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Abstract

We study the classical problem of raising capital under asymmetric information. Following

Myers and Majluf (1984), we consider firms endowed with assets in place and riskier growth

opportunities. When asymmetric information is concentrated on assets in place (rather than

growth opportunities), equity-like securities are more likely to be optimal. In contrast, when

asymmetric information falls on growth options, debt is optimal. Intuitively, this happens

because when the asset with greater volatility is less affected by asymmetric information, issuing

a security with greater exposure to upside potential (such as equity) can be less dilutive than

issuing a security lacking such exposure (such as debt). Our results suggest that equity is more

likely to dominate debt for younger firms with larger investment needs, endowed with riskier,

more valuable growth opportunities. Thus, our model can explain why high-growth firms may

prefer equity over debt, and then switch to debt financing as they mature.
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When outside investors have less information than insiders on the value of the securities issued

by a firm, existing shareholders are exposed to value dilution due to mispricing. In a classic paper,

Myers and Majluf (1984) suggest that, under these circumstances, firms that have greater exposure

to asymmetric information can reduce mispricing by issuing debt rather than equity. The usual

rationale behind this intuition, known as the “pecking order theory,” is that debt, by virtue of

being senior to equity, is less sensitive to private information, limiting dilution (Myers, 1984).

Nachman and Noe (1994) show that the original Myers and Majluf intuition obtains only under

special conditions regarding how the insiders’ private information affects firm value. Debt emerges

as the solution to an optimal security design problem, for any level of capital raised, if and only if the

private information held by firm insiders orders firm-value distributions by Conditional Stochastic

Dominance (CSD), a condition that is considerably stronger than First Order Stochastic Dominance

(FOSD).1

We first study the optimal security design problem of Nachman and Noe (1994) in a more

general setting, when distributions satisfy FOSD but fail CSD. We find that, when a certain “low-

information-cost-in-the-right-tail” condition holds, debt is optimal when the firm needs to raise

low levels of capital, but “equity-like” securities — such as convertible debt — emerge as optimal

securities when the firm must raise larger amounts of capital. In addition, raising capital by issuing

warrants can be optimal for firms with pre-existing debt, a situation not considered in Nachman

and Noe (1994).

The intution for our results is as follows. First, firms with low investment needs can raise

required funds by issuing securities backed only by left-tail cash flows, such as debt, limiting expo-

sure to dilution. For larger investment needs, firms need to pledge their right-tail cash flows to new

investors. In this case, when the “low-information-cost-in-the-right-tail” condition holds, firms can

limit dilution by issuing equity-like securities, such as convertible debt. In addition, if a firm has

debt in its capital structure that was issued earlier, the left-tail cash flow has already been pledged,

and the firm will raise required capital by issuing only warrants.

Our security design results do not speak directly to the traditional pecking order theory, the

choice of debt over equity, which is at the center of much of current theoretical and empirical

research.2 Building on Myers and Majluf (1984), we then study a traditional real-options specifi-

cation where firms are endowed with a portfolio of assets in place and riskier growth opportunities.

Growth options and assets in place are both characterized by lognormal distributions, and firm

insiders have private information on the mean of the distributions, while variances are common

knowledge.3 We find that when the asymmetric information is concentrated on the assets in place,

1Intuitively, CSD requires that private information orders the conditional distributions in the right tail by FOSD,
for all possible truncations. The Statistics and Economics literature uses the term Hazard Rate Ordering to refer to
CSD.

2Note that equity is never a solution of the optimal security design problem.
3While Myers and Majluf (1984) do not provide an explicit model that supports the pecking order, they clearly

invoke lognormality as a critical part of their argument: “Option pricing theory tells us that ∆D will have the same
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equity-like securities are more likely to be optimal. When the asymmetric information falls on the

growth options, debt is optimal.

Our results depend on the different sensitivities of debt and equity to the value of a firm’s

assets. Debt gives investors maximum exposure to the downside risk, the “left tail”of the firm-

value distribution, with no exposure to a firm’s upside potential, its “right tail.”In contrast, equity

gives investors exposure to both downside risk and upside potential of the firm. Our paper exploits

the fact that the relative dilution of debt and equity depends crucially on the “location” of the

exposure to asymmetric information in the firm-value distribution. When asymmetric information

is more pronounced in the right tail, as implied by the CSD condition in Nachman and Noe (1994),

firms limit dilution by issuing a security that maximizes payoff to investors in the left tail, such

as debt. In contrast, when asymmetric information is less severe in the right tail firms can limit

dilution by issuing equity.

The relative dilution of debt and equity depends on the relative exposure to asymmetric infor-

mation of the firm’s assets and their volatilities. The exposure to asymmetric information in the

tails of the firm-value distribution is driven by the exposure to asymmetric information of the asset

with greater volatility. Thus, when the asset that has greater risk —the growth opportunity—

is less affected by asymmetric information, the low-information-cost-in-the-right-tail condition will

be satisfied, making equity potentially less dilutive than debt. In contrast, when the asymmetric

information falls on the growth opportunity, equity is more sensitive to asymmetric information,

making debt optimal. This implies that, contrary to ordinary intuition, the relative dilution of debt

and equity is not driven by the overall level of asymmetric information affecting a firm, but rather

by the composition of its assets and their relative exposure to asymmetric information.

Consider the case where firm value, the sum of assets in place and growth options, is log-

normally distributed, as Myers and Majluf (1984) suggest, where the single source of asymmetric

information is the difference in the means of the distributions. In this case, we show that FOSD

implies CSD, and thus debt is optimal, as shown by Nachman and Noe (1994). We depart from

this setting by assuming that both assets in place and (riskier) growth opportunities are individ-

ually distributed as lognormal random variables, and each have different exposures to asymmetric

information. Our model breaks the link between FOSD and CSD, making convertible debt optimal

and equity potentially less dilutive than debt.4

Our model allows us to identify economically relevant scenarios where Myers and Majluf’s

pecking order can be reversed, and to characterize such scenarios. We show that, consistent with

empirical observations, deviations from the pecking order are more likely to occur in the case of

young firms, endowed by risky growth opportunities requiring large capital infusions. Financing

sign as ∆E, but that its absolute value will always be less” (pages 207–208), and “Our proof that debt dominates
equity uses the standard option-pricing assumption that percentage changes in value are lognormally distributed with
a constant variance rate known by everyone” (page 209).

4The key property that we exploit is that while CSD holds individually for single random variables, that condition
may very well not be satisfied by the sum of such random variables.
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with new equity issues is also more likely when firms already have debt outstanding in their capital

structure. Finally, our analysis implies that deviations from the pecking order may occur more

generally in firms endowed with a portfolio of heterogeneous assets if the more volatile assets are

also less affected by asymmetric information. Our model produces other cross-sectional implications

that we summarize in Section 6.

Our paper belongs to the ongoing research on firm financing under asymmetric information

building on the seminal work by Myers and Majluf (1984) and Myers (1984) discussed above.

Subsequent research focuses on different aspects of the security design problem. DeMarzo and

Duffie (1999) consider the ex-ante security design problem faced by a firm before learning its private

information, rather than the interim security design problem (that is, after becoming informed)

studied by Nachman and Noe (1994). DeMarzo (2005) considers both the ex-ante and the interim

security design problems, and examines both the question of whether to keep multiple assets in a

single firm (pooling) and the priority structure of the securities issued by the firm (tranching).5

Our paper differs from this literature in several ways. First, and most importantly, in our paper

we only require FOSD and, thus, our distributions can violate conditions posited in the previously

mentioned literature, e.g., the uniform worst case condition of DeMarzo and Duffie (1999), or MLRP

in DeMarzo, Kremer, and Skrzypacz (2005). Second, as in Myers and Majluf (1984) and Nachman

and Noe (1994), we constrain the firm to raise a fixed amount of capital, which typically leads to

pooling rather than separating equilibria. In contrast, in DeMarzo and Duffie (1999) issuers can

separate in the interim security issuance stage by using retention as a signal (in the spirit of Leland

and Pyle, 1977).

Other closely related papers include Chakraborty and Yılmaz (2011), which shows that if in-

vestors have access over time to noisy public information on the firm’s private value, the dilution

problem can be costlessly avoided by issuing securities having the structure of callable, convertible

bonds. Chemmanur and Fulghieri (1997) argue that warrants may be part of the optimal security

structure in a signaling game. Chakraborty, Gervais, and Yılmaz (2011) examine the optimal se-

curity design problem in the simultaneous presence of informed and uninformed investors that are

exposed to the winner’s curse in the context of an IPO (as in Rock, 1986). In a vein similar to ours,

the paper finds that the optimal security depends on whether the information difference (between

the two classes of investors) is located in the left or the right tail of the firm-value distribution.6

There are several other papers that challenge Myers and Majluf (1984) and Myers (1984) by

extending their framework in various ways.7 These papers derive a wide range of financing choices,

5DeMarzo, Kremer, and Skrzypacz (2005) and Che and Kim (2010) examine the security design problem in the
context of auctions of assets with informed buyers, and provide conditions where the revenue maximizing security for
an uninformed issuer may be either debt or equity.

6Recent work (Yang and Zeng, 2018; Daley, Green, and Vanasco, 2017; Yang, 2018) looks at the interactions of
security design, information acquisition and/or credit ratings. Hebert (2018) establishes optimality of debt in the
context of moral hazard. Malenko and Tsoy (2018) study security design when investors are ambiguity averse.

7While we focus only on papers that study informational frictions, moral hazard considerations are also important
drivers of capital structure choices, i.e., DeMarzo and Fishman (2007), Biais, Mariotti, Plantin, and Rochet (2007).
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which allow for signaling with costless separation that can invalidate the pecking order ( e.g.,

Brennan and Kraus, 1987; Noe, 1988; Constantinides and Grundy, 1989).8 Cooney and Kalay

(1993) relax the assumption that projects have a positive net present value. Boot and Thakor

(1993), Fulghieri and Lukin (2001), and recently Yang (2018) and Yang and Zeng (2018), relax

the assumption that the informational asymmetry between a firm’s insiders and outside investors

is exogenous, and allow for endogenous information production. Dybvig and Zender (1991) study

the effect of optimally designed managerial compensation schemes, Hackbarth (2008) shows that

managers with risk perception bias or “overconfidence” have a reverse pecking order preference,

and Edmans and Mann (2018) look at the possibility of asset sales for financing purposes. Bond

and Zhong (2014) show that undervalued firms may prefer to execute a share repurchase before

proceeding with a seasoned equity offer, thus reducing its negative impact on its share price.

Strebulaev, Zhu, and Zryumov (2016) consider a dynamic model of the issuance decision, where

information asymmetry is reduced over time. In contrast to these papers, but in the spirit of Myers

and Majluf (1984), we consider a pooling equilibrium of a static model where the only friction is

asymmetric information between insiders and outsiders.

The remainder of this paper is organized as follows. We begin in Section 1 by providing a

simple example that illustrates the basic results of our paper and its underlying intuition. Section

2 presents the basic model. Section 3 considers the security design problem, where we provide

conditions under which convertible debt and warrants are the optimal securities. Section 4 studies

the drivers of the debt-equity choice. Section 5 studies the capital raising game when the firm has

pre-existing debt in its capital structure. In Section 6 we discuss the empirical implications of our

model. Section 7 concludes. All proofs are in the Appendix.

1 A Simple Example

The core intuition of the pecking order theory is typically illustrated via a pooling equilibrium with

two types of firms and a discrete state space. Table 1 presents such a simple numerical example.9

We consider two types of firms: good type, θ = G, and bad type, θ = B, where a firm’s type is

private information to its insiders. We assume that the two types of firms are equally likely in the

eyes of investors. At the beginning of the period, firms have assets in place and wish to raise capital

I to invest in a new growth opportunity. We focus on a pooling equilibrium such that, when raising

capital, the two types of firms issue the same security, so that investors do not update their priors

on the firms’ type when seeing the security issuance decision.

For reasons that will become apparent below, we assume that a firm’s end-of-period value, Zθ,

8Admati and Pfleiderer (1994) points out, however, that the conditions for a fully revealing signaling equilibrium
identified in these papers are rather restrictive.

9The numerical example of this section builds on the discussion in Nachman and Noe (1994), Section 4.3.
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for θ ∈ {G,B}, is characterized by a distribution with three possible outcomes Zθ ∈ {z1, z2, z3}.10

To fix ideas, we assume that states z1 and z2 are relevant for the value of assets in place, while

state z3 is relevant for the value of the growth opportunity. In particular, we assume that the

end-of-period value of the assets in place is given by z1 = 10, z2 = z3 = 100. If the firm invests,

firm value becomes z1 = 10, z2 = 100, z3 = 300. Thus, exploitation of the growth opportunity adds

value to the firm only in state z3, increasing the end-of-period firm value in that state from 100 to

300. We set the investment amount to I = 60.

The probability of the three possible outcomes of Zθ depends on private information held by

the firm’s insiders, and is given by fθ ≡ {fθ1, fθ2, fθ3} for a firm of type θ. In our examples below,

we will assume that fG = {0.2, 0.4, 0.4} and fB = {0.3, 0.4 − x, 0.3 + x}, and we will focus in the

cases x = 0.02 and x = 0.08 for the discussion.11 Note that the presence of the growth opportunity

has the effect of changing the distribution of firm value in its right tail, and that the parameter x

affects the probability on the high state, z3, relative to the middle state, z2, for the type-B firm.

Consider first the case where x = 0.08, so that fB = {0.3, 0.32, 0.38}. Firm values for the good

and bad types are given by E[ZG] = 162 and E[ZB] = 149, with a pooled value equal to 155.5.

Firms can raise the investment of 60 to finance the growth opportunity by issuing a fraction of

equity equal to λ = 0.386 = 60/155.5. Hence, under equity financing, the initial shareholders of a

firm of type-G retain a residual equity value equal to (1 − 0.386)162 = 99.5. The firm could also

raise the required capital by issuing debt, with face value equal to K = 76.7. In this case debt is

risky, with payoffs equal to {10, 76.7, 76.7}, and it will default only in state z1. The value of the

debt security when issued by a type G firm is DG = 63.3, and when issued by a type-B firm is

DB = 56.7, with a pooled value of 60, since the two types are equally likely. This implies that

under debt financing the shareholders of a type-G firm will retain a residual equity value equal to

E[ZG]−DG = 98.7 < 99.5, and equity is less dilutive than debt, reversing the pecking order.

The role of the growth opportunity in reversing the pecking order can be seen by considering

the following perturbation of the basic example. Now set x = 0.02, so that fB = {0.30, 0.38, 0.32}.
In the new example the growth opportunity is relatively less important for a type-B firm than in

the base case. Note that this change does not affect debt financing, because debt is in default only

in state z1. Therefore the change in x only affects equity dilution. In the new case, E[ZB] = 137,

lowering the pooled value to 149.5. Now the firm must issue a larger equity stake, λ = 0.401 =

60/149.5, and thus existing shareholders’ value is now equal to (1−0.401)162 = 97.0 < 98.7. Thus,

equity financing is now more dilutive than debt financing, restoring the pecking order.

The reason for the change in the relative dilution of debt and equity rests on the impact of

asymmetric information on the right tail of the firm-value distribution. In the base case, for

10Note that, for binomial distributions, FOSD implies CSD, which, from Nachman and Noe (1994), implies that
debt is the optimal security.

11Table 1 considers all cases x ∈ (0, 0.1). We remark that x ≤ 0.1 is necessary to maintain first-order stochastic
dominance.
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x = 0.08, asymmetric information has a modest impact on the growth opportunity (since fG3 −
fB3 = 0.02) relative to the middle of the distribution (since fG2 − fB2 = 0.08), whose impact is

determined by the exposure of the assets in place to asymmetric information. Thus, firms of type G

can reduce dilution by issuing a security that has greater exposure to the right tail of the firm-value

distribution, such as equity, rather than debt, which lacks such exposure. In contrast, in the case of

x = 0.02, asymmetric information has a more substantial impact on the growth opportunity and,

thus, on the right tail relative to the middle of the distribution (since now we have fG3−fB3 = 0.08

and fG2 − fB2 = 0.02) making equity more mis-priced.

A second key ingredient of our example is that the firm is issuing (sufficiently) risky debt to

make dilution a concern. If debt is riskless, or nearly riskless, the pecking order would hold. To

illustrate this, we can assume z1 = 10 and set I = 10. At the lower level of investment, the firm can

issue riskless debt and avoid any dilution altogether. Similarly, for investment needs sufficiently

close to I = 10, debt has little default risk and the potential mispricing will be small. In contrast,

for sufficiently large investment needs the firm will need to issue debt with non-trivial default risk,

creating the potential for a reversal of the pecking order.

Finally, note that in the special case in which fB ≡ {0.3, 0.3, 0.4} there is no asymmetric

information at all in the right tail (that is, for z3 = 300). In this case, type-G firms would in fact

be able to avoid dilution altogether by issuing securities that load only on cash flows in the right

tail, such as warrants.

The intuition behind the simple example presented in this section carries over to the more

general settings studied below. In Section 2.3 we introduce a condition, which we refer to as “low-

information-costs-in-the-right-tail,” that corresponds to the case with x > 0.05 in the example.

This condition is novel in the literature and it is critical to generate reversals of the pecking order.

In Section 2.4 we introduce a bi-variate real-options model; we will show that adding a second

source of uncertainty to the firm-value distribution will have similar properties as moving from the

binomial to the trinomial structure of the simple example. In Section 4.1 we will decompose the

firm-value distribution into three regions that correspond to the trinomial structure of our example.

2 The Basic Model

2.1 The Capital Raising Game

We study a one-period model with two dates, t ∈ {0, T}. At the beginning of the period, t =

0, a firm wishes to raise a certain amount of capital, I, that needs to be invested in the firm

immediately.12 We interpret the capital raised I as representing the amount of capital needed by

12Following Nachman and Noe (1994), we do not explicitly model the reason for this capital requirement. The
investment requirement I may reflect, for example, a new investment project that the firm wishes to undertake, as
discussed in Section 4. Also note that, in the spirit of Myers and Majluf (1984), we rule out the possibility that firms
finance their growth opportunities separately from the assets in place, i.e., by “project financing.”
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the firm on top of internally available funds, if any.13 We initially assume that the firm is all

equity financed, we will later study the effect of the presence of pre-existing debt in the firm capital

structure at t = 0. Firm value at the end of the period, t = T , is given by a random variable Zθ.

There are two types of firms: “good” firms, θ = G, and “bad” firms, θ = B, which are present

in the economy with probabilities p and 1 − p, respectively. A firm of type θ is characterized by

its density function fθ(z) and by the corresponding cumulative distribution function Fθ(z), with

θ ∈ {G,B}. Because of limited liability, we assume that Zθ takes values on the positive real line.

For ease of exposition, we will also assume that the density function of Zθ satisfies fθ(z) > 0 for

all z ∈ R+. In addition, we assume type-G firms dominate type-B firms by first-order stochastic

dominance.

Definition 1 (FOSD). The distribution FG dominates the distribution FB by (strong) first-order

stochastic dominance if FG(z) ≤ (<)FB(z) for all z ∈ R++.

The stronger property of Conditional Stochastic Dominance, CSD, plays a crucial role in the

security design problem, as argued in Nachman and Noe (1994).

Definition 2 (CSD). We will say that the distribution FG dominates the distribution FB by

conditional stochastic dominance if FG(z|z′) ≤ FB(z|z′) for all z′ ∈ R+ and z ≥ z′, where

Fθ(z|z′) ≡
Fθ(z + z′)− Fθ(z′)

1− Fθ(z′)
.

By setting z′ = 0, it is easy to see that CSD implies FOSD. Note that CSD can equivalently be

defined by requiring that the truncated random variables [Zθ|Zθ ≥ z̄], with distribution functions

(Fθ(z)− Fθ(z̄))/(1− F (z̄)), satisfy FOSD for all z̄.14 In addition, Nachman and Noe (1994) show

that CSD is equivalent to the condition that the ratio (1 − FG(z))/(1 − FB(z)) is non-decreasing

in z for all z ∈ R+ (see their Proposition 4). Thus, loosely speaking, CSD implies that the set of

payoffs in the right tail of the firm-value distribution are always more likely to occur for a type-G

firm relatively to a type-B firm.15

Firms raise the amount I by seeking financing in capital markets populated by a large number of

competitive, risk-neutral investors. Capital markets are characterized by asymmetric information

in that a firm’s type, θ ∈ {G,B} is private information to its insiders. We assume that firms always

find it optimal to issue securities and raise I, rather than foregoing the investment opportunity.

13Note that, in the spirit of Myers and Majluf (1984), in our model firms would first use all internally available
funds before raising any capital from investors.

14We remark that the CSD (hazard-rate) ordering is weaker than the Monotone Likelihood Ratio order, which

requires [ZG|ZG ∈ (z, z̄)]
fosd

≥ [ZB |ZB ∈ (z, z̄)] for all z and z̄; see equation (1.B.7) and Theorem 1.C.5 in Shaked and
Shanthikumar (2007).

15Referring back to the example in Section 1, it is easy to verify that if x ≤ 0.05 the type−G distribution not only
dominates the type−B in the first−order sense, but also in the CSD sense. A necessary condition for the distributions
in the example to not satisfy CSD is that x > 0.05.
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We make this assumption to rule out the possibility of separating equilibria where type-B firms

raise capital, I, while type-G firms separate by not issuing any security. Finally, the realization of

the random variable Zθ is observable and contractible.

When insiders have private information, firms will typically issue securities at prices that diverge

from their symmetric information values. Under these circumstances, better-quality firms will find

it desirable to raise capital by issuing securities that reduce the adverse impact of asymmetric

information. To fix ideas, let S be the set of admissible securities that the firm can issue to raise

the required capital I. As is common in this literature (see, for example, Nachman and Noe (1994)),

we let S be the set of functions satisfying the following conditions:

0 ≤ s(z) ≤ z, for all z ≥ 0, (1)

s(z) is non-decreasing in z for all z ≥ 0, (2)

z − s(z) is non-decreasing in z for all z ≥ 0. (3)

Condition (1) ensures limited liability for both the firm and investors, while (2) and (3) are mono-

tonicity conditions that ensure absence of risk-less arbitrage.16 We define S ≡ {s(z) : R+ → R+; s(z)

satisfies (1), (2), and (3)} as the set of admissible securities.

We consider the following capital raising game. The firm moves first, and chooses a security,

s(z), from the set of admissible securities S. After observing the security, s(z), issued by the firm,

investors update their beliefs on firm type, θ, and form posterior beliefs, p(s) : S → [0, 1]. Given

their posterior beliefs on firm type, investors purchase the security issued by the firm at a price,

V (s). The value V (s) that investors are willing to pay for a security s(z) is equal to its expected

value, conditional on the posterior beliefs, p(s), that is:

V (s) = p(s)E[s(ZG)] + (1− p(s))E[s(ZB)]. (4)

Condition (4) implies that securities are fairly priced, given investors’ beliefs. If security s is

issued, capital V (s) is raised, and the investment project is undertaken. The payoff to the initial

shareholders for a firm of a type θ is given by

W (θ, s, V (s)) ≡ E[Zθ − s(Zθ)] + V (s)− I. (5)

The firm will choose the security to issue to finance the investment project by maximizing its payoff,

(5), subject to the constraint that the security is admissible and that it raises at least the required

funds, I. Let sθ(z) ∈ S be the security issued by a firm of type θ.

16See, for example, the discussion in Innes (1990). As pointed out in Nachman and Noe (1994), condition (2)
is critical to obtain debt as an optimal security. In absence of (2), the optimal contract may have a “do or die”
component, whereby outside investors obtain all of the firm cash flow when it falls below a certain threshold, and
nothing otherwise.
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2.2 Equilibrium

Following the literature, we will adopt the notion of Perfect Bayesian Equilibrium, PBE, as the

solution concept for the capital raising game.

Definition 3 (Equilibrium). A Perfect Bayesian Equilibrium (PBE) of the capital raising game

is a collection {s∗G(z), s∗B(z), p∗(s), V ∗(s)} such that: (i) s∗θ(z) maximizes W (θ, s, V ∗(s)) subject to

the constraint that s ∈ S and V ∗(s) ≥ I, for θ ∈ {G,B}, (ii) securities are fairly priced, that is

V ∗(s) = p∗(s)E[s(ZG)] + (1 − p∗(s))E[s(ZB)] for all s ∈ S, and (iii) posterior beliefs p∗(s) satisfy

Bayes rule whenever possible.

We start with a characterization of the possible equilibria in the capital raising game. The

following proposition mimics Proposition 1 of Nachman and Noe (1994) and restricts our attention

to pooling equilibria.

Proposition 1. Let Fθ satisfy strong FOSD. No separating equilibrium exists in the capital rais-

ing game. In addition, in a pooling equilibrium with s∗G = s∗B = s∗, the capital raising game is

uninformative, p(s∗) = p, and the financing constraint is met with equality

I = pE[s(ZG)] + (1− p)E[s(ZB)]. (6)

This equilibrium is supported by the out-of-equilibrium belief that if investors observe the firm issuing

a security s′ 6= s∗ they believe that p(s′) = p (passive conjectures).

Proposition 1 follows from the fact that, with two types of firms only, a type-B firm always has

the incentive to mimic the behavior of a type-G firm (i.e., to issue the same security). Condition (2)

and strong FOSD together imply that securities issued by a type-G firm are always priced better by

investors than those issued by a type-B firm, and a type-B firm is always better-off by mimicking

type-G actions. This also implies that, in equilibrium, the type-G firm is exposed to dilution due

to the pooling with a type-B firm, and the corresponding loss of value can be limited by issuing

only the securities needed to raise the capital outlay I.

Proposition 1 allows us to simplify the exposition as follows. Since both types of firms pool

and issue the same security s(z), and the capital constraint (6) is met as equality, the payoff to the

original shareholders of a type-G firm, in equation (5), becomes

W (G, s, V (s)) = E[ZG]− I − (1− p)Ds, (7)

where the term

Ds ≡ E[s(ZG)]− E[s(ZB)] (8)

represents the mispricing when security s ∈ S is used, which is the cause of the dilution suffered

by a firm of type G.
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Since, from Proposition 1, type-B firms will always pool with type-G firms, firms of type G will

find it optimal to issue a security that minimizes dilution Ds, that is

min
s∈S

Ds (9)

subject to the financing constraint (6).

2.3 Asymmetric Information in the Right Tail

Nachman and Noe (1994) show that the solution to the optimal security design problem (9) is

standard debt for all investment levels I (and, thus, the pecking order obtains) if and only if the

distribution FG dominates FB by (strong) CSD. The aim of our paper is to study (and characterize)

economic environments where private information orders firm-value distributions Fθ by FOSD, but

not by CSD, leading to potential violations of the pecking order. We will show below that the

properties of optimal security (and failures of the pecking order) hinge critically on the impact of

asymmetric information on the right tail of the firm-value distributions Fθ.

The effect of asymmetric information on firm-value distributions can be characterized by a

function H(z), defined as

H(z) ≡ FB(z)− FG(z)

1− F (z)
, (10)

where F (z) = pFG(z) + (1− p)FB(z) denotes the mixture of the distributions of the good and bad

types. Note that H(z) is increasing in z for all z ∈ R+ if and only if the distribution FG dominates

FB by CSD.17

The function H(z) measures the incremental cost to a type-G firm, relative to a type-B firm,

of promising to investors an extra dollar in state z.18 Thus, the function H(z) determines the cost

due to asymmetric information for a firm of type G to pay cash flows in the right tail, and will play

a critical role in our analysis (see Section 3).

While FOSD dictates the monotonicity properties of H(z) on the left tail of firm-value distri-

butions, this is not the case for its right tail. In particular (as noted above) the function H(z) is

increasing in z, for all z ∈ R+, if and only if CSD holds. This means that, under CSD, informa-

tion asymmetries are progressively more severe for higher realizations of the firm-value distribution

(and are most severe in its right tail), making debt an optimal security. If, in contrast, information

asymmetries are relatively less severe in the right tail of the firm-value distributions, the function

H(z) is non-monotonic. In this case, it may indeed be relatively cheaper for firms of type G to pay

cash flows at high realizations of z, leading to potential violations of the pecking order.

17For distributions endowed with density functions, monotonicity of H(z) is equivalent to requiring that the hazard
rates hθ(z) ≡ fθ(z)/(1− Fθ(z)) satisfy hG(z) ≤ (<)hB(z) for all z ∈ R+; see Ross (1983) for further discussion.

18For monotonic securities, an extra dollar paid in state z means that investors will be paid an extra dollar also in
all states z′ > z.
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To characterize the impact of the information cost in the right tail of the firm-value distributions,

Fθ, we introduce the following definition, which will play a key role in our analysis.

Definition 4 (h-ICRT). We will say that distribution FG has information costs in the right tail

of degree h (h-ICRT) over distribution FB if limz↑∞H(z) ≤ h.

We denote NICRT (no-information-costs-in-the-right-tail) as the case where h = 0. The relationship

between FOSD, CSD and h-ICRT may be seen by noting that for two distributions, {FG, FB}, that

satisfy FOSD, there may exist a sufficiently low h ∈ R+ such that the h-ICRT property holds,

while CSD fails. Thus, intuitively, distributions that satisfy the h-ICRT condition fill part of the

space of distributions that satisfy FOSD but do not satisfy the CSD condition. In particular, all

distributions that satisfy Definition 4 for h = 0 (NICRT) will fail to satisfy the CSD condition.

2.4 A Real Options Model

In this section we introduce an explicit parametric specification of Myers and Majluf (1984) where

firms are endowed with both assets in place and growth options. Our aim is to identify plausible

economic environments that generate firm-value distributions that satisfy the NICRT condition

and, thus, can lead to reversals of the pecking order. This parametric specification will be the base

of the numerical examples and comparative statics derivations in Section 4.2. Furthermore, the

parametric specification allows us to link some of the conditions, such as NICRT, to potentially

measurable firm attributes, such as the volatility of the firm’s assets in place and growth options,

and their relative exposure to asymmetric information. This will allow us to make predictions on

the circumstances where reversals of the pecking order are likely to be observed empirically.

We represent the firm as a collection (a portfolio) of assets, where the end-of-period firm value

Zθ is the combination of two lognormal random variables, Xθ and Yθ. This lognormal specification

closely mirrors the one invoked in the pecking-order argument of Myers and Majluf (1984). By

making the investment I at t = 0, the firm generates a new “growth option” that can be exercised

at the future date T , with resulting firm payoffs at date T :19

Zθ = Xθ + max(Yθ − IT , 0). (11)

We interpret the random variable Xθ as representing the value of the firm’s assets in place at time T ,

and max(Yθ−IT , 0) as the payoff from the growth opportunity that the firm obtains from investing

I at t = 0. To exercise this growth opportunity, the firm must make an additional investment

IT at date T , where T represents the time-to-maturity of the new investment opportunity. The

19An earlier version of the paper also included the specification Zθ = max(Xθ, Yθ), where the firm has the option
to exchange two assets, Xθ and Yθ at the end of the period (“rainbow” or exchange option case), as in Stulz (1982),
which is slightly more tractable. Details are available upon request.
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additional investment IT is financed by rasing new capital at T .20

As in Myers and Majluf (1984), we model asymmetric information by assuming that the firm

insiders have private information on the means of the distributions, while their variances are com-

mon knowledge. Letting E[Xθ] = X̄θ and E[Yθ] = Ȳθ, we assume X̄G ≥ X̄B and ȲG ≥ ȲB, with

at least one strict inequality. These assumptions ensure FOSD, and allow for scenarios in which

the NICRT condition holds. To measure the asymmetric information costs associated with the

two drivers of firm value, we define cx ≡ X̄G − X̄B and cy ≡ ȲG − ȲB. The variables cx and cy

measure the exposure to asymmetric information of the assets in place and the growth opportunity,

respectively.

We also assume that the growth option is of the European type.21 Note that, by setting IT = 0,

this specification nests the case of a multi-divisional firm, where Zθ = Xθ + Yθ, and I represents

an investment need at t = 0.

The following proposition provides conditions at which CSD and NICRT obtain in this specifi-

cation.

Proposition 2. Let Xθ and Yθ be two lognormal random variables with E[Xθ] = X̄θ, and E[Yθ] =

Ȳθ. Without loss of generality, assume that σy > σx. Then:

1. If Zθ = Xθ, that is, Zθ has a lognormal distribution, then FG dominates FB by CSD if and

only if X̄G > X̄B.

2. If cy ≡ ȲG − ȲB = 0, and cx ≡ X̄G − X̄B > 0, then the NICRT condition holds.

Proposition 2 allows us to compare our model with Myers and Majluf (1984). Part (i) of the

proposition confirms the conclusions of the original Myers and Majluf (1984) paper: when firm value

is characterized by a single lognormal random variable (that is, under Black and Scholes (1973)

conditions) both FOSD and CSD hold and debt is the optimal security. Part (ii) of Proposition

2 shows that the introduction of a second source of uncertainty can break the connection between

FOSD and CSD that is assured with lognormal distributions. The introduction of a second state

variable is akin to moving from the 2-state model to the 3-state model in Section 1. The proposition

also shows that, in the limiting case where is no asymmetric information on the high volatility asset

Yθ, our new NICRT condition is always satisfied. These violations of CSD condition lead to the

deviations of the pecking order that we describe in Sections 3 and 4.

20Given our assumption that at date T there are no capital markets imperfections, firms raise the needed investment
amount IT if Yθ > IT . Alternatively, we could assume the random variables Xθ and Yθ are actual cash payments,
in which case the firm will certainly exercise the call option max(Yθ − IT , 0) if it is in-the-money. We note that the
parameter IT does not play a role in our analytical results, but it affects our numerical examples: it moves mass to
the right-tail of the payoff distribution.

21This eliminates issues related to the optimal exercise of the growth option, which we leave for future research
(see, e.g., Morellec and Schürhoff, 2011, for a model with endogenous investment timing).
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Proposition 2 shows that simple deviations from the univariate lognormal model of Myers and

Majluf (1984) can generate environments where the CSD condition does not hold and, thus, vi-

olations of the pecking order may occur. Importantly, Part (ii) of Proposition 2 suggests that

second moments of firm-value distributions play a critical role in generating violations of CSD. For

Gaussian random variables (such as lognormal distributions) second moments of the distributions

characterize tail behavior. This implies that the joint assumptions that Yθ has higher volatility,

σy > σx, and it suffers no information costs, cy = 0, are sufficient to guarantee that the NICRT

condition holds. We conclude by emphasizing that, while the NICRT condition is sufficient to

generate non-monotonic H(z) functions, it is by no means necessary, as the numerical solutions

in Section 3 will demonstrate. In particular, we will show that violations of CSD, and deviations

from the pecking order, may occur when the asset that has relatively lower exposure to asymmetric

information also has greater volatility, that is when cx is large relative to cy.

3 Optimal Security Design

In this section we solve the general optimal security design problem (9), and we provide conditions

under which equity-like securities, such as convertible debt and warrants, emerge as optimal secu-

rities. Our analysis closely follow Nachman and Noe (1994), which we extend to the case where

the CSD condition does not hold.

Following Nachman and Noe (1994), the optimal security design problem (9) can be expressed

as

min
s∈S

∫ ∞
0

s′(z)(FB(z)− FG(z))dz, (12)

subject to ∫ ∞
0

s′(z)(1− F (z))dz = I. (13)

The Lagrangian to the above problem is

L(s′, γ) =

∫ ∞
0

s′(z)(FB(z)− FG(z)− γ(1− F (z)))dz (14)

=

∫ ∞
0

s′(z)(1− F (z))(H(z)− γ)dz. (15)

It is easy to verify that linearity of the security design problem implies that a solution s∗ must

satisfy, for some γ ∈ R+,

(s∗)′(z) =


1 if H(z) < γ;

[0, 1] if H(z) = γ;

0 if H(z) > γ.

(16)

Note that the value of the Lagrangian multiplier γ depends on the tightness of the financing
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constraint (13) and, thus, on the level of the required investment, I, with ∂γ/∂I > 0. From

H(0) = 0 and FOSD the optimal security must satisfy (s∗)′(z) = 1 in a right neighborhood of

z = 0. This means that an optimal security will always have a (possibly small) straight-debt

component.22 The importance of this straight-debt component (that is, the face value of the debt)

will depend on the size of the investment, I (since it affects the Lagrangian multiplier γ), as well

as on the particular functional form for H(z).

The overall shape of the optimal security for a greater value of z depends on the monotonicity

properties of the function H(z) (and, thus, on the extent of asymmetric information in the right

tail of the firm-value distribution). It is characterized in the following proposition.

Proposition 3. Consider the security design problem in equations (12)–(13).

(a) If the distribution FG conditionally stochastically dominates FB, then straight debt is the

optimal security (Nachman and Noe, 1994).

(b) If the NICRT condition holds, and H ′(z∗) = 0 for a unique z∗ ∈ R+, then convertible debt is

optimal for all investment levels I.

(c) If limz↑∞H(z) = h̄ > 0 and there exists a unique z∗ ∈ R+ such that H ′(z∗) = 0, then there

exists an Ī such that for all I ≤ Ī straight debt is optimal, whereas for all I ≥ Ī convertible

debt is optimal.

Part (a) of Proposition 3 assumes CSD. In this case, monotonicity of the function H(z) implies

that there is a z∗ below which (s∗)′(z) = 1, for all z ≤ z∗, with (s∗)′(z) = 0 otherwise, yielding

straight debt as an optimal security. The intuition for the optimality of straight debt follows

from Nachman and Noe (1994): firms of better types prefer to have the maximum payout to

investors for low realizations of z, that is in the (right) neighborhood of z = 0, where the impact

of asymmetric information is relatively weaker, and then to limit the payout to investors for high

realizations of z, where the impact of asymmetric information is always higher (under CSD). These

considerations, together with the requirement that the security is monotonic, lead to the optimality

of debt contracts.

Table 2 presents numerical examples, following the parametric specification introduced in Sec-

tion 2.4. Figure 1 plots the H(z) function in the left panels, and the optimal security in the right

panels, each row corresponding to each of the cases in Table 2. In all cases, we assume that p = 0.5,

σx = 0.3, σy = 0.6, ρ = 0.5, T = 5, and that IT = 50. Case A presents the case where the

asymmetric information is concentrated entirely in the high volatility asset, Y , which corresponds

to part (a) in Proposition 3. Namely, we set X̄G = X̄B = 100, ȲG = 250, ȲB = 150 and I = 100.

22Note, however, that as Proposition 4 below shows, this property hinges critically on the assumption that the firm
has no pre-existing debt.
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In this case, the H(z) function is monotone over its whole domain (see the top left graph in Figure

1). Thus, the optimal security is standard debt with a face value K = 138.8.

Part (b) of Proposition 3 provides conditions under which securities with equity-like components,

such as convertible debt, are optimal. The key driver of the optimal security choice is the size of the

informational costs in the right tail of the payoff distribution, measured by H(z). Under NICRT,

we have that, in the limit, H(z) = 0 and, thus, that the information costs suffered by a type-G

firm becomes progressively smaller as the firm value z increases. Part (b) of Proposition (3) shows

that, in this case, type-G firms can reduce their overall dilution by maximizing the payout to

investors in the right tail of the distribution, in addition to a neighborhood of z = 0. Increasing

the payoffs in the right tail, where information costs are now low due to NICRT, allows the firm to

correspondingly reduce the (fixed) payout in the middle of the distribution, where the information

costs are now relatively high. The optimal security has the shape of a convertible bond, where the

bond is convertible into 100% of equity with a lump-sum payment to original shareholders equal

to κ, which we will refer to as the “conversion price.”

Case B in Table 2 illustrates Part (b) of Proposition 3. Namely, we set ȲG = ȲB = 200,

X̄G = 150, X̄B = 50, and I = 120. In this case, the H(z) function is “hump-shaped” (see the

middle left graph in Figure 1). The NICRT condition holds, since the asymmetric information is

concentrated entirely in the low-volatility asset, X. Thus, the optimal security is a convertible debt

contract with face value K = 69.5 and conversion price κ = 593.4.23 As shown in Proposition 2

securities load in the lower-end of the payoffs, due to the usual Myers and Majluf (1984) intuition,

but also on upper-end of the payoff distribution, because of the NICRT property introduced in our

paper.

In part (c) of Proposition (3), neither CSD nor NICRT hold, since we have both a non-monotone

function H and the h-ICRT condition holds for h̄ > 0.24 The proposition shows that the size of

a project affects the financing choices of a firm: straight debt is optimal for low levels of I, while

convertible debt becomes optimal for large levels of the investment I. When investment needs are

low, the firm can finance the project by issuing only straight debt, a security that loads only in

the left tail of the distribution, where the information costs are the lowest. For greater investment

needs, under h-ICRT the firm finds it optimal to maximize its payout to investors in the right tail

of the distribution, as in part (b) of the proposition, issuing convertible debt.

23The values {K,κ} satisfy H(K) = H(κ) = γ.
24We note that the Proposition does not cover the case where H ′(z) may have more than one sign change. The

proof can be easily altered to consider this case: the optimal security will be similar to a structured product with
different tranches/call features.
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4 The Pecking (Dis)Order

In this section, we examine a special case of the capital raising game by restricting our attention

to two classes of securities, namely debt and equity. We consider this case explicitly because the

debt-equity choice problem has attracted so much attention in both the theoretical and empirical

corporate finance literature. Note that equity is never a solution to the optimal security design

problem (9), as its slope is always in the (0, 1) interval. It is however possible that equity is less

dilutive than debt in the cases where convertible securities are optimal, such as cases (b) and (c)

in Proposition 3.

In Section 4.1 we identify the key economic drivers of the debt-equity choice, and we relate them

to the example of Section 1. In Section 4.2 we study the debt-equity choice within the real-options

specification in Section 2.4. In particular, we show that the parameter configurations that make

convertible debt optimal in Section 3 mirror the ones that favor equity over debt.

4.1 The Debt-Equity Choice

To identify the key drivers of the relative dilution of debt and equity, note that the dilution costs

(8) associated with equity and debt are given by

DE = λ (E[ZG]− E[ZB]) , and (17)

DD = E[min(ZG,K)]− E[min(ZB,K)], (18)

respectively, where λ = I/E[Z], with E[Z] = pE[ZG] + (1-p)E[ZB] denoting the unconditional value

of the firm, and the parameter K represents the (smallest) face value of debt that satisfies the

financing constraint

I = pE[min(ZG,K)] + (1− p)E[min(ZB,K)]. (19)

The dilution of debt relative to equity can then be written as

DD −DE =

∞∫
0

(min(z,K)− λz) c(z)dz, (20)

where c(z) ≡ fG(z)-fB(z). Intuitively, the function c(z) is related to the cost due to asymmetric

information that are suffered by a firm of type-G, when pooling with a firm of type-B and issuing

a security with a payoff of $1 if the final firm value is z. Thus, if c(z) > 0 we will say that the

“information costs” for a type-G are positive, and that these costs are negative if c(z) < 0. The

function c(z) for our base-case values (see Table 3) is displayed in the top portion of Figure 2,

together with the payoffs of the debt, min(z,K), and equity, λz. Let ẑ and z̄ be defined by c(ẑ) = 0

and λz̄ = K.
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The relative dilution of debt and equity (20), assuming that z̄ > ẑ,25 can be further decomposed

as follows:

DD−DE = −
∫ ẑ

0
(λz−min(z,K))c(z)dz+

∫ z̄

ẑ
(min(z,K)−λz)c(z)dz−

∫ ∞
z̄

(λz−K)c(z)dz. (21)

The decomposition (21) reveals that the preference for a type-G firm of debt versus equity

financing depends on the relative importance of three regions that together concur to determine

the overall relative dilution of debt and equity. We note that these three regions are reminiscent of

the trinomial distribution considered in Section 1.

In the first “low-value” region information costs to a firm of good type are negative, c(z) ≤ 0,

and the payoff to equity is lower than the payoff to debt, λz < min(z,K), the first term in (21). In

this region, debt is less dilutive than equity because it has a higher payout than equity, but these

payouts have negative information costs. These effects echo the traditional intuition that type-G

firms have a preference to promise investors payouts in states of the world with low realizations of

firm value (the left-tail of the firm-value distribution) precisely because these states are relatively

less likely to occur to firms of good type.

In the second “intermediate-value” region debt still has higher payouts than equity, but now

type-G firms suffer a positive information cost, c(z) > 0, given by the second term in (21). In this

region dilution costs of equity are lower than those of debt because equity has a lower payoff than

debt and information cost are positive. The presence of this region, and its relative importance,

can generate a reversal of the pecking order.

The third and last region is a “high-value region,” where equity payoff is now greater than

debt in states of the world that are more likely to occur to a type-G firm, and thus carry positive

information costs, c(z) > 0, the third term in (21). In this region, which occurs for high payoff

realizations, debt is less dilutive than equity because equity has higher payout than debt and it has

a positive information cost for type-G firms. These effects echo again the traditional intuition that

type-G firms dislike to promise investors payouts in states of the world with high realizations of

firm value (the right-tail of the firm-value distribution) precisely because these states are relatively

more likely to occur for type-G firms.

The preference for debt over equity financing (the pecking order) depends on the relative impor-

tance of these three regions, i.e., the three terms in (21). In particular, equity dominates debt when

the advantages of equity financing originating from the intermediate region dominate the disad-

vantages determined by the low-value and high-value regions. Note that the relative importance of

these three regions depends crucially on the term c(z) and, thus, on how information asymmetries

affect the firm-value distributions (i.e., the location of the information asymmetry in the domain

of the firm-value distribution).

25In the case where z̄ ≤ ẑ it is straightforward to verify that debt dominates equity. In all the numerical examples
we have studied we have z̄ > ẑ.
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Intuitively, equity can be less dilutive than debt when asymmetric information is relatively

more pronounced in the center of the firm-value distribution, generating large values of c(z) in

the intermediate-value region, while it has a relatively smaller impact on either the left tail (the

low-value region) or the right tail (the high-value region) of the firm-value distribution. While

(strong) FOSD (always) induces a preference for debt financing, through its effect on the first term

in (21), the importance of the high-value region depends on the impact of asymmetric information

on the right tail of the distribution. If the third term in (21) is sufficiently small, or zero, which

can happen when the NICRT condition holds, a reversal of the pecking order may occur.

4.2 Cross-Sectional Predictions

We study the debt-equity choice problem of Myers and Majluf (1984) within the parametric speci-

fication introduced in Section 2.4. Because it is well known that real-options models of this nature

do not admit closed-form solutions, following existing literature (see, for example, Childs, Mauer,

and Ott, 2005; Gamba and Triantis, 2008, among many others) we study the problem numerically.

Our numerical solutions are centered on the base case reported in Table 3. In this base case,

asymmetric information is more severe on assets in place, where X̄G = 125 and X̄B = 75, rather

than the growth opportunity, where ȲG = 205 and ȲB = 195. In addition, we assume that assets

in place have lower return volatility than the growth opportunities, as in Berk, Green, and Naik

(2004), and we set σx = 0.3, σy = 0.6, T = 15 and ρ = 0. We let both types be equally likely,

p = 0.5. We highlight that under these parameters ZG does not dominate ZB in the conditional

stochastic dominance sense. In this base case specification, we set the initial investment amount to

be I = 100, and the investment at exercise of the growth option to be IT = 50.

The lower panel of Figure 2 plots the distributions, fθ(z), of Zθ, as well as the unconditional

distribution f(z) for our base case values. By direct inspection, it is easy to verify that the distri-

bution of firm value Zθ closely resembles a lognormal distribution, with the important difference

that the asymmetric information loads in the middle of the distribution, and to a lesser extent in

its right tail.26

Note first that the efficient outcome is for both types of firms to finance the project, since for

a type-G firm E[ZG] − I = 307.9 − 100 = 207.9 > 125 = X̄G, and for a type-B firm E[ZB] − I =

248.2 − 100 = 148.2 > 75 = X̄B. If the investment opportunity is taken, the value of the firm is

pE[ZG] + (1− p)E[ZB] = 278.1, where the values for the two types is given by E[ZG] = 307.9 and

E[ZB] = 248.2. It is easy to verify that issuing equity will require that the equity holders give up a

stake of λ = 0.360 = 100/278.1. In order to finance the project with debt, the firm needs to promise

bondholders a face value at maturity of K = 218.4. The value of the debt for a type-G and type-B

firm is E[min(ZG,K)] = 111.9 and E[min(ZB,K)] = 88.1, respectively. The dilution costs of equity

are DE = 0.36× (307.9− 248.2) = 21.5, whereas those of debt are DD = 111.9− 88.1 = 23.7, with

26Recall that if Zθ is log-normal (e.g. if Zθ = Xθ), then CSD holds and debt is the optimal security.
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a relative dilution DD/DE = 23.7/21.5 = 1.10. Thus, the type-G firm is exposed to lower dilution

by raising capital with equity rather than debt.27

The bottom portion of Table 3 and Figures 3–5 examine the impact of changes of some of the key

parameters in the base case on the relative dilution of debt and equity. These examples highlight

one of the new insights of our paper: the relative dilution of debt and equity financing is not driven

by the overall level of asymmetric information affecting a firm but by the relative exposure to

private information of each assets in a firm’s portfolio, their volatilities, and the firm’s investment

requirements. These example provide new and testable predictions on the cross-sectional variation

of firms’ capital raising choices.

4.2.1 Asymmetric Information and Dilution

The first set of examples focus on the effect of changes of the exposure to asymmetric information

of the assets in place relative to the growth opportunity. In order to do so, we let cx = X̄G − X̄B

denote the asymmetric information on the assets in place, and we let cy = ȲG − ȲB denote the

asymmetric information on the growth options. The base case has cx = 50 and cy = 10, so that

the information asymmetry is more significant for the assets in place than for the growth option.

In the first two examples in the lower panel of Table 3, we change the exposure to asymmetric

information in the assets in place to cx = 0 (letting X̄G = X̄B = 100), and to cx = 100 (letting

X̄G = 150 and X̄B = 50). When there is no information asymmetry about the assets in place, we

find that debt is significantly less dilutive than equity: DD = 0.7 versus DE = 3.5. This is in line

with our previous results, since when cx = 0 the CSD condition holds, and debt is optimal.

In the next two examples in the lower panel of Table 3, we change the exposure to asymmetric

information in the growth options to cy = 0 (letting ȲG = ȲB = 200), and to cy = 50 (letting

ȲG = 225 and ȲB = 175). The first case corresponds to a parametrization that satisfies the NICRT

condition from Section 2.3: lowering the asymmetric information in the right-tail of the firm value

distribution increases the relative dilution of debt (from 1.10 to 1.27). When we increase the

exposure to asymmetric information in the right tail, setting cy = 50, the dilution of debt relative

to equity drops to 0.76, making debt the preferred financing vehicle.

More generally, the impact of the relative exposure to asymmetric information of assets in

place and growth opportunities on debt and equity dilution is further studied in the top graph in

Figure 3. The pictures displays indifference lines where DD = DE , as a function of the exposure to

asymmetric information of the assets in place, cx, and the growth opportunity, cy, for three levels

of the volatility of the growth opportunity, σy ∈ {0.6, 0.7, 0.8}. In the region above the lines, we

27It is worthwhile to remark that the investment choices are individually rational when using either debt or equity.
To see this, note that in the case of equity financing the residual equity value for a type-G firm is equal to (1−0.36)×
307.9 = 197.1 > 125 = X̄G, and for a type-B firm it is equal to (1 − 0.36) × 248.2 = 158.9 > 75 = X̄B . In the case
of debt financing, the residual equity value for a type-G firm is equal to 307.9− 119.9 = 188 > 125 = X̄G, and for a
type-B firm it is equal to 248.2− 88.1 = 160.1 > 75 = X̄B .
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have that DD > DE and, hence, equity is less dilutive than debt and the reverse pecking order

obtains. In the region below the lines, we have that DD < DE and, hence, equity is more dilutive

than debt, and the usual pecking order obtains. These graphs reveal that equity is more likely to

be less dilutive than debt when the exposure to asymmetric information on the less volatile assets

in place, cx, is large and when the exposure to asymmetric information of the more volatile growth

opportunities, cy, is small. In addition, the parameter region where equity dominates debt becomes

larger when the volatility of the growth opportunity increases.

The bottom graph of Figure 3 examines the effect of a firm’s asset composition on dilution.

The graphs display the average values of assets in place and of the growth option (X̄, Ȳ ), where

X̄ = pX̄G + (1− p)X̄B and Ȳ = pȲG + (1− p)ȲB, for which the dilution costs of equity and debt

are the same (DE = DD) for different level of asymmetric information on asset cx ∈ {10, 25, 40}.
For pairs of (X̄, Ȳ ) below the lines debt is optimal, whereas equity is optimal above the lines.

These graphs reveal that equity is more likely to be less dilutive than debt when the growth

opportunities represent a larger component of firm value. In addition, the parameter region where

equity dominates debt becomes larger when the exposure to asymmetric information of assets in

place, cx, increases.

These comparative static results on the choice of debt versus equity mirror the security design

results showing that right-tail exposure to asymmetric information tends to make debt optimal,

whereas lack of such exposure makes equity-like securities the optimal financing instrument.

4.2.2 Asset Volatility and Investment Requirements

We consider now the effect of the volatility parameters, σx and σy, on the debt-equity choice. In

the next two examples in the lower panel of Table 3, we document that an increase of the volatility

of the assets in place to σx = 0.40 has the effect of reducing the dilution of debt relative to equity

from DD/DE = 1.10 to 1.01, while an increase of the volatility of the growth opportunity to

σy = 0.80 has the opposite effect of increasing the relative dilution of debt and equity to 1.53. The

increase in volatility of both the assets in place and the growth opportunity makes the right-tail

more important in both cases, with opposing effects on the relative dilution of debt and equity.

More generally, the top graph of Figure 4 plots the pairs of volatilities, (σx, σy), such that the

dilution costs of equity and debt are the same (i.e., DE = DD) for three levels of the investment cost

I ∈ {100, 110, 120}. For pairs of volatilities, (σx, σy), below the lines debt is optimal, whereas equity

is optimal above the lines. These graphs reveal that equity is more likely to be less dilutive than

debt when the volatility of assets in place is low, and when the volatility of growth opportunities

is large. In addition, the parameter region where equity dominates debt becomes larger when the

firm’s investment need, I, increases. The bottom panel in Figure 4 performs a similar exercise

changing both time to maturity and the initial investment, I, for different values of the assets in

place, X̄. Rather intuitively, higher time to maturity puts more mass on the right-tail of the payoff
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distribution, favoring equity. More assets in place, and/or lower investment requirements, I, on

the other hand, lower debt’s dilution relative to equity.

These examples show that equity is less dilutive than debt when the volatility of the growth

opportunities is sufficiently large relative to the volatility of the assets in place, and the asymmetric

information is concentrated in the assets in place. We note that the critical role played by the

relative volatilities of growth opportunities and assets in place was already discussed in Proposition

2, and our results of the optimality of equity mimic those in Proposition 3.

In the next to last set of examples in Table 3, we focus on the impact of the firm’s investment

requirements, I and IT on dilution. When we change the investment amount from I = 100 to

I = 80 we find that the relative dilution of debt is 0.95, which is lower than under our base case

parameters. The opposite occurs when we raise investment to I = 120, mirroring the results from

part (c) of Proposition 3. A decrease of the future investment requirement, from IT = 50 to IT = 0,

reduces the dilution of debt relative to equity to 0.88, restoring the pecking order. In contrast, an

increase of the subsequent investment to IT = 100 worsens the relative dilution of debt and equity,

which is now equal to 1.18. An increase of the subsequent investment requirements IT , increases

the “exercise price” of the growth option and it has the same effect as an increase of the volatility

σy (it essentially shifts mass to the right-tail, where in our base case informational costs are low).

More generally, the impact of investment requirements are further explored he top graph of

Figure 5. The graph reveals that equity financing is more likely to be less dilutive than debt when

the firm has greater investment needs either at the time of the initial investment, I, or at the time

the growth option is exercised, IT . These observations imply that capital needs of the firm will

have an independent effect on the financing decisions: specifically, equity is more likely to be less

dilutive than debt when firms have greater investment requirements.

In summary, the examples in Tables 2 and 3, as well as Figures 3–5, reveal a very consis-

tent pattern: violations of the pecking order are likely to emerge in younger firms, endowed with

valuable growth opportunities that represent a greater proportion of firm value and require larger

investments. In addition, equity is more likely to be less dilutive than debt when such growth

opportunities are riskier and have lower exposure to asymmetric information than the assets in

place.

5 The Effect of Pre-Existing Debt

In our basic model, we assume that at the beginning of the period, t = 0, the firm is all equity

financed. In this section we allow for the possibility that firms have pre-existing debt in the capital

structure, a situation that was not studied in Nachman and Noe (1994). The presence of debt in

the initial capital structure may, for example, be the outcome of previous security issuance, which

we do not model explicitly.

At the beginning of the period, t = 0, the firm has already issued straight debt with face value
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K0 ≥ 0 which is due at the end of the period, T . In accordance to anti-dilutive “me-first” rules

that may be included in the debt covenants, we assume that this pre-existing debt is senior to all

new debt that the firm may issue at t = 0. We maintain the assumption that the firm always

finds it optimal to raise external capital, I, through either an equity or a debt offer.28 We assume

throughout this section that the random variable ZG1ZG≥K0 dominates ZB1ZB≥K0 in the FOSD

sense.29

We first extend the results in Section 3 on general securities, and then revisit the debt-equity

choice.

5.1 Security design

The security design game is modified as follows. The firm raises the desired capital I by issuing a

security s ∈ S which is junior to the existing debt, K0. Thus, the set S satisfies (2)-(3), with the

added constraints s(z) = 0 for all z < K0, and

0 ≤ s(z) ≤ z −K0, for all z ≥ K0.

The presence of pre-existing debt changes the structure of information costs in a non-trivial

way, because cash flows in the left tail of the distribution can no longer be pledged to new in-

vestors. Interestingly, pre-existing debt makes equity-like securities, such as warrants, relatively

more attractive, as shown in the following proposition.

Proposition 4. Consider the optimal security design problem when the firm has a senior debt

security with face value K0 outstanding. Assume that the NICRT condition holds, and that there

exists a unique z∗ such that H ′(z∗) = 0.

(a) If H ′(K0) > 0, then there exists Î such that: (i) warrants are optimal for I < Î, and (ii)

convertible debt is optimal for I ≥ Î.

(b) If H ′(K0) < 0, then the optimal securities are warrants.

Proposition 4 shows that levered equity, such as warrants, can arise as an optimal financing

instrument.30 Intuitively, warrants are optimal securities because pre-existing debt has absorbed

the information benefits in the left tail of the distribution (that is, in a right neighborhood of z = 0,

28This assumption allows us to ignore a possible debt overhang problem in the sense of Myers (1977).
29This is without loss of generality: the case where ZB1ZB≥K0 FOSD ZG1ZG≥K0 follows as in the text, changing

the labels G and B.
30Our results are reminiscent of the optimality of unit IPOs in Chakraborty, Gervais, and Yılmaz (2011), see pages

336–337 and Proposition 2 in their paper. In that paper, the use of warrants in unit IPOs is optimal when asymmetric
information (between buyers) is mostly concentrated in “bad states,” thus reducing the winners’ curse problem. In
contrast to Chakraborty, Gervais, and Yılmaz (2011), who compare equity to other option-like securities, we show
how warrants are the optimal financing instruments among all monotone securities, minimizing insiders’ dilution.
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as discussed above). In particular, when K0 is moderate, so that H ′(K0) > 0, NICRT implies that

the optimal security design is one that always loads in the right tail, where information costs are

now the lowest (since the left tail is already committed to pre-existing bondholders). In addition,

when the financing needs are low, the firm is able to raise the required capital by issuing only

warrants. When the financing needs are high, the firm raises the additional capital by also issuing

(junior) debt, that is, by using convertible debt. When K0 is large, so that H ′(K0) < 0, the firm

will always find it optimal to issue only warrants (since the firm now faces decreasing information

costs). We note that warrants can emerge as optimal securities when the firm has pre-existing debt

in its capital structure, even when the asymmetric information environment is such that straight

debt would be optimal in the absence of pre-existing debt.

Case C in Table 2 studies the effect of pre-existing debt on the security design problem discussed

in Proposition 4. We modify Case B by assuming that the firm has debt outstanding with K0 = 100,

and that the initial investment is 70 (see the lower left graph in Figure 1). The value of the pre-

existing debt is 79.3, while total firm value (debt plus equity) is equal to 259.2. The fact that the

cash flows below K0 = 100 have been pledged makes the optimal security design be a warrant with

an exercise price of κ = 502.5, as in the case (i) of part (a) of Proposition 4.

If we change the initial investment from 70 to 120, as in the previous Case B in Table 2, the

optimal security will again be convertible debt, where the face value of the new (junior) debt is

K = 135.7, and the conversion price becomes κ = 317.2, as in case (ii) of part (a) of Proposition

4. It can be shown that, given the parameters values of Case C, warrants will always be optimal if

the pre-existing debt has a face value of K0 ≥ 199, as in part (b) of Proposition 4.

5.2 Pre-Existing Debt and the Pecking Order

We assume that the firm can raise the necessary capital either by sale of junior debt with face value

K, or by sale of a fraction λ of total (levered) equity of the firm to outside investors. Following an

argument similar to the one in Section 4, the relative dilution of debt versus equity is now given

by:

DD −DE =

∫ ∞
K0

[(1− λ) max(z −K0, 0)−max(z − (K0 +K), 0)] c(z)dz. (22)

The main difference of (22) relative to the corresponding expression (20) is the fact that all payoffs

below K0 are now allocated to the pre-existing senior debt. This implies that only the probability

mass located in the interval [K0,∞) is relevant for the determination of the relative dilution costs

of debt and equity and, thus, for the choice of financing of the new project. Recall from (21) that

the two regions located at the left and the right tails of the probability distribution favor debt

financing, while the intermediate region favors equity financing. This observation implies that the

presence of pre-existing debt in a firm’s capital structure, by reducing the importance of the left

tail region, makes equity more likely to be the less dilutive source of financing (all else equal), and
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therefore for the pecking order to be reversed.

Returning to our numerical exercise from Section 4.2, the last two rows in Table 3 show how

the presence of pre-existing debt with face value K0 = 20 in our base-case parameter constellation

has the effect of increasing the relative dilution of debt to equity to 1.28, raising the advantage to

equity relative to debt financing. This effect is further reinforced at greater levels of pre-existing

debt: for K0 = 40 the relative dilution of debt to equity becomes 1.47.

The bottom graph of Figure 5 examines the impact of pre-existing debt on the form of financing.

The graph reveals that, for a given level of assets in place, X̄, equity financing is less dilutive than

debt when the firm has a greater amount of pre-existing debt, K0. In addition, the graph suggests

that firms are likely to switch from equity to debt financing as they accumulate assets in place,

that is as X̄ becomes larger. At the same time, firms that finance asset acquisitions through debt

financing are likely to switch to equity financing as they increase the amount of debt in their capital

structure, K0.

6 Empirical Implications

The validity of the pecking order theory has been challenged by several empirical studies. For

example, Frank and Goyal (2003) and Fama and French (2005) document that small, high-growth

firms, a class of firms which is presumably more exposed to asymmetric information, typically rely

heavily on financing through outside equity, rather than debt. Leary and Roberts (2010) conclude

that “the pecking order is never able to accurately classify more than half of the observed financing

decisions.”31 In an extensive study, Fama and French (2005) conclude that “asymmetric information

problems are not the sole (or perhaps even an important) determinant of capital structures.”

We argue that this conclusion is not warranted: deviations from the pecking order may occur

even when asymmetric information is the only friction in the capital markets. This means that

observed violations of the pecking order do not necessarily imply that asymmetric information is

at best a second-order driver of the capital structure of firms. Rather, such deviations may just

mean that the conditions underlying the pecking order are not met.32

A contribution of our paper is to identify economically relevant scenarios where the Myers and

Majluf’s pecking order can be reversed, and to characterize such scenarios. The results displayed

31Leary and Roberts (2010) also note that most of the empirical evidence is inconclusive, and write: “Shyam-Sunder
and Myers (1999) conclude that the pecking order is a good descriptor of broad financing patterns; Frank and Goyal
(2003) conclude the opposite. Lemmon and Zender (2010) conclude that a ‘modified’ pecking order—which takes
into account financial distress costs—is a good descriptor of financing behavior; Fama and French (2005) conclude
the opposite. Frank and Goyal (2003) conclude that the pecking order better describes the behavior of large firms,
as opposed to small firms; Fama and French (2005) conclude the opposite. Finally, Bharath, Pasquariello, and Wu
(2010) argue that firms facing low information asymmetry account for the bulk of the pecking order’s failings; Jung,
Kim, and Stulz (1996) conclude the opposite.”

32Note that we do not suggest that asymmetric information is the sole driver of the firm capital structure. For
example, Holderness (2018) provides new evidence suggesting that agency costs can play an important role in the
capital structure choice.
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in Table 3, as well as Figures 3–5 reveal very consistent patterns, which we summarize below.

Violations of the pecking order are likely to be observed for firms with the following properties:

(i) Firms with larger investments needs. Violations of the pecking order are more likely to occur

when investment needs are greater. When external financing needs are smaller, firms are

more likely to be able to meet such needs by issuing small amounts of debt: a bond with

low default risk has a relatively smaller potential for mispricing, making it less dilutive than

equity. In contrast, large debt issues (that are required by greater investment needs) are

more likely to be characterized by high default risk, exposing issuing firms to the potential of

greater mispricing and, thus, leading to reversals of the pecking order.

(ii) Younger firms with valuable investment opportunities. Our model suggests that younger firms

that have large investment needs are ideal candidates for violations of the pecking order.33

Such firms are more likely to be endowed with both assets in place and risky growth oppor-

tunities, where the assets in place are relatively more affected by information asymmetries.

Greater information asymmetry on a firm’s assets in place relative to its growth opportunities

may emerge in cases where a firm is exposed to substantial “learning-by-doing,” as in Berk,

Green, and Naik (2004). In this case, firms may have accumulated more private informa-

tion from operating its assets in place, relative to the still undeveloped growth opportunities,

where critical information has yet to be revealed.34 If the new growth opportunities have

greater volatility than assets in place, our model shows that deviations of the pecking order

may obtain.

(iii) Firms endowed with a portfolio of heterogeneous assets. Deviations from the pecking order

may occur more generally in firms endowed with a portfolio of heterogeneous assets (or

subdivisions), if the more volatile assets are also less affected asymmetric information.35

Assets in a firm’s portfolio may include both assets in place, growth opportunities, or any

combination thereof. Exposure to asymmetric information in the right tail of the firm-value

distribution (where equity is more valuable) is determined by the asset that has greater

volatility (the “right-tail” effect uncovered in our paper). This means that violations of the

pecking order do not depend, as commonly suggested, on the “absolute” level of asymmetric

information that affects a firm but, rather, on the relative exposure of each asset to private

33A similar prediction is in Yang and Zeng (2018), where equity financing can be valuable for entrepreneurial firms
to provide investors with incentives to produce information, in the spirit of Boot and Thakor (1993) and Fulghieri
and Lukin (2001).

34An example of such situation is provided by a pharmaceutical company whose assets are formed by fully developed
drugs as well as new drugs where substantial additional R&D is necessary to obtain a commercially exploitable
product. The new R&D will privately reveal to the company valuable information to assess the true commercial
value of the drug, thus increasing the extent of asymmetric information with outside investors with respect to the
initial patent stage.

35Exposure to asymmetric information has been measured by several empirical proxies in the existing literature
(see Leary and Roberts (2010) for an in-depth discussion).
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information. The critical role of volatility in affecting the relative dilution of debt and equity

(and the pecking order) is a new testable implication that is unique to our model.

(iv) Young firms and the pecking order. Violations of the pecking order are more likely to occur

when the duration of the growth opportunity is longer, which is presumably more likely to be

the case of younger firms. Greater time to expiration of the growth opportunities allows the

right-tail effect to have a greater impact. In contrast, more mature firms are more likely to

raise new capital, when needed, using debt securities. The relationship between violation of

the pecking order and time to maturity (duration) of a firm’s growth opportunities is a new

empirical implication of our model.

(v) Firms with pre-existing debt. Our paper suggests that firms that already have debt in their

capital structure are more likely to use equity (or equity-like securities such as warrants and

convertible debt) in follow-up security offerings. The presence of debt in the capital structure

limits the ability of the firm to issue additional debt, increasing the potential for the next

debt issue to have high default risk and, thus, to be mis-priced. This means that if firms issue

securities in sequential tranches (for example, because of fixed transaction costs), a debt issue

is more likely to be followed by an equity issue, and vice-versa. These considerations suggest

that asymmetric information may in fact lead to “mean reversion” in leverage levels, as is

often documented in the empirical literature on capital structure (see Frank and Goyal, 2003;

Fama and French, 2005; Leary and Roberts, 2005). This means that asymmetric information

models may be observationally equivalent to dynamic trade-off models where firms adjust

over time to a certain target capital structure.

In summary, our paper can help explain the stylized fact that small and young firms with large

financing needs and valuable growth opportunities (i.e. high-growth firms) often prefer equity over

debt financing, even in circumstances where asymmetric information is potentially severe. Our

paper can also help explaining the commonly observed financing life-cycle whereby young growth

firms are initially financed by equity, and then switch to debt financing as they mature. Finally,

our paper generates new potentially testable empirical predictions linking violations of the pecking

order to a firm’s asset structure, and the relative exposure to asymmetric information and volatility

of each asset.

7 Conclusion and Future Research

In this paper, we revisit the pecking order of Myers and Majluf (1984) and Myers (1984). We

show that when insiders are relatively better informed on the assets in place of their firm, rather

than on its (riskier) growth opportunities, equity financing can be less dilutive than debt financing,

reversing the pecking order. We find that equity is more likely to dominate debt for younger firms
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that have larger investment needs and with riskier, more valuable growth, opportunities. Thus,

our model can explain why high-growth firms may prefer equity over debt, and then switch to debt

financing as they mature.

More generally, our results apply also to firms endowed with portfolios of heterogeneous assets,

such as multidivisional firms, each with different exposure to asymmetric information. Deviations

from the pecking order can occur when the asset with relatively lower volatility is more affected

by asymmetric information. A firm’s preference for debt versus equity financing is not driven by

its overall level of asymmetric information but, rather, by the composition of its assets and by

the location of the asymmetric information across assets. In a similar vein, our model generates

implications for the choice of financing in mergers: the composition of the target and acquiring

firms assets will determine the least dilutive financing instrument.

An additional area of applications of our model is the design of structured products, such as

Collateralized Debt Obligations, CDOs. In these cases, the CDO arranger must both select mix

of assets forming asset pool and the structure of the tranches of securities backed by such pools of

assets. Our model suggest a novel way to link the exposures to asymmetric information of the assets

in the pool, their individual volatility, and the design of the seniority structure of the tranches.

Our results in Section 5.2 suggest that, in a dynamic model of securities offering, firms that have

recently issued debt are more likely (all else equal) to use equity the following round of financing,

with equity and debt offerings alternating each other over time. This means that a pure asymmetric

information friction may in fact lead to a “mean reversion” in leverage levels, as is often documented

in the empirical literature on capital structure (see Leary and Roberts, 2005). These predictions

are novel within models based on informational frictions. We leave an explicit analysis of these

important issues to future research.
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Appendix

Proof of Proposition 1. In a separating equilibrium {s∗G, s∗B} where we have that s∗G 6= s∗B,

p(s∗G) = 1, and p(s∗B) = 0, which implies that V ∗(s∗θ) = E[s∗θ(Zθ)] and that W (θ, s∗θ, V
∗(s∗θ)) =

E[Zθ]−I. This implies thatW (B, s∗G, V (s∗G))−W (B, s∗B, V (s∗B)) = V (s∗G)−E[s∗G(ZB)] = E[s∗G(ZG)]−
E[s∗G(ZB)] > 0 by FOSD. Thus, the pair {s∗G, s∗B} cannot be an equilibrium. Furthermore, if in

a candidate pooling equilibrium where the security s∗ is offered by both types of firms, we have

that V ∗(s∗) > I, consider the scaled down contract γs∗ for γ ∈ (0, 1). Then, there is at least one

value of γ ∈ (0, 1) such that p(γs∗) = p, by passive beliefs, V ∗(γs∗) ≥ I and W (G, γs∗, V ∗(γs∗)) =

E[ZG]− γ(E[s∗(ZG)]−V (s∗(ZG)))− I > E[ZG]− (E[s∗(ZG)]−V (s∗(ZG)))− I = W (G, s∗, V ∗(s∗)),

a contradiction. Thus, any pooling equilibrium must satisfy the budget constraint with equality,

V (s) = I.

Proof of Proposition 2. It is more convenient to use the means of the underlying normal random

variables for this proof. This involves a simple notation change from the body of the text: for any

random variable Zθ such that var(log(Zθ)) = σz and Z̄θ ≡ E[Zθ], the mean of the normal random

variable Ẑ such that E[eẐ ] = Z̄θ is µθ = log(Z̄θ)− 0.5σ2
θ .

In order to prove the first statement, we argue that the distribution of the good type dominates

the distribution of the bad type in the likelihood ratio sense, namely fG(z)/fB(z) is monotonically

non-decreasing for all z ∈ R+. From basic principles we have:

fG(z)

fB(z)
=

1
zσ
√

2π
e
− 1

2

(
log(z)−µG

σ

)2

1
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√
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e
− 1

2
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= e
− 1

2
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σ
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+ 1
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σ
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= e
− 1

2
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2
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(
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σ2
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1
2
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2
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σ2 z

(
µG−µB
σ2

)
;

which is monotonically increasing in z when µG > µB, as we set to prove. Since the likelihood ratio

order implies conditional stochastic dominance (Shaked and Shanthikumar, 2007), this concludes

the proof.

In order to prove the second statement, we start with case in which Zθ = Xθ + Yθ. Let Fm(z)

denote the distribution function of a lognormal random variable with log-mean µyG and log-variance

σ2
y . Since 1− F (z) = p(1− FB(z)) + (1− p)(1− FG(z)), we have that

lim
z↑∞

1− F (z)

1− Fm(z)
= lim

z↑∞
p

1− FB(z)

1− Fm(z)
+ (1− p) 1− FG(z)

1− Fm(z)
. (23)
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Using Theorem 1 from Asmussen and Rojas-Nandayapa (2008), we have that

lim
z↑∞

1− FG(z)

1− Fm(z)
= 1, (24)

and that

lim
z↑∞

1− FB(z)

1− Fm(z)
=

{
1 if µyB = µyG,

0 if µyB < µyG.
(25)

Further note that

H(z) =

(
1− FG(z)

1− Fm(z)

)(
1− F (z)

1− Fm(z)

)−1

−
(

1− FB(z)

1− Fm(z)

)(
1− F (z)

1− Fm(z)

)−1

. (26)

Using this last expression together with (23)-(25), we conclude that

lim
z↑∞

H(z) =

{
0 if µyB = µyG,

(1− p)−1 if µyB < µyG.
(27)

This completes the proof of the case in which Zθ = Xθ + Yθ.

In order to see the general case in (11), note that

P(Xθ + max(Yθ − IT , 0) > z) > P(Xθ + Yθ > z + IT ) (28)

and

P(Xθ + max(Yθ − IT , 0) > z) < P(Xθ + Yθ > z). (29)

These two inequalities serve as a bound for the limit of the function H(z) for the random

variable Xθ + max(Yθ − IT , 0). The two bounds fall within the scope of the proof of the case in

which Zθ = Xθ + Yθ, and therefore have the same limits. This completes the proof.

Proof of Proposition 3. Since H is increasing in (a), there is a single crossing point z such that

H(z) = γ, for any γ ∈ R+. First note that, from the Lagrangian in (15), the objective function

is linear in the choice variable s′(z). Thus, only corner solutions are optimal. When H(z) < γ

the Lagrangian is minimized making s′(z) be equal to its upper bound, s′(z) = 1, whereas for

H(z) > γ, the minimization calls for setting s′(z) to its lower bound, s′(z) = 0. The claim in (a)

follows immediately (see Theorem 8 in Nachman and Noe (1994)). Assuming NICRT, and that

H ′(z∗) = 0 at most once, it is immediate that there are two unique crossing points for H(z∗) = γ,

for any γ ∈ R+. The claim in (b) is immediate using the same argument as in case (a). In order

to prove (c), we note there is a one-to-one mapping from the investment level I and the Lagrange

multiplier γ. Since H ′(0) > 0, for a sufficiently low Ī all investment levels I ≤ Ī are associated with

s′(z) = 0 for all z ≤ z∗, since the condition H(z∗) = γ will have at most one single solution for

z∗, so that straight debt is optimal. This will be true up to the level Ī that is possible to finance
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pledging all residual cash flows above z∗, namely Ī = E[max(Z − z∗, 0)]. For I > Ī, we have that

the condition H(z) = γ > 0 defines two crossings, and the optimal securities are convertible bonds,

as in (b).

Proof of Proposition 4. The proof is analogous to that of Proposition 3. The first-order condi-

tions require s′(z) to be either one (or zero) at points for which H(z) < γ (or H(z) > γ). Under

the conditions in (b), and the initial assumptions, there is only one crossing, and all mass of the

security is concentrated in the right tail. This occurs for low values of γ, or equivalently of the

investment I. The claim in (a) mirrors case (b) from Proposition 3.

33



Table 1: A simple example

The table presents the parameter values and equilibrium outcomes of the capital raising problem discussed in Section
1. The payoff of the firm is given by a trinomial random variable Z ∈ {z1, z2, z3}. The growth opportunity requires an
investment of I = 60, and generates an extra cash flow of 200 in the high state. The payoff and the state probabilities
are summarized below.

Payoffs z1 z2 z3
Assets in place 10 100 100
Growth opportunity 0 0 200

Total payoff 10 100 300

Distributions z1 z2 z3
Good-type, fG 0.2 0.4 0.4
Bad-type, fB 0.3 0.4− x 0.3 + x

The column labelled “Pooled value” below computes the expected value of the firm, E[Z], where each type is assumed
equally likely. The variable x can take values in [0, 0.10], to guarantee that the distribution fG first-order stochastically
dominates fB . The variable λ denotes the fraction of equity the firm needs to issue to finance the investment of
I = 60. The column labelled DE denotes the dilution costs of equity, namely λ(E[ZG]− E[ZB ]). For all values of x,
the firm can also finance the project with a debt security with a face value K = 76.7, for which the dilution costs,
DD ≡ E[min(ZG,K)]− E[min(ZB ,K)], are 6.7 (last column).

x E[ZG] E[ZB ] Pooled value λ DE DD
0.00 162 133 147.5 0.407 11.8 6.7
0.01 162 135 148.5 0.404 10.9 6.7
0.02 162 137 149.5 0.401 10.0 6.7
0.03 162 139 150.5 0.399 9.2 6.7
0.04 162 141 151.5 0.396 8.3 6.7
0.05 162 143 152.5 0.393 7.5 6.7
0.06 162 145 153.5 0.391 6.6 6.7
0.07 162 147 154.5 0.388 5.8 6.7
0.08 162 149 155.5 0.386 5.0 6.7
0.09 162 151 156.5 0.383 4.2 6.7
0.10 162 153 157.5 0.381 3.4 6.7
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Table 2: Optimal security design problem

The table presents the parameter values and equilibrium outcomes of the security design problem discussed in
Section 3. The payoff of the firm for type θ is given by Zθ = Xθ + max(Yθ − IT , 0), where both Xθ and Yθ
are lognormal, with E[Xθ] = Xθ, E[Yθ] = Yθ. We further denote var(log(Xθ)) = σ2

xT , var(log(Yθ)) = σ2
yT , and

cov(log(Xθ), log(Yθ)) = ρσxσyT . The labels “Straight debt,” “Convertibles,” and “Warrants” refer to the functions
s(z) = min(K, z), s(z) = min(K, z) + max(z − κ, 0), and s(z) = max(z − κ, 0) respectively.

Symbol Case A Case B Case C

Primitives

Value of assets in place type G X̄G 100 150 150

Value of assets in place type B X̄B 100 50 50

Value of new assets type G ȲG 250 200 200

Value of new assets type B ȲB 150 200 200

Time to maturity T 5 5 5

Volatility of assets in place σx 0.3 0.3 0.3

Volatility of new assets σy 0.6 0.6 0.6

Probability of the good type p 0.5 0.5 0.5

Correlation between assets ρ 0.5 0.5 0.5

Pre-existing debt face value K0 0 0 100

Initial investment I 100 120 70

Investment at exercise IT 50 50 50

Equilibrium outcomes

Optimal security s(z) Straight debt Convertibles Warrants

Face value K 138.8 69.5 −
Conversion trigger/exercise price κ − 593.4 502.5
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Table 3: Optimal debt-equity choice

The table presents the parameter values and equilibrium outcomes of the capital raising problem discussed in Section
4. The payoff of the firm for type θ is given by Zθ = Xθ +max(Yθ−IT , 0), where both Xθ and Yθ are lognormal, with
E[Xθ] = Xθ, E[Yθ] = Yθ. We further denote var(log(Xθ)) = σ2

xT , var(log(Yθ)) = σ2
yT , and cov(log(Xθ), log(Yθ)) =

ρσxσyT .

Symbol Value

Base case

Value of assets in place for the good type X̄G 125

Value of assets in place for the bad type X̄B 75

Value of new assets for the good type ȲG 205

Value of new assets for the bad type ȲB 195

Good type firm value E[ZG] 307.9

Bad type firm value E[ZB ] 248.2

Time to maturity T 15

Volatility of assets in place σx 0.30

Volatility of new assets σy 0.60

Probability of the good type p 0.50

Correlation between assets ρ 0

Investment amount I 100

Investment at maturity IT 50

Equilibrium outcomes

Value of firm post-investment E[Z] 278.1

Equity fraction issued λ 0.360

Face value of debt K 218.4

Credit spread rD = (K/D)1/T − 1 5.3%

Dilution costs of debt DD = E[min(ZG,K)]− E[min(ZB ,K)] 23.7

Dilution costs of equity DE = λ(E[ZG]− E[ZB ]) 21.5

Relative dilution DD/DE 1.10

Comparative statics

New parameter(s) Equity share Face value Spread Debt dil. Equity dil. Relative dil.
λ K rD DD DE DD/DE

X̄G = X̄B = 100 0.360 213.9 5.2% 0.7 3.5 0.21
X̄G = 150, X̄B = 50 0.360 233.4 5.8% 49.7 39.5 1.26

ȲG = ȲB = 200 0.360 218.3 5.3% 22.9 18.0 1.27
ȲG = 225, ȲB = 175 0.359 219.4 5.4% 26.9 35.3 0.76

σx = 0.4 0.360 290.6 7.4% 21.6 21.5 1.01
σy = 0.8 0.344 316.6 8.0% 31.6 20.6 1.53

I = 80 0.289 141.8 3.9% 16.5 17.3 0.95
I = 120 0.434 333.3 7.0% 31.1 25.9 1.19

IT = 0 0.333 169.8 3.6% 17.6 20.0 0.88
IT = 100 0.375 247.9 6.2% 26.5 22.3 1.19

K0 = 20 0.386 303.3 7.7% 29.5 23.0 1.28
K0 = 40 0.410 406.1 9.8% 34.5 23.4 1.47
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Figure 1: The left panels plot the function H(z) = (FB(z)− FG(z))/(1− F (z)), whereas the right panels
plot the optimal securities. The parameter values correspond to the cases listed in Table 2: Case A is
depicted in the top two graphs, Case B corresponds to the middle figure, and Case C to the bottom plots.
The vertical dashed lines mark the points z for which H(z) = γ, where γ is given by the dotted horizontal
line in the left panels. The vertical solid line in the bottom left graph shows the value of existing debt in
Case C, namely K0 = 100.

37



0 100 200 300 400 500

−
0.

00
4

−
0.

00
3

−
0.

00
2

−
0.

00
1

0.
00

0

Payoffs

In
fo

rm
at

io
na

l c
os

ts

Information costs c(x)
Payoff equity
Payoff debt

S
ec

ur
ity

 p
ay

of
fs

0
50

10
0

15
0

20
0

0 100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Payoffs

D
en

si
ty

 fu
nc

tio
n

Density average type
Density G−type
Density B−type

Figure 2: The top graph plots on the x-axis the payoffs from the firm at maturity, and on the y-axis it
plots as a solid line the difference in the densities of the good and bad type firms, fG(z) − fB(z) (y-axis
labels on the left), and as dashed/dotted lines the payoffs from debt and equity (y-axis labels on the right).
The vertical dashed lines are: (a) the point ẑ for which fG(ẑ) = fB(ẑ), (b) the point z̄ for which K = λz̄.
The bottom graph plots the densities of the good and bad types (dashed/dotted lines), as well as the joint
density (integrated over types). The payoff of the firm for type θ is given by Zθ = Xθ + max(Yθ − IT , 0),
where both Xθ and Yθ are lognormal. The parameter values used in the figures are X̄G = 125, X̄B = 75,
ȲG = 205, ȲB = 195, σx = 0.3, σy = 0.6, ρ = 0, T = 15, p = 0, I = 100, IT = 50.
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Figure 3: The top graph plots the set of points (cy, cx) for which the dilution costs of equity and debt
are the same, i.e. DE = DD. We consider the following parameter values: X̄ = 100, Ȳ = 200, σx = 0.3,
I = 120, IT = 50, T = 10, ρ = 0 and p = 0.5. We set X̄G = X̄ + cx/2 and X̄B = X̄ − cx/2, and similarly
ȲG = Ȳ + cy/2 and ȲB = Ȳ − cy/2. The solid line corresponds to the case where σy = 0.6, whereas the other
two lines correspond to σy = 0.7 and σy = 0.8. Debt is optimal for pairs of (cy, cx) below the lines, whereas
equity is optimal above the lines. The bottom graph plots the set of points (X̄, Ȳ ) for which the dilution
costs of equity and debt are the same, i.e. DE = DD. We consider the following parameter values: cx = 25,
cy = 0, σx = 0.3, σy = 0.6, I = 110, T = 15, IT = 50, ρ = 0 and p = 0.5. The solid line corresponds to the
case cx = 25, whereas the other two lines correspond to cx = 10 and cx = 40. Debt is optimal for pairs of
(X̄, Ȳ ) below the lines, whereas equity is optimal above the lines.
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Figure 4: The top graph plots the set of points (σx, σy) for which the dilution costs of equity and debt are
the same, i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0, X̄ = 100, Ȳ = 150,
T = 15, IT = 50, ρ = 0 and p = 0.5. The solid line corresponds to the case I = 110, whereas the other
two lines correspond to I = 100 and I = 120. Debt is optimal for pairs of (σx, σy) below the lines, whereas
equity is optimal above the lines. The bottom graph plots the set of points (I, T ) for which the dilution
costs of equity and debt are the same, i.e. DE = DD. We consider the following parameter values: Ȳ = 200,
σx = 0.3, IT = 50, T = 10, cx = 25, cy = 0, ρ = 0 and p = 0.5. The solid line corresponds to the case where
X̄ = 100, whereas the other two lines correspond to X̄ = 105 and X̄ = 95. Debt is optimal for pairs of (I, T )
below the lines, whereas equity is optimal above the lines.
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Figure 5: The top graph plots the set of points (IT , I) for which the dilution costs of equity and debt are
the same, i.e. DE = DD. We consider the following parameter values: cx = 25, cy = 0, σx = 0.3, σy = 0.6,
YG = YB = 175, X̄ = 100, ρ = 0 and p = 0.5. The solid line corresponds to the case T = 10, whereas
the other two lines correspond to T = 15 and T = 20. Debt is optimal for pairs of (IT , I) below the lines,
whereas equity is optimal above the lines. The bottom graph plots the set of points (K0, X̄) for which the
dilution costs of equity and debt are the same, i.e. DE = DD. We consider the following parameter values:
cx = 25, cy = 0, σx = 0.3, σy = 0.6, Ȳ = 175, IT = 0, T = 10, ρ = 0 and p = 0.5. The solid line corresponds
to the case I = 40, whereas the other two lines correspond to I = 50 and I = 60. Equity is optimal for pairs
of (K0, X̄) below the lines, whereas debt is optimal above the lines.
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