposition 5.1] To show existence and uniquenss of a trigger equilibrium, assume again
that all investors follow the same strategy that maps signals θi to actions. Assume that investors
follow a threshold strategy around θ∗. Then the measure of agents that run at each state, n(θ, θ∗)
is deterministic. Observe that n(θ, θ∗) is at one for θ < θ∗− ε, because all agents oberve signals
below the trigger signal and withdraw. Further, n(θ, θ∗) is strictly decreasing in state θ for
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θ ∈ [θ∗ − ε, θ∗ + ε], and attains zero for θ > θ∗ + ε. Therefore, as θ increases in [θ∗ − ε, θ∗ + ε],
n transitions through all jump points n1, . . . , nk of the payoff difference function.

Consider the inverse of n(θ, θ∗), θ(n, θ∗), as given in (4). Let θ1, . . . , θk the states for which
n(θ, θ∗) attains the jump points, that is, θ1 = θ(n1, θ

∗), . . . , θk = θ(nk, θ
∗). In this proof, I call

these states the “jump-states”, and address them using the subscript θj , not to be confused with
signal θi. Note, due to n1 < · · · < nk−1 < nk, I have θk < θk−1 < · · · < θ1. Set θ0 = 1 and
θk+1 = 0. Note that in a trigger equilibrium around θ∗, it holds that θ1, . . . , θk ∈ (θ∗− ε, θ∗+ ε)

because n(θ, θ∗) is continuous and because n(θ∗ − ε, θ∗) = 1, n(θ∗ + ε, θ∗) = 0. Then [0, 1] =

∪kj=0[θj+1, θj ], and for every signal θi and ε > 0, it holds [θi − ε, θi + ε] ⊂ ∪kj=0[θj+1, θj ]. I
want to partition the interval [θi − ε, θi + ε] by the jump states it contains, by considering
[θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
. Let n ∈ {0, 1, . . . , k} the number of jump states contained in

the interval [θi − ε, θi + ε]. If n = 0, then there exists no partition by jump points and I write
[θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
= [θi − ε, θi + ε].

If n ≥ 1, I address the jump states in this interval directly by calling them θj1 , . . . θjn , where
θj1 is the smallest one among them, and thus, θjn the largest, and where because of the reverse
numbering of the jump states, it holds j1 ≤ k and jn ≥ 1. This yields a partition of [θi−ε, θi+ε]
according to [θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
= [θi − ε, θj1 ] ∪ [θj1 , θj2 ] ∪ · · · ∪ [θjn , θi + ε].

By assumption 5.1, the payoff difference function is continuous on all open intervals [θi −
ε, θj1), (θj1 , θj2), . . . (θjn , θi + ε]. Further by assumption 5.1, the right and left sided limits of
the payoff difference function exist at each jump state θji , i = 1, . . .m,

| lim
θ↗θji

υp(n(θ, θ
∗), θ)| = | lim

n↘nji
≡n(θji ,θ∗)

υp(n, θ(n, θ
∗))| =: ci,r <∞ (30)

| lim
θ↘θji

υp(n(θ, θ
∗), θ)| = | lim

n↗nji
≡n(θji ,θ∗)

υp(n, θ(n, θ
∗))| =: ci,l <∞ (31)

Given a signal θi, the true state must be located in [θi− ε, θi+ ε]. If this interval contains jump
states, n ≥ 1, an agent’s expected payoff difference to roll over versus withdraw when observing
signal θi can therefore be rewritten as

H(θi, n(·, θ∗)) =
1

2ε

(∫ θj1

θi−ε
υp(n(θ, θ

∗), θ) dθ +

∫ θj2

θj1

υp(n(θ, θ
∗), θ) dθ + · · ·+

∫ θi+ε

θjn

υp(n(θ, θ
∗), θ) dθ

)
(32)

If an investor observes the trigger signal θi = θ∗, the interval of possible states [θ∗ − ε, θ∗ + ε]

contains all jump states, n = k, and her expected payoff difference equals

H(θ∗, n(·, θ∗)) = 1

2ε

(∫ θj1

θ∗−ε
υp(n(θ, θ

∗), θ) dθ +

∫ θj2

θj1

υp(n(θ, θ
∗), θ) dθ + · · ·+

∫ θ∗+ε

θjk

υp(n(θ, θ
∗), θ) dθ

)
(33)

I first argue, there exists a unique θ∗, that satisfies H(θ∗, n(·, θ∗)) = 0. To see that, note that
H(θ∗, n(·, θ∗)) is strictly increasing in θ∗ for θ∗ < θ+ε, because by assumption 2.1 υp(n(θ, θ∗), θ)
is non-decreasing and is strictly increasing in θ for θ ∈ [θp, θp]. Further, H(θ∗, n(·, θ∗)) > 0 for
θ∗ ∈ [θp + ε, 1], and H(θ∗, n(·, θ∗)) < 0 for θ∗ ∈ [0, θp − ε]. Last,
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Lemma 9.1. H(θ∗, n(·, θ∗)) is continuous in θ∗

Because H(θ∗, n(·, θ∗)) is strictly increasing and continuous in θ∗, exceeding 0 for high values
of θ∗ and undercutting 0 for low values of θ∗, there exists a unique θ∗ with H(θ∗, n(·, θ∗)) = 0,
the candidate for a trigger equilibrium.

It remains to show that θ∗ is an equilibrium. That is, one needs to show that for all signals
θi < θ∗ it follows H(θi, n(·, θ∗)) < 0 whereas for all θi > θ∗ it follows H(θi, n(·, θ∗)) > 0. By
assumption 2.1, υp(n, θ) is positive for high values of θ, negative for low values of θ, and satisfies
single-crossing. Therefore, for this part, the existence proof on page 1313 in ? also applies here.
They show, if θi < θ∗, then H(θi, n(·, θ∗)) < 0 = H(θ∗, n(·, θ∗)). This holds because υp(n, θ) is
positive for high values of θ, negative for low values of θ, crosses zero only once, and because
agent i forms expectations about the payoff difference over a lower range of fundamentals than
for θi = θ∗. Likewise for θi > θ∗. Allover, there exists a unique threshold equilibrium around
trigger θ∗.

No non-threshold equilibria
It remains to show that there are no non-threshold equilibria. I follow the notation in ?: A
mixed strategy for investor i is a measurable function si : [−ε, 1 + ε] → [0, 1] that maps the
investor’s private signal into a probability to withdraw. A strategy profile is then denoted by
{si}i∈[0,1]. A state realization θ generates random signals θi = θ + εi in the range [θ − ε, θ + ε].
The signals jointly with the strategy profile {si}i∈[0,1] generate the aggregate withdrawals ñ(θ)
at state θ which is a random variable. For a given state θ, define the cumulative distribution
function of ñ(θ) as

Fθ(n) = P(ñ(θ) ≤ n|θ) = P

(∫
i∈[0,1]

si(θ + εi)di ≤ n|θ

)
(34)

where the probability is measured with respect to the signal noise distribution εi ∼ U [−ε, ε].
An investor’s expected payoff difference when observing signal θi and given a strategy profile
{si}i∈[0,1] can, via the law of iterated expectation, be written as

H(θi, ñ(·)) =
1

2ε

∫ θi+ε

θi−ε

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ (35)

where n1, . . . nk are the jump points of υ(θ, n) in the aggregate withdrawals n, and where
the inner integrals of (35) are well-defined Lebesgue-Stieltjes integrals by assumption 5.1. The
non-existence proof in ? fully applies, because

Lemma 9.2. H(θi, ñ(·)) is continuous in signal θi

and because by the assumptions 2.1, and 5.2, the payoff difference function υ(n, θ) satisfies
single-crossing in n. Moreover, υ(n, θ) is strictly decreasing in n whenever positive in the sense
of assumption 5.2 and because υ(n, θ) strictly increases in the state for state realizations in [θ, θ].
The proofs to Lemmata 9.1 and 9.2 can be found in the online appendix.
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10 Supplementary Appendix

10.1 Additional Applications

10.1.1 Prudent smooth policy intervention via providing and raising partial
Deposit Insurance (Guarantee)

The next regulatory policy I discuss is the provision of an increasing share of deposit insurance.
I show, raising the partial deposit insurance provision constitutes prudent smooth intervention,
thus raising bank stability ex ante by Proposition 4.1. I consider partial insurance because if
insurance is full there is no policy parameter to alter.15 The following example revisits ? for
the special case where there is no suspension of convertibility a = 1 (laissez-faire) but where the
regulator provides partial deposit insurance, described by the share γ ∈ (0, 1). The resulting
model is essentially the just-described ? model, enriched by a partial deposit guarantee. The
example nests the risk-neutral version of the ? model when setting γ = 0.

Assume, deposits are insured up to the amount γ ∈ [0, 1), γ ≤ r1. Insurance alters the
depositors’ payoffs in the following way in comparison to the benchmark: In the case of a bank
run n ≥ 1/r1, the depositors who roll over receive a positive payoff γ ≥ 0, and the depositors
who withdraw receive the face value r1 with probability 1

nr1
(early in the queue) and receive the

insured fraction γ with probability 1 − 1
nr1

(late in the queue). Absent a run, if the asset does
not pay off then the deposit insurance repays the depositors the insured share of their deposit.

To pin down payoffs, for a given state realization θ ∈ [0, θ)16, and in the case where the bank
remains liquid (L) in t = 1, n < 1/r1, the payoff difference between roll-over and withdrawal
equals

υL(n, γ) =

(
p(θ)max

(
R(1− nr1)

1− n
, γ

)
+ (1− p(θ))× γ

)
︸ ︷︷ ︸

u2(n,θ)

− r1︸︷︷︸
u1

(36)

In the case where the bank becomes illiquid (Ill), n ≥ 1/r1, the payoff difference becomes

υIll(n, γ) = γ︸︷︷︸
u2

−
(

1

nr1
× r1 +

(
1− 1

nr1

)
× γ
)

=
1

nr1
(γ − r1)︸ ︷︷ ︸

u1(n)

(37)

The payoff difference function is continuous in n for every insurance choice γ ∈ [0, 1). Thus, the
provision of partial deposit insurance constitutes smooth policy intervention. Further, increasing
the share of deposit insurance provision γ constitutes prudent smooth intervention:

In the liquid case, n < 1/r1, it holds ∂
∂γυL(n, γ) > 0. Similarly, in the illiquid case, n ≥ 1/r1,

15Considering partial insurance is reasonable, because from different models we know that full insurance
does not lead to efficient allocations due to moral hazard because depositors stop monitoring the bank
(?) or because of inefficient continuation of investment because depositors liquidate the bank too seldom
(??). The literature that analyzes the economics of deposit insurance is large, and the example here
serves to provide one example where deposit insurance acts smoothly on payoffs. For a different analysis
of partial insurance, see ? who analyze optimal insurance provision in the case of asymmetric deposits
and lump-sum deposit insurance in a ? model.

16For states in [θ, 1] all depositors roll over because this is the dominant action, see (?). We therefore
exclude these states from the analysis here.
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1
n

-

(Goldstein Pauzner, 2005)
No insurance γ=0

(agg. withdrawals)

p(θ) R(1-nr1)
(1-n)

Payoff difference shifts up as insurance γ increases

Figure 5: The payoff difference function υ(n) shifts up the more insurance coverage γ is
provided.

∂
∂γυIll(n, γ) > 0. Allover, ∂

∂γυ(n, γ) > 0 for all n ∈ [0, 1], and the intervention interval is given
as Nγ = [0, 1]. As a Corollary of Proposition 4.1(i), I obtain:

Corollary 10.1 (Raising partial deposit insurance is prudent smooth policy)
An increase of partial deposit insurance γ ∈ [0, 1) constitutes prudent smooth policy intervention.
In the unique equilibrium, ex ante bank stability improves in the guaranteed share γ ∈ (0, 1).
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10.2 Proofs of Lemmata

Proof. [Proof Lemma 9.1] Consider two triggers θ∗x and θ∗y. Without loss of generality, θ∗x < θ∗y,
and I can write θ∗y = θ∗x + d, d > 0. I want to show: limd→0H(θ∗y, n(·, θ∗y)) = H(θ∗x, n(·, θ∗x)). As
the state θ increases in [θ∗ − ε, θ∗ + ε], the function n(θ, θ∗) crosses all jump points n1, . . . nk.
The according jump states, however, depend on the trigger θ∗: By θ∗x < θ∗y, we have n(θ, θ∗x) ≤
n(θ, θ∗y). Because we require for all jump points j = 1, . . . k

n(θxj , θ
∗
x) = nj = n(θyj , θ

∗
x), (38)

and because n(θ, θ∗x) is increasing in the trigger but decreasing in the state it follows θxj < θyj for
all j = 1, . . . k. Further, note that n(θxj , θ

∗
x) = n(θyj , θ

∗
x) implies that θ∗x − θ∗y = θxj − θ

y
j for all j.

That is, θ∗y = θ∗x + d implies θyj = θxj + d. Therefore,

2ε H(θ∗y, n(·, θ∗y)) =
∫ θyj1

θ∗y−ε
υ(θ, n(θ, θ∗y))dθ + · · ·+

∫ θ∗y+ε

θyjk

υ(θ, n(θ, θ∗y))dθ (39)

=

∫ θxj1
+d

θ∗x+d−ε
υ(θ, n(θ, θ∗y))dθ + · · ·+

∫ θ∗x+d+ε

θxjk
+d

υ(θ, n(θ, θ∗y))dθ (40)

=

∫ θxj1

θ∗x−ε
υ(θ + d, n(θ + d, θ∗y))dθ + · · ·+

∫ θ∗x+ε

θxjk

υ(θ + d, n(θ + d, θ∗y))dθ (41)

=

∫ θxj1

θ∗x−ε
υ(θ + d, n(θ, θ∗x))dθ + · · ·+

∫ θ∗x+ε

θxjk

υ(θ + d, n(θ, θ∗x))dθ (42)

where the last step follows from n(θ + d, θ∗y) = n(θ + d, θ∗x + d) = n(θ, θ∗x). Therefore,

|H(θ∗x, n(·, θ∗x))−H(θ∗y, n(·, θ∗y))| (43)

=
1

2ε

∣∣∣ ∫ θxj1

θ∗x−ε
(υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))) dθ (44)

+ · · ·+
∫ θ∗x+ε

θxjk

(υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))) dθ
∣∣∣ (45)

≤ 1

2ε

(∫ θxj1

θ∗x−ε
|υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| dθ (46)

+ · · ·+
∫ θ∗x+ε

θxjk

|υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| dθ
)

(47)

The payoff difference function υ(θ, n(θ, θ∗x)) is continuous between the jump points, imply-
ing limd→0 |υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| = 0. Moreover, the payoff difference function is
bounded by assumption 5.1. Thus, |H(θ∗x, n(·, θ∗x))−H(θ∗y, n(·, θ∗y))| → 0 as d→ 0 by Lebesgue’s
dominated convergence theorem.

Proof. [Proof Lemma 9.2] To show continuity of H(θi, ñ(·)) in signal θi, I show that for h >

0, limh→0 |H(θi + h, ñ(·)) − H(θi, ñ(·))| = 0. Observe that for a small h > 0, the intervals
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[θi − ε, θi + ε] and [θi + h− ε, θi + h+ ε] overlap. Therefore,

H(θi + h, ñ(·))−H(θi, ñ(·)) (48)

=
1

2ε

∫ 1

0
(1{θ∈[θi+h−ε,θi+h+ε]} − 1{θ∈[θi−ε,θi+ε]})

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ

=
1

2ε

∫ 1

0
(1{θ∈[θi+ε,θi+h+ε]} − 1{θ∈[θi−ε,θi+h−ε]})

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ

where I have used that on [θi−ε, θi+ε]∩[θi+h−ε, θi+h+ε] the indicator functions cancel out to
zero. For every state θ, the Lebesgue-Stieltjes integrals

(∫ n1

0 υ(θ, n) dFθ(n) + · · ·+
∫ 1
nk
υ(θ, n) dFθ(n)

)
exist, that is, are bounded by assumption 5.2. Further, as h → 0, it holds 1{θ∈[θi+ε,θi+h+ε]} →
1{θ∈[θi+ε,θi+ε]} = 0 almost everywhere. Likewise, for h→ 0, 1{θ∈[θi−ε,θi+h−ε]} → 1{θ∈[θi−ε,θi−ε]} =

0 almost everywhere. Thus, |1{θ∈[θi+ε,θi+h+ε]}−1{θ∈[θi−ε,θi+h−ε]}| → 0, and |1{θ∈[θi+ε,θi+h+ε]}−
1{θ∈[θi−ε,θi+h−ε]}| ≤ 1. Thus, by Lebesgue’s dominated convergence theorem, limh→0 |H(θi +

h, ñ(·))−H(θi, ñ(·))| = 0.
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