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Abstract

I introduce a new approach, model, and definition for analyzing demand effects

in asset pricing. My approach generalizes arbitrage pricing, and avoids making

any parametric assumptions on utility function and payoff distribution, which

are commonly found in equilibrium literature. My approach also reveals and

relaxes an unrealistic cross-sectional restriction on price impacts in the litera-

ture’s quadratic-normal setup. In my model, price impacts between underlying

assets occur through factors, which connect to these assets through the covari-

ance structure of noisy flows and fundamental risks. Specifically, I develop a new

definition for factor-level demand elasticity, highlighting that the conventional

definition is ill-defined.
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1 Introduction

In economics, demand and supply determine price and quantity. In finance, the absence

of arbitrage ensures the existence of stochastic discount factors (SDF). However, arbitrage

pricing is long believed to be incompatible with demand effects, because the arbitrage theory

developed since Black and Scholes (1973) and Merton (1973b) models only price, but not

quantity. The failure of arbitrage in the presence of noise traders is often referred to as “the

limits of arbitrage,” suggesting that arbitrageurs cannot conduct textbook arbitrage when

facing frictions that limit their ability to absorb flows (De Long, Shleifer, Summers, and

Waldmann, 1990; Shleifer and Vishny, 1997; Du, Tepper, and Verdelhan, 2018).

This paper has three logically connected contributions. First, since 1980s, the literature

has used equilibrium approach to model demand effects, particularly using the quadratic-

normal setup.1 Instead of this approach, I generalize arbitrage pricing to model demand

effects, and avoid making any parametric assumption regarding the utility function and

payoff distribution. Crucially, by abstracting away from specific economic environments, I

can characterize the general price/quantity relationship across multiple risky assets. My

analysis reveals that, within the quadratic-normal setup, arbitrageurs exhibit equal aversion

to risks induced by flows into different portfolios. By relaxing this restrictive assumption, I

develop a new and more flexible model.

Second, the literature uses price elasticity or cross elasticity to study how the flow into

asset A impacts the price of asset A or B (Koijen and Yogo, 2019; Gabaix and Koijen, 2022).

In my model, the flow into asset A impacts the price of asset B through factors, which

are generally long-short portfolios of underlying assets and are connected to these assets

via the covariance structure of noisy flows and fundamental risks. Contrary to the asset-by-

asset isolated approach, my factor model integrates demand effects with cross-sectional asset

1See the survey article by Rostek and Yoon (2020). The typical assumptions made include a quadratic or
CARA utility function and a multivariate normal payoff distribution. In many dynamic models with CRRA
utility, e.g., Koijen and Yogo (2019), each investor’s optimal portfolio problem effectively becomes static
quadratic-normal after log-linearization.
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pricing—individual assets’ price impacts and cross impacts are connected through factors.

Third, the literature uses (dP/P )/(dQ/Q) to define elasticity for factors, measuring how

a 1% change in quantity affects price.2 While this definition is suitable for individual assets,

I show that it is mathematically ill-defined and economically nonsensical when applied to

factors (i.e., long-short portfolios). In my model, the definition of factor-level elasticity

involves explicitly constructing risk exposures, and measures how one unit of risk induced

by the quantity change affects price. This distinction is not merely a technical point, but

reflects this paper’s core economics—price impacts arise because flow-absorbing arbitrageurs

are averse to risk, not because arbitrageurs are inelastic to flow per se.3

In what follows, I present five new tools to derive my factor model of price impacts.

First, I introduce the flow-based SDF. Drawing from the framework presented in Cochrane

(2009) textbook, I examine N assets with random payoffs X at time 1, and analyze asset

prices P at time 0. The law of one price (LOOP) implies the existence of some SDF M ,

which is a time-1 random variable, such that P = E[MX].

I diverge from Cochrane (2009) by assuming the presence of noisy flows4 f = (f1, f2, . . . , fN)
⊤

into these assets at time 0. By “noisy,” I refer to the fact that payoffs X are independent of

flows f , and thus, the flows influence time-0 pricesP solely through demand effects. Arbitrage

pricing does not model specific economic agents; however, one can envision a representative

arbitrageur who faces certain “limits of arbitrage” and accommodates f . Consequently, asset

prices P(f) and the SDF M(f) may now depend on f .

By comparing the time-0 economy with flow f to the one without any flow, I obtain

∆p(f)︸ ︷︷ ︸
price impact

= E[ M̃(f)︸ ︷︷ ︸
F-SDF

R0︸︷︷︸
fundamental return

], (1)

2For example, this definition is used by Table 1 of Gabaix and Koijen (2022), which also provides a
summary of estimates in the empirical literature.

3That risk matters for price impacts is empirically documented by, for example, Wurgler and Zhuravskaya
(2002) and Li, Fu, and Chaudhary (2022) in stock and corporate bond markets.

4Bold font is used to represent matrices and vectors, with b⊤ denoting the transpose of b.
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where ∆p(f) := (P(f) − P(0))/P(0) (element-wise division) represents the assets’ time-0

price impacts, and R0 := X/P(0) represents the assets’ fundamental-driven returns between

time 0 and 1. Notably, the flow-based SDF (F-SDF), defined as M̃(f) := M(f) − M(0),

describes how the flow changes the standard SDF.

The insight is that to characterize the multi-asset price/quantity relationship ∆p(f), it

is only necessary to determine how the flow f changes the SDF M̃(f) = M(f) − M(0),

rather than tackling the more complex question of how the entire SDF M(f) depends on f .

Economically, M̃(f) encodes all the risk preferences of how the arbitrageur responds to f .

Second, I develop the portfolio theory for flows. The basis of asset pricing is portfolio

theory (Markowitz, 1952). Surprisingly, a theory for constructing portfolio flows does not

exist in the literature. Empirical research has employed ad hoc constructions of portfolio

flows, similar to the approach taken for portfolio returns. I show that the portfolio flows

are equal to the pseudoinverse of portfolio weights times asset flows. Intuitively, the eco-

nomic interpretation of portfolio flows is flows into portfolios—portfolio flows first enter the

portfolios and are then allocated to individual assets according to portfolio weights. Conse-

quently, one should project asset flows onto portfolio weights to obtain portfolio flows, which

explains the use of pseudoinverse construction. On a deeper level, the total quantity of risk

absorbed by arbitrageurs, represented by the inner product f⊤R0 between flows and returns,

should remain invariant under portfolio formation. I prove that this invariance principle

implies that the construction of portfolio flows should follow my proposed procedure, which

contrasts with the construction of portfolio returns.

Third, I present the flow-based Hansen-Jagannathan bound. A common intuition is that

“noisy flows shock the SDF and change asset prices today, leading to flow-induced return

predictability in the future.” My flow-based bound formalizes this intuition. I define any

portfolio’s price impact ratio as the portfolio’s price impact over the portfolio’s fundamental

risk. I prove that the maximum price impact ratio (MPIR) over all portfolios equals the

minimum volatility of the F-SDF. Intuitively, shorting the MPIR portfolio is the mean-
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variance optimal strategy to provide liquidity to flows. My result connects this optimal

portfolio of liquidity providers to the volatility of flow-induced changes in the standard SDF.

Fourth, I develop a new cross-sectional restriction for price impacts. Intuitively, not all

price impacts in the cross-section are plausible. For a simple example, consider two assets

with uncorrelated flows f and uncorrelated fundamental returns R0. In this case, one should

not expect a flow into the first asset to impact the second asset’s price. Irrelevance of

Uncorrelated Flows (IUF) formalizes this intuition by eliminating all such implausible price

impacts in a setting with general covariance structures of flows and fundamental returns.

I prove that the IUF holds if and only if the variations of the N assets’ price impacts are

driven by N orthogonalized factors that have no cross-impacts between each other. These

factors are endogenously and (generally) uniquely chosen to have both uncorrelated flows and

uncorrelated fundamental returns. Each factor’s price elasticity to its flow is characterized

by a free parameter.

Mathematically, I achieve the IUF characterization by employing commuting matrices.

Roughly speaking, two square matrices A and B commute (i.e., AB = BA) if and only if

they share the same eigenvectors. Applying commuting matrices to the covariance struc-

tures of noisy flows and fundamental returns enables me to uniquely pin down asset-pricing

factors (i.e., eigenvectors). To the best of my knowledge, commuting matrices have not been

previously applied in economics or finance.

A natural question arises as to why the IUF eliminates cross-impacts between the specific

factors that exhibit both uncorrelated flows and uncorrelated fundamental returns. This

selection of factors is not only intuitive but also optimal. I prove that, among all possible ways

of choosing N factors to span the N assets’ price impacts, the IUF is the only approach that

preserves each factor’s price elasticity as invariant and preserves the arbitrageur’s expected

utility as invariant for any specific utility function.

Fifth, I develop the flow-based Arbitrage Pricing Theory (APT) to reduce the N factors

selected by the IUF toK systematic factors. I assume that (i) flows exhibit a low-dimensional

4



factor structure and (ii) small flows into a portfolio with little fundamental risks should not

have a high price impact. Condition (i) is well supported empirically.5 Condition (ii)

forms the core economics underlying my arbitrage theory with flows, which is characterized

using the price impact ratio and the flow-based Hansen-Jagannathan bound. This condition

generalizes the “good-deal bound” of Ross (1976) and Cochrane and Saa-Requejo (2000). I

prove that under these two conditions, the K-factor model approximates the N -factor model

in the mean-squared-error sense.

The five new theoretical tools allow me to derive the following new model, which, intu-

itively, combines the canonical factor model and price elasticity,

f︸︷︷︸
asset flow

=
K∑
k=1

bk︸︷︷︸
flow beta

qk︸︷︷︸
factor flow

+ e︸︷︷︸
idiosyncratic flow

, (2)

∆p(f)︸ ︷︷ ︸
price impact

=
K∑
k=1

λk︸︷︷︸
price of flow-induced risk

qk︸︷︷︸
factor flow

cov(R0,b
⊤
k R0)︸ ︷︷ ︸

quantity of risk

. (3)

Equation (2) decomposes theN -asset flows f = (f1, f2, . . . , fN)
⊤ intoK-factor flows q1, q2, . . . , qK

and idiosyncratic flows e = (e1, e2, . . . , eN)
⊤. The new insight is that flow betas are portfolio

weights. Note that if factor-k flow qk increases by $1, asset-n flow increases by $bn,k. By

market clearing, a one-dollar factor-k flow decreases the arbitrageurs’ holding in asset n by

$bn,k. Thus, flow betas bk = (b1,k, b2,k, . . . , bN,k)
⊤ mimic the changes in the arbitrageurs’

portfolio holding caused by one dollar of factor-k flow, implying that b⊤
k R0 is the risk factor

corresponding to the factor flow qk. This result is connected to and generalizes the approach

of Alekseev, Giglio, Maingi, Selgrad, and Stroebel (2022), who use the beta of mutual fund

portfolio changes in reaction to heat shocks to construct hedging portfolios for climate risk.

Equation (3) implies that the factor flows qk drive the cross-section of price impacts

∆p(f). The quantity of risk exposure of individual assets to these factors is the return

covariance cov(R0,b
⊤
k R0). The new parameter λk > 0, termed the price of flow-induced

5Hasbrouck and Seppi (2001) first document the factor structure of flows. Their finding is motivated
using optimization models of trading (Caballe and Krishnan, 1994; Kumar and Seppi, 1994).
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risk, measures for how one unit of risk induced by the flow changes the price of factor k.

In comparison to the existing literature, my model is developed under less restrictive

conditions, dispensing with the need for parametric assumptions on the utility function and

payoff distribution. Moreover, as outlined below, my model provides five key improvements.

First, my model relaxes the literature’s standard model. I prove that the static quadratic-

normal model is a special case of my model (3) when K = N and the price of flow-induced

risk is equal for all factors, i.e., λ1 = λ2 = · · · = λK = γ/(µRF ). Here, γ is the arbitrageurs’

CARA risk aversion, µ is the mass of arbitrageurs, and RF is the gross risk-free rate.

my factor model = IUF + flow-based APT,

static quadratic-normal model = IUF + equal-λk.

The assumption of equal-λk is both restrictive and unrealistic. Theoretically, equal-λk

implies that the ratio of risk aversion to the mass of arbitrageurs must be identical across

different factors. Empirically, An, Su, and Wang (2022) estimate the Fama and French (1993)

three factors’ λk using U.S. equity mutual fund flow and reject the equal-λk restriction.

The static quadratic-normal model has always implicitly assumed the IUF, although this

underlying assumption goes unnoticed in the equilibrium literature. My approach brings to

light the previously obscured cross-sectional relationship between flow and risk. Econom-

ically, the static quadratic-normal model combines a reasonable assumption (IUF) with a

less tenable one (equal-λk). As such, I propose a more plausible and empirically grounded

alternative (flow-based APT) to replace the latter assumption.

Second, my model serves as a natural dynamic extension of the static quadratic-normal

model. Although the current setting is static, my model could be microfounded in a dynamic

framework incorporating the predictability of future flows. Specifically, An and Zheng (2023)

examine a standard dynamic consumption problem in which a representative agent also

absorbs noisy flows into different assets. They show that the predictability of today’s flow for
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tomorrow’s flow permits differential λk for distinct factors, thereby eliminating the equal-λk

constraint embedded in the static model. Analogously, my paper generalizes the Ross (1976)

APT approach to microfound the factor model (3), while An and Zheng (2023) generalize

the Merton (1973a) ICAPM approach.

Third, my model uncovers a novel cross-asset price impact channel.6 I illustrate this

channel through a commonality-in-flow paradox. Consider two assets, A and B, with uncor-

related fundamental returns but correlated flows. My model implies that, when controlling

for the flow into asset A, the flow into asset B still influences the price of asset A. The static

quadratic-normal model does not predict such cross-impact. In this paradox, controlling for

asset A’s flow is essential, as it eliminates the mechanical effect where asset B’s flow alters

asset A’s flow, subsequently affecting asset A’s price.

This new channel emerges precisely because my model has more degrees of freedom in

λk than the static quadratic-normal model. In my model, asset B’s flow changes the prices

of different factors, which in turn change asset A’s price by no arbitrage. In the special

quadratic-normal setup where all factors have identical λk, the changing prices of different

factors precisely counterbalance each other, leaving asset A’s price unaltered.

Fourth, my model correctly defines factor-level price elasticity, addressing the shortcom-

ings of the traditional approach. The literature measures price elasticity using the formula

(dP/P )/(dQ/Q), which represents how a 1% change in quantity impacts the price. The issue

with this formula is that it is mathematically ill-defined and economically nonsensical for

factors, which are generally long-short portfolios. Since the total quantity Q of a long-short

portfolio is zero,7 the denominator dQ/Q is ill-defined, as one cannot divide by zero.8

6For examples of cross-impact models in the literature, see Kodres and Pritsker (2002), Basak and Pavlova
(2013), Pasquariello and Vega (2015), and Buffa and Hodor (2023).

7The total quantity Q of a long-short portfolio is calculated in a manner similar to portfolio flow dQ.
This involves projecting the asset-level amount outstanding onto a set of portfolio weights. In most empirical
exercises, the market factor is included, and its portfolio weights are perfectly collinear with the asset-level
amount outstanding. As a result, the total quantity Q of the market factor is the sum of all assets, as
typically expected. However, for all other portfolios, the total quantity Q is zero.

8The empirical literature tries to circumvent the issue of Q = 0 by constructing portfolio flow as dQ/Q :=∑
n wndSn/Sn, where wn is the portfolio weight, and dSn/Sn is the asset-level flow in percentages. However,

as previously mentioned, this construction is flawed because it mistakenly treats flows as returns.
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In contrast, my definition λ = (dP/P )/(dQvar(R)) measures the impact of one unit of

risk induced by the quantity change on the factor price, rather than the impact of a 1%

change in quantity. The improvements over the traditional definition include: (i) I establish

a theory that correctly constructs portfolio flow dQ, and (ii) I incorporate risk exposure

var(R), because the economic channel is that flow alters risk exposure, which subsequently

leads to changes in factor price.

Fifth, my model holds direct empirical relevance. A large strand of empirical literature

constructs proxies for noisy flows and investigates their pricing implications.9 Derived from

first principles, my model offers a theoretical foundation for a new set of regressions that

estimate the price/quantity relationship for the cross-section of assets via factors. Just like

my model generalizes the canonical factor model, the new regressions, implemented in An,

Su, and Wang (2022), generalize the canonical Fama and MacBeth (1973) regression.

My factor model (3) imposes an empirical restriction—price impacts that arise from

arbitrageurs’ risk aversion do not depend on idiosyncratic flows (represented by the residual

e in equation (2)). Intuitively, arbitrageurs absorb flows into all assets simultaneously,

rather than considering each asset in isolation. Consequently, from the arbitrageurs’ portfolio

perspective, systematic flows are significant while idiosyncratic flows are not. This intuition

generalizes the canonical understanding of risks, which posits that expected returns do not

depend on idiosyncratic risks.

An, Su, and Wang (2022) derive a direct empirical test and validate this prediction using

mutual fund flow data.10 They prove that the χ2 test statistic for the price impacts of id-

iosyncratic flows is associated with the corresponding maximum price impact ratios (MPIR).

This test is analogous to and generalizes the canonical Gibbons, Ross, and Shanken (1989)

test, which relates the anomaly expected returns of idiosyncratic risks to the corresponding

maximum Sharpe ratios.

9See, for example, Coval and Stafford (2007), Frazzini and Lamont (2008), and Lou (2012).
10This prediction is also empirically supported by Cremers and Mei (2007) and Li and Lin (2022), who

use alternative empirical tests and data.
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My theory also offers a straightforward approach to quantify the contribution of flows to

the volatility of the SDF. By the flow-based Hansen-Jagannathan bound, this contribution is

lower bounded by the MPIR in the data. An, Su, and Wang (2022) estimate an annualized

MPIR of approximately 0.5, suggesting that mutual fund flows can account for a significant

portion of the SDF variation.

2 Related Literature

Asset pricing concerns risk, which is understood through portfolios (Markowitz, 1952). Yet,

the demand-based asset pricing literature lacks a portfolio theory that accounts for both

price and quantity. This gap in theory means that the empirical literature, which relies on

heuristic portfolio construction to study demand effects, may not be accurate. Specifically,

the literature either neglects or provides incorrect answers to three fundamental questions: (i)

how to construct portfolio flows? (ii) how to define price elasticity for long-short portfolios?

(iii) what implicit restrictions does the quadratic-normal setup impose on different portfolios’

price elasticity? I answer all three, establishing a rigorous theoretical foundation that bridges

cross-sectional asset pricing and demand-based asset pricing.

My approach integrates noise trading with factors, drawing inspiration from Kozak,

Nagel, and Santosh (2018). While their model offers valuable insights, it suffers from the

equal-λk issue that is prevalent in other models in the literature. To address this limitation,

my model relaxes the equal-λk constraint, which represents more than just a technical contri-

bution. By relaxing this restriction, the quadratic-normal model of price impacts transforms

from being a microstructure model to one that is capable of generalizing the major asset-

pricing results outlined in Cochrane (2009). This increased flexibility of λk enables empirical

estimation of price impacts for the cross-section of assets using factors.

The arbitrage theory, which has developed since the works of Black and Scholes (1973),

Merton (1973b), and Ross (1976), assumes perfect arbitrage and focuses solely on price

modeling. My contribution to this field is generalizing arbitrage theory to model both price
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and quantity, thereby accounting for more realistic demand effects and the concept of “limits

of arbitrage.” By jointly modeling the factor structures of price and quantity, my theory

distinguishes itself from existing generalizations of APT (e.g., Chamberlain, 1983, Cochrane

and Saa-Requejo, 2000, and Raponi, Uppal, and Zaffaroni, 2022).

My arbitrage approach to demand effects complements the equilibrium approach (Koijen

and Yogo, 2019; Gabaix and Koijen, 2022). Equilibrium models are typically solved in two

steps. First, the response of a given arbitrageur to the trading flows of others is determined

by assuming a specific utility function and payoff distribution, commonly quadratic-normal.

Second, the actions of different arbitrageurs are aggregated to establish the equilibrium price

and quantity. By generically characterizing the relationship between price and quantity, my

arbitrage approach focuses on and enhances the first step of this process, which serves as the

foundation for any competitive equilibrium model that incorporates demand effects.

The term “flow-based SDF” was introduced in section 5.3 of Gabaix and Koijen (2022).

They solve a general equilibrium model and express the model solutions using an SDF that

depends on flows. Additionally, many papers simply assume certain functional forms of how

flows enter the SDF. In contrast, I derive the way in which flows enter the SDF by employing

a set of axiomatic assumptions on price impacts. No existing paper arrives at my F-SDF

pricing equation (1), which serves as the starting point for all my analyses.

In the microstructure literature, a technical trick is involves rotating assets to portfolios

with uncorrelated fundamental risks and assuming that signals on these uncorrelated risks

are also uncorrelated (see chapter 3.8 of Veldkamp, 2011). My marginal contributions can be

found in two key areas. First, I develop a portfolio theory that correctly rotates trading flows.

Second, by rotating to portfolios with both uncorrelated fundamental risks and uncorrelated

flows, I determine how arbitrageurs respond to flow-induced risk in the cross-section through

differential λk. This contrasts with the microstructure literature’s quadratic-normal setup,

which implicitly assumes equal λk for all portfolios.

In my model, price impacts emerge due to arbitrageurs’ aversion to absorbing risk, rather
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than being driven by microstructure or liquidity frictions. This feature distinguishes my

model from the existing literature that investigates the effects of commonality in liquidity

on expected returns (Chordia, Roll, and Subrahmanyam, 2000; Hasbrouck and Seppi, 2001;

Pástor and Stambaugh, 2003).

Dou, Kogan, and Wu (2021) and Kim (2020) show that the commonality in flows in and

out of mutual funds is a priced risk factor. Lo and Wang (2000) establish the factor structure

of trading volume, and Alvarez and Atkeson (2018) consider when volume becomes a risk

factor. In contrast to these studies, my model posits that common flows into the cross-section

of assets do not constitute risk factors but rather impact prices through demand effects.

3 Flow-Based Arbitrage Pricing Theory

In this section, I present flow-based arbitrage pricing theory.

3.1 Flow-Based SDF

Model setup. My model consists of two periods, t = 0 and t = 1. The probability space is

(Ω,F ,P) = (Ω0 × Ω1,F0 × F1,P0 × P1). I use ω0 and ω1 to denote elements of Ω0 and Ω1,

respectively. To avoid ambiguity, I explicitly specify the dependence of random variables on

ω0 and ω1 when necessary.

The model includes N assets. The flow into asset n = 1, . . . , N is represented by fn(ω0),

a random variable that realizes at time 0, with f = (f1, f2, . . . , fN)
⊤. The unit of flow is one

dollar. The payoff of asset n is denoted by Xn(ω1), a random variable that realizes at time

1, with X = (X1, X2, . . . , XN)
⊤.The flow is noisy in the sense that f is independent of the

payoff X. In other words, the flow influences asset prices solely through demand effects, and

I do not model information effects. The gross risk-free rate is a constant, RF , and does not

depend on the flow.

I denote the time-0 price of asset n as Pn(f(ω0)), with P(f) = (P1(f), P2(f), . . . , PN(f))
⊤.
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Figure 1. Model timeline

time t = 0:
probability space: (Ω0,F0,P0)

flow: f(ω0)
asset price: P(f(ω0))

price impact: ∆p(f(ω0))

time t = 1:
probability space: (Ω1,F1,P1)

asset payoff: X(ω1)
fundamental return: R0(ω1)

flow-based SDF: M̃(f(ω0))(ω1)

Notes: The probability space is defined as (Ω,F ,P) = (Ω0 × Ω1,F0 × F1,P0 × P1). The flow f , asset price
P(f), and price impact ∆p(f) are random variables that realize at time 0. Asset payoff X and fundamental
return R0 are random variables that realize at time 1. For any realization of flow f(ω0), the flow-based SDF
M̃(f(ω0)) is a random variable that realizes at time 1.

In contrast to the equilibrium approach, the arbitrage approach does not model specific

economic agents. However, one can envision a representative arbitrageur who absorbs the

flow f , allowing the price P(f) to depend on f . Figure 1 displays the model timeline.

Without loss of generality, I assume that var(X) and var(f) have full rank.11 I also assume

that E[f ] = 0. My theory focuses solely on the unexpected flow.12 Importantly, I do not

impose any specific distributional assumptions on flow or payoff.

The novelty of my framework lies in the fact that different realizations of flow f(ω0)

correspond to distinct states of the world ω0 at time 0. This setup is not only tractable but

also possesses a strong economic rationale. In practice, short-term price impacts generated

by noisy flows typically take a long time to revert before fundamental payoffs realize. In

my model, the transition from time 0 to time 1 represents this lengthy period during which

asset payoffs are largely independent of flows. Endowing flows with a distribution at time

0, rather than inserting an extra time period, highlights the distinction between short-term

and long-term economic considerations.

Flow-based SDF. The LOOP implies that for any given flow f , there exists a standard

11Otherwise, one can select linearly independent portfolios and rotate the payoff X, flow f , and price P(f)
to those portfolios. See Section 3.2 for details on constructing portfolio flows.

12For the price impacts of expected flow, see Vayanos (2021) and Hartzmark and Solomon (2022).
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SDF M(f), which is a random variable that realizes at time 1, such that13

P(f) = E[M(f)X]. (4)

It is important to note that the expectation on the right-hand side is taken over time-1

random variables M(f) and X for any given flow f . When the flow f equals zero, I obtain

P(0) = E[M(0)X]. (5)

For any flow f(ω0), I define price impact as

∆p(f(ω0)) :=

(
P1(f(ω0))− P1(0)

P1(0)
,
P2(f(ω0))− P2(0)

P2(0)
, . . . ,

PN(f(ω0))− PN(0)

PN(0)

)⊤

, (6)

which represents the percentage price change at time 0 with and without flow f(ω0). I

explicitly write out the dependence on ω0 to emphasize the fact that the price impact ∆p(f)

is a random vector that realizes at time 0. I define fundamental return as

R0 :=

(
X1

P1(0)
,

X2

P2(0)
, . . . ,

XN

PN(0)

)⊤

, (7)

which represents asset return when there is no flow and is independent of flow f . I define

the flow-based SDF (F-SDF) as the difference between two standard SDFs with and without

flow f ,

M̃(f) := M(f)−M(0), (8)

which represents the flow-induced changes in the standard SDF.

Taking the difference between (4) and (5) and dividing element-wise by P(0), I obtain

∆p(f) = E[M̃(f)R0]. (9)

13My theory requires only the LOOP, ensuring the existence of an SDF. I do not require the additional
no-arbitrage condition to guarantee a strictly positive SDF (see chapter 4.2 of Cochrane (2009)).
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Since the fundamental return R0 is independent of flow f , equation (9) implies that flow

generates price impact only by varying the F-SDF M̃(f). Intuitively, all the risk preferences

of how the arbitrageur responds to flows are encoded by the F-SDF mapping,

M̃(·) : f(ω0) ∈ RN −→ M̃(f(ω0)) ∈ L2(Ω1,F1,P1), (10)

where L2(Ω1,F1,P1) is the set of square-integrable time-1 random variables. Mathematically,

the mapping M̃(·) is called a random field. The technical challenge lies in tracking multi-

asset flows and returns, as well as their relationship, while the standard arbitrage pricing

tracks only returns. Therefore, I use a random field to characterize the F-SDF, similar to

how a random variable is used to characterize the standard SDF.

The following proposition summarizes the key equations for the F-SDF.

PROPOSITION 1. For any flow f , the F-SDF M̃(f) satisfies

E[M̃(f)R0] = ∆p(f), (11)

E[M̃(f)] = 0. (12)

Equation (11) simply restates (9), which is a consequence of the LOOP. Equation (12)

implies that the F-SDF has zero mean and follows from the assumption that the risk-free

rate RF does not depend on flow f .

3.2 Portfolio Flow Theory

The standard portfolio theory focuses solely on the returns of the N assets. In contrast,

my portfolio theory deals with two spaces—the return space and the flow space of the N

assets. As a result, I need to establish an invariance principle to ensure that my portfolio

flow theory is compatible with the existing portfolio return theory. To achieve this, I first

derive the invariance principle and then apply it to construct portfolio flows.
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Invariance principle. I contend that the inner product between flows and returns

should remain invariant under portfolio formation. To understand why, consider that by

absorbing flow f (in dollar amounts), the change in the arbitrageur’s wealth is14

∆W (f) = RF f
⊤∆p(f)− f⊤(R0 −RF1). (13)

The inner product between the flow and price impact, f⊤∆p(f), represents the total com-

pensation provided to the arbitrageur for absorbing the risk induced by the flow. The payoff

risk is the inner product between the flow and excess fundamental return, f⊤(R0 − RF1).

Equation (13) also demonstrates why the flow f should be measured in dollar amounts, as

the price impact ∆p(f) and fundamental return R0 −RF1 are both measured per dollar.

Portfolio formation is essentially a change of basis used to study the same problem.

Therefore, regardless of whether the problem is expressed in terms of the N original assets

or N portfolios, the arbitrageur’s wealth change ∆W (f) should remain the same. As per

(13), in order to keep ∆W (f) invariant, it is necessary to maintain the invariance of both

the payoff risk f⊤(R0 − RF1) and total compensation f⊤∆p(f). Since both R0 − RF1 and

∆p(f) are returns, the principle is to preserve the inner product between flows and returns

under portfolio formation.

Portfolio flows. I now apply the invariance principle to construct portfolio flows. First,

I consider the straightforward case where one forms N portfolios using N assets. The N×N

portfolio weight matrix is denoted as B = {bn,k}, where portfolio k holds bn,k dollars of

asset n. The returns of the N assets are represented as R = (R1, R2, . . . , RN)
⊤. Standard

portfolio theory implies that the returns of the N portfolios are B⊤R (i.e.,
∑N

n=1 bn,kRn). In

14To derive this equation, I express the flow in the unit of shares h = (f1/P1(0), . . . , fN/PN (0))⊤. The
arbitrageur sells h units of shares at time 0 at price P(f). Consequently, ∆W (f) = RFh

⊤P(f)−h⊤X, which
simplifies to (13) using equations (6) and (7).
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order to construct flows into the N portfolios, it is important to note that

f⊤R ̸= (B⊤f)⊤(B⊤R), but f⊤R = ( B−1f︸ ︷︷ ︸
portfolio flow

)⊤ B⊤R︸ ︷︷ ︸
portfolio return

. (14)

The first half of (14) asserts that constructing portfolio flows using B⊤f (i.e., employing

the same weighted-average method as for constructing portfolio returns) would alter the

inner product between flows and returns, thus violating the invariance principle. The second

half of (14) asserts that adhering to the invariance principle necessitates the construction of

portfolio flows as

q = B−1f or, equivalently, f = Bq =
N∑
k=1

bkqk, (15)

where q = (q1, q2, . . . , qN)
⊤ represents the flows into theN portfolios, and bk = (b1,k, b2,k, . . . , bN,k)

⊤

denotes the weights of portfolio k.

Equation (15) has an intuitive interpretation. I construct portfolio flows as flows into

portfolios—portfolio flows qk first enter portfolio k and are then allocated to individual assets

based on portfolio weights bk. This clarifies why theN -asset flows conform to f =
∑N

k=1 bkqk.

Consequently, to transition from asset flows to portfolio flows, one should apply the inverse

of portfolio weights, B−1. On a deeper level, the invariance principle implies that the process

of portfolio formation in the return space should be reversed in the flow space.

Equation (15) also uncovers a crucial connection—portfolio weights B equal the betas of

asset flows f to portfolio flows q. If portfolio flow qk increases by $1, the flow into asset n

increases by $bn,k. As a result, the weight bn,k of asset n in portfolio k equals the beta of

asset-n flow fn with respect to portfolio-k flow qk. This relationship plays a significant role

when I later characterize cross-sectional price impacts and develop the factor model.

Second, I examine the general case in which K ≤ N portfolios are formed using N assets.

I represent the N × K portfolio weight matrix as B = {bn,k}, where portfolio k holds bn,k

dollars of asset n. Given that the number K of portfolios may be less than the number N

of assets, it is unrealistic to expect a complete recovery of the inner product f⊤R using the
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K portfolios. Instead, the projection of the inner product onto the set of portfolios B could

be kept invariant. To be specific, I obtain

(

projected flow︷ ︸︸ ︷
B(B⊤B)−1B⊤f)⊤

projected return︷ ︸︸ ︷
B(B⊤B)−1B⊤R = f⊤B(B⊤B)−1B⊤R

=((B⊤B)−1B⊤f︸ ︷︷ ︸
portfolio flow

)⊤ B⊤R︸ ︷︷ ︸
portfolio return

. (16)

The flows f and returns R are first projected onto the portfolios B, with B(B⊤B)−1B⊤

representing the standard projection matrix. The first equality stems from the fact that

the projection matrix is idempotent. The second equality shows that the projected inner

product can remain invariant under portfolio formations. When portfolio returns are defined

in the standard manner, B⊤R, portfolio flows need to be defined as the pseudoinverse,

q = (B⊤B)−1B⊤f , which extends the special case q = B−1f when K = N .

The pseudoinverse can also be interpreted as a cross-sectional regression of asset flows f

on portfolio weights B. Observe that if portfolio-k flow increases by $1, asset-n flow rises

by $bn,k. Consequently, if the K portfolio flows are q1, q2, . . . , qK , the resulting flow into

asset n is
∑K

k=1 bn,kqk. To find the portfolio flows q1, q2, . . . , qK that best approximate the

observed asset flows f = (f1, f2, . . . , fN)
⊤, I project asset flows fn onto portfolio weights

bn,1, bn,2, . . . , bn,K , which yields the pseudoinverse15 q = (B⊤B)−1B⊤f .

One may think that the pseudoinverse (B⊤B)−1B⊤f and the transpose B⊤f would be

identical if portfolio weights are orthonormal (i.e., B⊤B = I), implying that the discrepancy

between the correct and incorrect constructions is minimal. However, orthonormal portfolio

weights are economically implausible. For instance, the correlation between the portfolio

weights of the Fama and French (1993) market and small-minus-big factors is approximately

−0.8. This is because the Fama-French construction aims to orthogonalize portfolio returns

15The cross-sectional regression could alternatively be run as weighted least squares (WLS) to obtain
q = (B⊤WB)−1B⊤Wf for some N × N weighting matrix W. Online Appendix B considers this case.
I demonstrate that the WLS construction can be interpreted as first rotating the N asset flows f into N
equivalent portfolios and then projecting these N portfolios onto the K portfolio weights B.
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(which possess economic significance) rather than orthogonalize portfolio weights (which lack

such meaning).

3.3 Flow-Based Hansen-Jagannathan Bound

I establish the flow-based Hansen-Jagannathan bound, which states that for any fixed flow,

the minimum volatility of the F-SDF is equal to the maximum price impact ratio. This

bound encapsulates the notion that “noisy flows shock the SDF and change asset prices

today, leading to flow-induced return predictability in the future.”

By the pricing equation (11), the price impact of any portfolio c ∈ RN is c⊤∆p(f) =

E[c⊤R0M̃(f)]. Using the F-SDF’s zero-mean property from (12), I have

E[c⊤R0M̃(f)] = corr(c⊤R0, M̃(f))σ(c⊤R0)σ(M̃(f)), (17)

where σ(·) denotes volatility. Because the correlation |corr(c⊤R0, M̃(f))| ≤ 1 for any port-

folio c, I have

σ(M̃(f)) ≥ max
c∈RN

c⊤∆p(f)

σ(c⊤R0)
. (18)

On the right-hand side, the numerator c⊤∆p(f) represents the portfolio’s price impact,

while the denominator σ(c⊤R0) denotes the portfolio’s fundamental-return volatility. Con-

sequently, c⊤∆p(f)/σ(c⊤R0) is termed the price impact ratio of portfolio c under flow f , and

the right-hand side of (18) is the maximum price impact ratio (MPIR) across all portfolios.

Inequality (18) demonstrates that, for any fixed flow f , the F-SDF’s volatility is no less

than the maximum price impact ratio. Appendix A.1 establishes that this bound is tight.

PROPOSITION 2. The flow-based Hansen-Jagannathan bound is

min
M̃(f)

σ(M̃(f)) = max
c∈RN

c⊤∆p(f)

σ(c⊤R0)
(19)
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for any given flow f . Specifically, the minimum volatility F-SDF is

M̃∗(f) = ∆p(f)⊤var(R0)
−1(R0 − E[R0]). (20)

The crux of Proposition 2 lies in the portfolio that generates the maximum price impact

for a given level of fundamental risk. Intuitively, shorting the MPIR portfolio represents

the mean-variance optimal strategy to capitalize on flow-induced changes in risk premiums.

Equation (19) shows that the MPIR is equal to the minimum volatility of the F-SDF, which

corresponds to the flow-induced changes in standard SDFs.

The minimum volatility F-SDF M̃∗(f) in (20) represents the projection of any F-SDF

onto the space spanned by R0 − E[R0]. I denote this space as R0 − E[R0] and refer to it as

the fundamental-risk space. Appendix A.1 provides a proof for the following corollary.

COROLLARY 1. For any flow f , the minimum-volatility F-SDF M̃∗(f) in (20) is the

unique F-SDF in the fundamental-risk space R0 − E[R0].

Given this corollary, I require that M̃(f) ∈ R0 − E[R0] for every f ∈ RN in order to

streamline the characterization of the F-SDF mapping from f to M̃(f).

Relationship with standard theory. The original Hansen and Jagannathan (1991)

bound demonstrates that the maximum Sharpe ratio equals the minimum volatility of the

standard SDF (multiplied by the risk-free rate RF ). Applied to my setting and utilizing (6)

and (7), the minimum-volatility standard SDF under flow f is16

M∗(f) =
1

RF

+

(
∆p(f)− E[R0 −RF1]

RF

)⊤

var(R0)
−1(R0 − E[R0]). (21)

Therefore, the difference between two minimum-volatility standard SDFs, M∗(f) and M∗(0),

is equal to my minimum-volatility F-SDF, M̃∗(f).

Figure 2 illustrates the relationship with standard theory. The original Hansen-Jagannathan

bound demonstrates that the volatility of M∗(f) and M∗(0) (times the risk-free rate RF )

16Refer to equation (5.25) in Cochrane (2009).
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Figure 2. Relationship with standard theory

time t = 0 without flow:
SDF: M(0)

time t = 0 with flow f :
SDF: M(f)

time t = 1:
payoff X

max Sharpe ratio
without flow = σ(M∗(0))RF

max Sharpe ratio
with flow f = σ(M∗(f))RF

F-SDF: M̃(f) = M(f)−M(0)
max price impact ratio

= σ(M̃∗(f))

Notes: The F-SDF, M̃(f), is the difference between two standard SDFs, M(f) and M(0). The original
Hansen-Jagannathan bound demonstrates that the volatility of M∗(f) and M∗(0) (times the risk-free rate
RF ) is equal to the maximum Sharpe ratio in the economy with and without flow f , respectively. The
flow-based Hansen-Jagannathan bound indicates that the volatility of M̃∗(f) = M∗(f)−M∗(0) corresponds
to the maximum price impact ratio under flow f .

corresponds to the respective maximum Sharpe ratios. The flow-based Hansen-Jagannathan

bound shows that the volatility of M̃∗(f) = M∗(f)−M∗(0) equals the MPIR.

Moreover, An, Su, and Wang (2022) show that a simple transformation exists between the

optimal portfolios depicted in Figure 2. Specifically, the portfolio achieving the maximum

Sharpe ratio in the economy with flow f is obtained by longing the portfolio that achieves

the maximum Sharpe ratio in the economy without flow and shorting the MPIR portfolio. In

other words, to achieve the maximum Sharpe ratio, an investor simply needs to first estimate

the MPIR portfolio (which encapsulates all the flow information) and then combine it with

fundamental investing (which does not require any flow information). Empirically, they

estimate the MPIR portfolio using mutual fund flows. They find that the MPIR strategy

enhances the out-of-sample Sharpe ratio of a broad spectrum of firm characteristics-based

anomaly portfolios (which proxy fundamental investing) by an average of 0.3 per annum.

3.4 Linear Model of F-SDF

The results so far have assumed only the LOOP. I now introduce additional economic con-

straints to further refine the form of the F-SDF.

20



ASSUMPTION 1. Linearity of price impact

For any a1 ∈ R, a2 ∈ R, f1 ∈ RN , and f2 ∈ RN , I have

∆p(a1f1 + a2f2) = a1∆p(f1) + a2∆p(f2). (22)

The linearity of price impact is an assumption, not a consequence of the LOOP. The

economy with flow f1 differs from the economy with flow f2. The LOOP does not apply

between the two economies. Linearity implies that price impact doubles if flow doubles and

that price impact is additive for two flows. The linearity assumption is made for two reasons.

Theoretically, quadratic-normal models in the literature fall within this broader class of

linear price impact models. Empirically, researchers implicitly linearize price impacts, at

least locally, when estimating price elasticities.

ASSUMPTION 2. Positive compensation for risk

For any f ̸= 0, I have f⊤∆p(f) > 0.

Recall that (13) demonstrates that f⊤∆p(f) represents the arbitrageur’s risk compensa-

tion for absorbing flow f . Assumption 2 stipulates that this compensation must be strictly

positive for any non-zero flow. Intuitively, f⊤∆p(f) > 0 indicates that when there is an

inflow into an asset, the asset’s price should increase rather than decrease.

The LOOP, linearity, and positive compensation for risk enable me to express the F-SDF

in a linear form. Appendix A.2 contains a proof.

PROPOSITION 3. There exists a unique F-SDF that satisfies the following:

i. pricing equation: E[M̃(f)R0] = ∆p(f) for every f ∈ RN ;

ii. zero-mean property: E[M̃(f)] = 0 for every f ∈ RN ;

iii. projection: M̃(f) ∈ R0 − E[R0] for every f ∈ RN ;

iv. linearity in Assumption 1.
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v. positive compensation for risk in Assumption 2.

Specifically, this unique F-SDF can be written as

M̃∗(f) = (Yf)⊤(R0 − E[R0]), (23)

for some N ×N matrix Y such that var(R0)Y is positive definite.

The F-SDF M̃∗(f) in (23) has N2 free parameters Y. To simplify the notation, in the

following discussion, I use M̃(f) instead of M̃∗(f) to represent this unique F-SDF.

Roadmap for the remaining paper. The F-SDF in (23) implies a price impact model

∆p(f) = E[M̃(f)R0] = var(R0)Yf . (24)

Intuitively, equation (24) contains the right components, as var(R0) represents risk and f

corresponds to flow. However, theN2 free parameters inY and the requirement for var(R0)Y

to be positive definite impede both theoretical interpretation and empirical application.

Consequently, the remainder of this paper introduces additional economic constraints to

reduce the number of free parameters.

Specifically, under model (24), the flow into any asset can impact the price of any other

asset or portfolio. Intuition suggests that some price impacts in the cross-section are plau-

sible, while others are not. This cross-sectional restriction on price impacts is formalized as

the Irrelevance of Uncorrelated Flows (IUF), which reduces the number of free parameters in

(24) from N2 to N . I then impose the flow-based APT to further reduce this number from

N to a low-dimensional K. The IUF is an economically novel and somewhat abstract con-

cept that employs an unfamiliar mathematical tool. Thus, the remainder of this section and

Section 3.6 aim to help readers understand various aspects of the IUF. Section 3.7 presents

the flow-based APT.

Another way to comprehend the IUF is by comparing it with the literature’s quadratic-
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normal setup. Section 3.5 demonstrates that the quadratic-normal setup, which directly

reduces the free parameters of (24) from N2 to 1, is a special case of the IUF. Notably, my

more general model also unveils a new channel of cross-impacts.

Irrelevance of Uncorrelated Flows. Intuitively, not all cross-asset price impacts are

plausible. For a simple example, consider two assets that have uncorrelated flows f and

uncorrelated fundamental returns R0. In this case, one should not expect the flow into the

first asset to impact the second asset’s price. The IUF formalizes this intuition by eliminating

all such implausible price impacts in a setting with general covariance structures of flows

and fundamental returns.

ASSUMPTION 3. Irrelevance of Uncorrelated Flows (IUF)

I define the set of matrices,

C :=
{
C ∈ RN×N | var(R0)var(f)C = Cvar(f)var(R0)

}
. (25)

For any given portfolio a ∈ RN and flow s, I construct the portfolio,

d = (cov(f1, s), cov(f2, s), . . . , cov(fN , s))
⊤ . (26)

If a⊤Cd = 0 for all C ∈ C, then cov(a⊤∆p(f), s) = 0.

From a big-picture perspective, the IUF asserts that some types of price impacts in the

cross-section should be zero. Matrix math is employed to precisely characterize these price

impacts. Let me explain the details.

In the cross-section of the N assets, the key objects are the covariance structure of

fundamental returns var(R0) and noisy flows var(f). Collectively, they determine the flow-

induced fundamental risk that the arbitrageur absorbs. Intuitively, any N × N matrix

C that satisfies equation (25) selects one particular combination of the flow-induced risk.

The set C characterizes all possible combinations of the flow-induced risk. Mathematically,
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this occurs because commuting matrices preserve eigenvectors, which represent the most

significant directions of risks induced by the flows.

The IUF’s objective is to characterize the relationship between the price impact of any

portfolio a ∈ RN and flow s. To achieve this, I need to identify the portfolio that s flows into.

In other words, if flow s varies, how would the flow into each asset n change? The answer

is the beta of asset flow fn to flow s, given by cov(fn, s)/var(s). Recall the key insight from

my portfolio theory (15) that flow betas are portfolio weights. Therefore, the weight of asset

n in the portfolio that s flows into is cov(fn, s)/var(s). This result gives the portfolio d in

(26), where, for maximal simplicity, I further normalize all portfolio weights by var(s).

In plain words, the condition “a⊤Cd = 0 for all C ∈ C” implies that the portfolios a and

d are uncorrelated for every combination of the flow-induced risk. Under this condition, the

IUF mandates that flow s should not impact the price of portfolio a, which is characterized

through covariance cov(a⊤∆p(f), s) = 0.

The following Theorem 1 presents the linear model of the F-SDF.

THEOREM 1. There exists a unique F-SDF M̃(·) that satisfies all restrictions in Propo-

sition 3 and the IUF Assumption 3.

The proof of Theorem 1 is provided in Appendix A.4. I now present the key steps. Using

Proposition 3, I explicitly construct a particular F-SDF of form (23), referred to as the

canonical form. I then prove that the price impacts ∆p(f) satisfy the IUF if and only if the

corresponding F-SDF M̃(f) can be expressed in the canonical form.

Canonical form of F-SDF. I introduce a technical restriction to simplify the exposition

in the main text.

ASSUMPTION 4. Let the Cholesky decomposition of the fundamental risk matrix be

var(R0) = U⊤U, where U is an N × N upper triangular matrix. I assume that the matrix

var(Uf) has distinct eigenvalues.

Intuitively, Uf represents the fundamental-risk-weighted flow, as U is derived from the
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Cholesky decomposition of the fundamental risk matrix var(R0). As I shall demonstrate,

Uf plays a critical role in determining the arbitrageur’s price response to absorbing the

flow f . Recall that in undergraduate linear algebra courses, distinct eigenvalues are the

straightforward and general case, while duplicate eigenvalues are the complex and knife-edge

case. The same applies to my theory. Online Appendix A presents the theory when var(Uf)

can have duplicate eigenvalues. In that scenario, the IUF does not constrain how flows

impact the price of portfolios within the same eigenspace. Intuitively, this occurs because

the commonality in flows and fundamental risks fails to uniquely pin down N asset-pricing

factors. Consequently, the theory acknowledges data limitations, and the resulting price

impact model is less restrictive.

The following lemma constructs the orthogonalized factors for the canonical form. Ap-

pendix A.3 provides a proof.

LEMMA 1. There exist N unique (up to multiplication by −1) portfolios bn = (b1,n, b2,n, . . . , bN,n)
⊤,

which I denote as a matrix B = (b1,b2, . . . ,bN), satisfying

i. factor decomposition of flow

f =
N∑

n=1

bnqn = Bq, (27)

where qn is the flow into portfolio n and q = (q1, q2, . . . , qN)
⊤.

ii. uncorrelated fundamental risk

B⊤var(R0)B = IN . (28)

iii. uncorrelated flow

var(q) = diag(π1, π2, . . . , πN) := Π, (29)

where π1 > π2 > · · · > πN > 0.

I refer to the portfolios b1,b2, . . . ,bN as (orthogonalized) factor portfolios and the flows
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Figure 3. Intuition for the canonical form of the F-SDF

factor flow: q1
factor portfolio: b1

arbitrageur
flow to absorb: −q1
risk: b⊤

1 (R0 − E[R0])
price of flow-induced risk: λ1

...

...

factor flow: qn
factor portfolio: bn

arbitrageur
flow to absorb: −qn
risk: b⊤

n (R0 − E[R0])
price of flow-induced risk: λn

...

...

factor flow: qN
factor portfolio: bN

arbitrageur
flow to absorb: −qN
risk: b⊤

N (R0 − E[R0])
price of flow-induced risk: λN

Notes: The N orthogonalized factor portfolios exhibit uncorrelated fundamental risk, b⊤
n (R0 − E[R0]), and

uncorrelated flow, qn. Factor portfolios do not have cross-impacts, and the arbitrageur responds to each
factor flow independently. Each factor’s price of flow-induced risk is a free parameter, denoted as λn > 0.

q1, q2, . . . , qN as (orthogonalized) factor flows. The factor decomposition (27) justifies this

interpretation. According to (28), factor portfolios have uncorrelated and unit fundamental

risk. As per (29), factor flows are uncorrelated and ranked from the largest variance to the

smallest. These factor portfolios are uniquely determined.

To better comprehend the orthogonalized factors, I compare them to a naive principal

component analysis (PCA) performed on the flow f = Bq. The naive PCA enforces the

orthogonalization condition B⊤B = I, which implies that the portfolio weights of different

factors are orthogonal to one another. Regrettably, orthogonal portfolio weights lack eco-

nomic significance. Instead, my orthogonalized factors are constructed under the condition

B⊤var(R0)B = I, signifying that the fundamental risks of different factors are orthogonal

to each other. The corresponding factor flows q1, q2, . . . , qN are the principal components of

the fundamental-risk-weighted flows Uf , where var(R0) = U⊤U, and π1, π2, . . . , πN are the

eigenvalues of var(Uf). The orthogonalized factors yield the canonical form of the F-SDF.

DEFINITION 1. The canonical form of the F-SDF is

M̃(f) =
N∑

n=1

λnqnb
⊤
n (R0 − E[R0]) = (Λq)⊤B⊤(R0 − E[R0]), (30)

where Λ = diag(λ1, λ2, . . . , λN) is an N ×N diagonal matrix with λn > 0 for all n.

Figure 3 illustrates the intuitions underlying the canonical form. For each factor n,
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b⊤
n (R0 − E[R0]) represents the per-unit fundamental risk when the arbitrageur absorbs the

flow qn. The N orthogonalized factor portfolios have uncorrelated fundamental risk, b⊤
n (R0−

E[R0]), and uncorrelated flow, qn. The IUF implies that these factor portfolios do not have

cross-impacts, and the arbitrageur reacts to each factor flow independently. For each factor

n, the price change for each unit of factor risk, b⊤
n (R0−E[R0]), induced by factor flow qn, is

measured by a free parameter, λn, which I term the price of flow-induced risk. The intuition

that flows cause positive price impacts is characterized by the restriction λn > 0.

Comparing the canonical form (30) with the linear form (23), one can see that the IUF

restricts the price-of-flow-induced-risk matrix, Λ = diag(λ1, λ2, . . . , λN), to be diagonal. This

means that cross-impacts do not exist between any two orthogonalized factors n ̸= m, and

thus the canonical form does not have any off-diagonal terms of the form qnb
⊤
m(R0−E[R0]).

Appendix A.4 formally proves that price impacts ∆p(f) satisfy the IUF if and only if the

corresponding F-SDF M̃(f) can be written into the canonical form (30), thereby completing

the proof of Theorem 1. In other words, the canonical form (30) completely characterizes

the IUF condition and vice versa.

Structural restrictions for the general form of the F-SDF. Empirically, one might

not want to use the orthogonalized factor portfolios B = (b1,b2, . . . ,bN) to characterize the

F-SDF and the cross-section of price impacts. Instead, one might want to choose a set

of portfolios B̃ = (b̃1, b̃2, . . . , b̃N) that have more explicit economic interpretations. For

example, b̃1 could be the Fama-French high-minus-low (HML) portfolio, and b̃2 could be

the small-minus-big (SMB) portfolio. In this case, the factor flow q̃ = (q̃1, q̃2, . . . , q̃N)
⊤

defined using f = B̃q̃ also has more explicit interpretations. Using the same example, q̃1 is

the HML factor flow, and q̃2 is the SMB factor flow.

In the general case, the price-of-flow-induced-risk matrix is not necessarily diagonal but

satisfies a structural restriction imposed by the IUF. Such a matrix also has N degrees of

freedom, as the canonical form does. Appendix A.5 provides a proof.
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PROPOSITION 4. The general form of the F-SDF is

M̃(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mb̃
⊤
n (R0 − E[R0]) = (Λ̃q̃)⊤B̃⊤(R0 − E[R0]). (31)

The price-of-flow-induced-risk matrix Λ̃ satisfies, for some N ×N invertible matrix O,

O−1Λ̃O = Λ, where Λ is diagonal and positive definite, (32)

O⊤B̃⊤var(R0)B̃O = IN , (33)

OΠO⊤ = var(q̃), where Π is diagonal and positive definite. (34)

Linear model of price impacts. By the canonical form (30), the cross-section of price

impacts satisfies

∆p(f) = E[M̃(f)R0] =
N∑

n=1

λnqncov(R0,b
⊤
nR0). (35)

In particular, the price impact of the factor portfolio bn is

b⊤
n∆p(f) = λnqnvar(b

⊤
nR0). (36)

My model is similar to the canonical factor model. The quantity of risk induced by every

dollar of factor-n flow qn is the factor’s fundamental risk var(b⊤
nR0). The price of flow-

induced risk λn measures how each unit of factor risk induced by factor flow changes the

factor price. In the next section, I provide more intuitions on λn by comparing it with

equilibrium models.

Similarly, the general form of the F-SDF in (31) implies

∆p(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mcov(R0, b̃
⊤
nR0), (37)

where λ̃n,m measures how flow q̃m impacts the price of portfolio b̃n. Recall that the set
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of parameters λ̃n,m are not N2 free parameters but have only N degrees of freedom as

determined by Proposition 4.

3.5 Commonality-In-Flow Paradox

The standard approach to solving multi-asset price impact models involves imposing as-

sumptions on both the utility function and the payoff distribution. Commonly, the utility

function is assumed to be quadratic or CARA, while the payoff distribution is assumed to be

multivariate normal. Online Appendix C shows that the static CARA (quadratic)-normal

price impact model is a special case of my IUF model (35). This is done by further requiring

that λ1 = λ2 = · · · = λN = γ/(µRF ), where γ represents the arbitrageurs’ CARA risk

aversion, µ denotes the mass of arbitrageurs, and RF is the gross risk-free rate.

Economically, the static quadratic-normal setup requires that arbitrageurs must be equally

averse to risks induced by flows into different portfolios. This restriction is strong and unreal-

istic, which is why my IUF condition removes it. Simultaneously, the static quadratic-normal

setup also imposes a realistic restriction on the cross-section of price impacts, which is pre-

cisely revealed by my IUF condition.

In addition to providing greater flexibility than the quadratic-normal model, my model

also uncovers a new channel of cross-asset price impacts. I illustrate this channel using

a commonality-in-flow paradox—do portfolios with uncorrelated fundamental returns have

any cross-impact other than the mechanical effect driven by the flow covariance? My model

predicts in general yes, and the static quadratic-normal model predicts absolutely no.

The new channel arises precisely because my model has more degrees of freedom in λn

than the static quadratic-normal model. In my model, the flow of asset B changes the prices

of different factors, which then affect the price of asset A by no arbitrage. In the special

quadratic-normal setup where all factors have the same λn, the changing prices of different

factors exactly cancel out, leaving the price of asset A unchanged.

I now present the precise math. I consider N portfolios b̃1, b̃2, . . . , b̃N with uncorrelated
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fundamental returns, i.e., cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 for n ̸= m. The question is, holding all else

equal, does flow q̃m into portfolio m impact the price b̃⊤
n∆p(f) of portfolio n for m ̸= n?

Importantly, “holding all else equal” controls for the portfolio-n flow q̃n, and thus eliminates

the mechanical cross-impact arising from q̃m changing q̃n.

By (37), the price impact of portfolio b̃n under my IUF model is

b̃⊤
n∆p(f) =

N∑
m=1

λ̃n,mq̃mvar(b̃
⊤
nR0), (38)

where the price-of-flow-induced-risk matrix Λ̃ = {λ̃n,m} is given by equation (32),

Λ̃ = OΛO−1 = Odiag(λ1, λ2, . . . , λN)O
−1. (39)

The matrixO rotates the portfolios b̃1, b̃2, . . . , b̃N to the factor portfolios b1,b2, . . . ,bN that

have both uncorrelated fundamental returns and uncorrelated flows. Equation (39) shows

that the off-diagonal term λ̃n,m is generally nonzero for m ̸= n. Therefore, by (38), flow q̃m

into portfolio m impacts the price b̃⊤
n∆p(f) of portfolio n.

The static quadratic-normal model, which further requires λ1 = λ2 = · · · = λN , is a

special case of my IUF model. In this special case, equation (39) implies that

Λ̃ = Odiag(λ1, λ1, . . . , λ1)O
−1 = diag(λ1, λ1, . . . , λ1) (40)

is diagonal, i.e., λ̃n,m = 0 for m ̸= n. Therefore, flow q̃m into portfolio m does not impact

the price b̃⊤
n∆p(f) of portfolio n.

Equation (39) also implies a powerful empirical test for the new channel of cross-impacts.

If the prices of flow-induced risk λ1, λ2, . . . , λN are not equal, one can construct portfolios

b̃1, b̃2, . . . , b̃N that have uncorrelated fundamental returns but cross-impacts between each

other. Empirically, An, Su, and Wang (2022) reject the null hypothesis that all λn are equal

and thus support the new channel.
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3.6 Optimality of the IUF Orthogonalization

This section proves that the IUF is the optimal orthogonalization—the IUF is the only way of

reducing the N2 model (24) to an N -factor model, while keeping each factor’s price elasticity

invariant and keeping the arbitrageur’s expected utility invariant. Simply put, if one wants

to choose N factors to span the cross-section of price impacts as in (35), the N factors

selected by my IUF condition are the unique optimal choice. This section is presented under

the regularity Assumption 4. Online Appendix A presents the general theory without the

regularity assumption.

I first define the meaning of orthogonalizing the N2 model to an N -factor model.

DEFINITION 2. Each set of N linearly independent portfolios B̃ = (b̃1, b̃2, . . . , b̃N) de-

fines a model orthogonalization. The N2 model (24) under portfolios B̃ is17

∆p(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mcov(R0, b̃
⊤
nR0), (41)

with the N × N free parameters Λ̃ = {λ̃n,m} and portfolio flows q̃ = (q̃1, q̃2, . . . , q̃N)
⊤. The

orthogonalized N-factor model under portfolios B̃ is defined as

∆p̄(f) =
N∑

n=1

λ̃n,nq̃ncov(R0, b̃
⊤
nR0). (42)

By Definition 2, model orthogonalization means that one picks a specific set of N

portfolios B̃ = (b̃1, b̃2, . . . , b̃N) and removes the off-diagonal terms of the corresponding

Λ̃ = {λ̃n,m}. By Theorem 1, the IUF is a particular model orthogonalization that chooses

the specific factor portfolios B = (b1,b2, . . . ,bN) with uncorrelated fundamental returns

and uncorrelated flows.

To understand why the IUF is the optimal orthogonalization, I next define the arbi-

trageur’s expected utility. Let the arbitrageur’s wealth under flow f be denoted as W (f).

17The transformation between (24) and (41) is given by Y = B̃Λ̃B̃−1.
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Also, let the arbitrageur’s utility function on her wealth be denoted as u(·). By absorbing

flow f , the arbitrageur’s expected utility is given by

E[u(W (f))] = E[u(W (0) +RF f
⊤∆p(f)− f⊤(R0 −RF1))], (43)

where I use equation (13). As discussed in Section 3.2, f⊤∆p(f) represents the arbitrageur’s

compensation for absorbing the flow-induced risk, and f⊤(R0 − RF1) represents the total

payoff risk.

Since flow f is random, the compensation for risk, f⊤∆p(f), also varies. However, flow

f is independent of the assets’ payoff X, implying that f⊤∆p(f) is also independent of X.

Therefore, to eliminate the second-order effect of the arbitrageur’s aversion to the varying

compensation f⊤∆p(f), I assume that the arbitrageur is averse only to the fundamental risk,

i.e., for some function ũ(·),

u(W (0) +RF f
⊤∆p(f)− f⊤(R0 −RF1)) = RF f

⊤∆p(f) + ũ(W (0)− f⊤(R0 −RF1)). (44)

Using equations (43) and (44), I simplify the arbitrageur’s expected utility as

E[u(W (f))] = RFE[f⊤∆p(f)] + E[ũ(W (0)− f⊤(R0 −RF1))]. (45)

The key insight from (45) is that the price impact ∆p(f) affects the expected utility E[u(W (f))]

only by varying the expected compensation for risk E[f⊤∆p(f)]. Therefore, if I hold E[f⊤∆p(f)]

constant while reducing the N2 model to an N -factor model, I can ensure that the expected

utility E[u(W (f))] remains invariant for any utility function. Theorem 2 applies this insight

and shows that the IUF indeed keeps E[f⊤∆p(f)] invariant. Appendix A.6 provides a proof.

THEOREM 2. Fix any model orthogonalization B̃ = (b̃1, b̃2, . . . , b̃N). The orthogonalized

model (42) satisfies the IUF for any N parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N if and only if for any

N2 parameters Λ̃ = {λ̃n,m},
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� a one-unit shock to portfolio flow q̃n causes the same amount of impact to the price of

portfolio b̃n under the N2 model (41) and the orthogonalized model (42),

∂b̃⊤
n∆p(f)

∂q̃n
=

∂b̃⊤
n∆p̄(f)

∂q̃n
. (46)

� the arbitrageur’s expected utility E[u(W (f))] remains invariant under (41) and (42).

Theorem 2 is an if-and-only-if characterization, demonstrating that the IUF is the only

model orthogonalization that satisfies two key properties. First, (46) ensures that each fac-

tor’s price elasticity remains invariant for the N2 model and the orthogonalized N -factor

model. Empirically, this property ensures that the price impact regression for the orthogo-

nalized model correctly recovers each factor’s elasticity λ̃n,n.

Second, model orthogonalization eliminates off-diagonal terms of Λ̃ = {λ̃n,m}, and as a

result, it necessarily loses some information. The IUF is the unique optimal orthogonaliza-

tion in the sense that it preserves the arbitrageur’s expected utility E[u(W (f))]. My arbitrage

approach to price impacts does not make any parametric assumptions regarding the arbi-

trageur’s utility function. Nonetheless, I prove that the IUF ensures that the expected utility

remains invariant under the N2 model and the orthogonalized N -factor model.

3.7 Flow-Based APT

This section develops the flow-based APT to reduce the N -factor model of price impacts

(35) to a low-dimensional K-factor model.

I write the N -asset flow as the N -orthogonalized-factor structure f =
∑N

n=1 bnqn. The

factor portfolios bn and factor flows qn are the orthogonalized ones in the canonical form

(30), and flows qn are sorted such that their variance satisfies π1 > π2 > · · · > πN > 0. The

N -factor price impact model (35) is ∆p(f) =
∑N

n=1 λnqncov(R0,b
⊤
nR0). In the flow-based

APT, I use the first K orthogonalized factor flows, f =
∑K

k=1 bkqk + e, where e is an N × 1
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vector of idiosyncratic flows. The corresponding K-factor price impact model is

∆p̌(f) =
K∑
k=1

λkqkcov(R0,b
⊤
k R0). (47)

Under what conditions can I bound the pricing error ∆p(f)−∆p̌(f) of price impacts? The

following proposition provides the answer, and Appendix A.7 presents a proof.

PROPOSITION 5. Let ∥v∥ be the L2 norm of vector v. I assume that

max
∥f∥=1

σ(M̃(f)) ≤ H (48)

for some constant H. If
∑N

n=K+1 πn tends to zero, then E[∥∆p(f)−∆p̌(f)∥2] tends to zero

uniformly for all F-SDF M̃(·).

Condition (48) requires the F-SDF M̃(f) not to be overly volatile. Because the F-SDF

M̃(f) is linear in flow f , I bound the F-SDF volatility on the sphere ∥f∥ = 1. By the

flow-based Hansen-Jagannathan bound, the bound on the volatility of the F-SDF is also the

bound on the maximum price impact ratio. If the price impact ratio is too high, small flows

into some portfolio with little fundamental risks would have a large price impact. These

opportunities represent very good deals for arbitrageurs—they can trade against flows to

take advantage of price dislocations while taking on little fundamental risks. Condition (48)

stipulates that these good deals should not exist.

The variance
∑N

n=K+1 πn of idiosyncratic flows tending to zero means that flows have

a factor structure. Data support this empirical assumption (Hasbrouck and Seppi, 2001).

The term ∆p(f)−∆p̌(f) is the pricing error of the price impacts between the true N -factor

model and the approximate K-factor model under a given flow f . Because f is random,

E[∥∆p(f)−∆p̌(f)∥2] tending to zero implies that I have a good approximation in the mean-

squared-error sense. In sum, if the F-SDF is not overly volatile, the factor structure of flows

implies the factor model of price impacts.
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One may wonder if there exists a version of the flow-based APT that does not impose

the IUF and directly reduces the N2 model (24) to some K2 model (i.e., skipping from

Proposition 3 to this section). Online Appendix D shows that the answer is no. Without the

IUF, there is no proper theoretical justification for eliminating the cross-impacts of factor

flows on portfolios that idiosyncratic flows go into.

4 Conclusion

I develop a new approach, model, and definition to study demand effects in asset pricing.

My approach generalizes arbitrage pricing and avoids making any parametric assumptions

on the utility function and payoff distribution, which are commonly found in equilibrium

literature. By doing so, I reveal and relax an unrealistic cross-sectional restriction on price

impacts present in the literature’s quadratic-normal setup. In this process, I develop new

theoretical tools that generalize textbook tools, including flow-based SDF, portfolio flow

theory, flow-based Hansen-Jagannathan bound, IUF, and flow-based APT.

In my model, price impacts between underlying assets occur through factors that connect

to these assets via the covariance structure of noisy flows and fundamental risks. Specifically,

I develop a new definition for factor-level demand elasticity, highlighting that the conven-

tional definition is inadequate and ill-defined.
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A Appendix for Proofs

In this appendix, I provide proofs omitted in the main text.

A.1 Proof of Proposition 2

I write the F-SDF M̃(f) in the fundamental-risk space spanned by R0 − E[R0] as M̃
∗(f) =

(R0 − E[R0])
⊤b for some b ∈ RN . By equation (11), I have ∆p(f) = var(R0)b. Therefore,

I have b = var(R0)
−1∆p(f) and thus

M̃∗(f) = (R0 − E[R0])
⊤var(R0)

−1∆p(f). (A.1)

The variance of M̃∗(f) is var(M̃∗(f)) = ∆p(f)⊤var(R0)
−1∆p(f).

I claim that

var(M̃∗(f)) ≤ max
c∈RN

∆p(f)⊤cc⊤∆p(f)

var(c⊤R0)
. (A.2)

I choose portfolio c = var(R0)
−1∆p(f). Therefore, I have

∆p(f)⊤cc⊤∆p(f)

var(c⊤R0)
=

(∆p(f)⊤var(R0)
−1∆p(f))2

c⊤var(R0)c
= ∆p(f)⊤var(R0)

−1∆p(f). (A.3)

Therefore, I have proved (A.2). Combining with inequality (18) in the main text, I have

proved the flow-based Hansen-Jagannathan bound.
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A.2 Proof of Proposition 3

First, I show that linearity Assumption 1 implies the linearity of the F-SDF. Using condition

iii and Corollary 1, I have, for any a1 ∈ R, a2 ∈ R, f1 ∈ RN , and f2 ∈ RN ,

M̃(a1f1 + a2f2) =∆p(a1f1 + a2f2)
⊤var(R0)

−1(R0 − E[R0])

= (a1∆p(f1) + a2∆p(f2))
⊤ var(R0)

−1(R0 − E[R0])

= a1M̃(f1) + a2M̃(f2). (A.4)

I define cn as an N × 1 vector with only the n-th entry being one and all other entries

being zero. Equation (A.4) implies that M̃(f) =
∑N

n=1 fnM̃(cn). Condition iii implies that

M̃(cn) ∈ R0 − E[R0] for all n = 1, 2, . . . , N . By Corollary 1, for each n, there exists a unique

M̃∗(cn) ∈ R0 − E[R0], such that M̃∗(cn) = y⊤
n (R0 −E[R0]) for some yn ∈ RN . Therefore, I

have

M̃(f) =
N∑

n=1

fny
⊤
n (R0 − E[R0]) = (Yf)⊤(R0 − E[R0]), (A.5)

where Y = (y1,y2, . . . ,yN). Equation (24) and Assumption 2 imply that var(R0)Y is

positive definite.

A.3 Proof of Lemma 1

Because the matrix var(R0) has full rank, I carry out Cholesky decomposition and obtain

var(R0) = U⊤U, where U is an N × N upper triangular matrix with positive diagonal

entries. I then carry out eigenvalue decomposition of the symmetric matrix Uvar(f)U⊤.

Because var(f) has full rank, I obtain

Uvar(f)U⊤G = GΠ, (A.6)
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whereΠ = diag(π1, π2, . . . , πN) andG is anN×N orthonormal matrix satisfyingG⊤G = IN .

I then define B = U−1G, where the upper triangular matrix U with positive diagonal entries

is by definition invertible.

I now show that the constructed B satisfies the conditions (28) and (29). First, I have

B⊤var(R0)B = G⊤(U⊤)−1U⊤UU−1G = IN . (A.7)

Second, because f = Bq, I have

var(f) = Bvar(q)B⊤. (A.8)

From (A.6), I have Uvar(f)U⊤UB = UBΠ. Because U is invertible, I have

var(f)U⊤UB = BΠ. (A.9)

Plugging (A.8) into (A.9), I obtain

BΠ = Bvar(q)B⊤U⊤UB = Bvar(q), (A.10)

where I have used B⊤U⊤UB = G⊤G = IN . Equation (A.10) implies var(q) = Π.

Finally, I show the uniqueness of the matrix B. Suppose that some other matrix B̃

satisfies (28) and (29). I define G̃ = UB̃. I then have G̃⊤G̃ = IN and G̃⊤Uvar(f)U⊤G̃ = Π.

Assumption 4 requires that Uvar(f)U⊤ has distinct eigenvalues, which implies that matrix

G̃ is unique up to multiplication by −1 for any columns (recall that I have arranged the

eigenvalue matrix Π from large to small eigenvalues). Note that B̃ = U−1G̃, where U−1 is

also an upper triangular matrix. Therefore, the matrix B̃ is also unique up to multiplication

by −1 for any columns.
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A.4 Proof of Theorem 1

I start by showing the following lemma, which allows me to state the equivalent IUF condition

under the orthogonalized factors b1,b2, . . . ,bN .

LEMMA 2. For any given a ∈ RN and d ∈ RN , a⊤Cd = 0 for all C ∈ C if and only if

cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n = 1, 2, . . . , N .

Proof. Following the proof of Lemma 1 in Appendix A.3, I carry out Cholesky decomposition

to obtain var(R0) = U⊤U, whereU is anN×N upper triangular matrix. I have bn = U−1gn

for n = 1, 2, . . . , N , where g1,g2, . . . ,gN is the full set of eigenvectors of var(Uf) with distinct

eigenvalues π1 > π2 > · · · > πN > 0.

I have that

cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n = 1, 2, . . . , N

⇐⇒ a⊤var(R0)bnb
⊤
n var(R0)d = 0 for all n = 1, 2, . . . , N

⇐⇒ a⊤U⊤gng
⊤
nUd = 0 for all n = 1, 2, . . . , N (A.11)

⇐⇒ a⊤U⊤

(
N∑

n=1

zngng
⊤
n

)
Ud = 0 for any real numbers z1, z2, . . . , zN , (A.12)

where I have used the Cholesky decomposition of var(R0) in (A.11).

I define the following set of matrices,

H =

{
H ∈ RN×N

∣∣∣∣∣H =
N∑

n=1

zngng
⊤
n for some real numbers z1, z2, . . . , zN

}
. (A.13)

I claim that

H =
{
H ∈ RN×N

∣∣HUvar(f)U⊤ = Uvar(f)U⊤H
}
. (A.14)

It is easy to see that ifH ∈ H as defined in (A.13), I haveH ∈ H as defined in (A.14) because

g1,g2, . . . ,gN are the orthogonalized eigenvectors of Uvar(f)U⊤. Conversely, if H ∈ H as
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defined in (A.14), then for any n,

Uvar(f)U⊤(Hgn) = (Uvar(f)U⊤H)gn = (HUvar(f)U⊤)gn = πn(Hgn), (A.15)

showing that Hgn is also the eigenvector of Uvar(f)U⊤ that corresponds to the eigenvalue

πn. Because the eigenvalues are distinct and the eigenspaces are all one-dimensional, I have

Hgn = µngn for some µn. This shows that gn is also an eigenvector of H. Because n is

arbitrary for any 1, 2, . . . , N , I have H =
∑N

n=1 µngng
⊤
n , showing that H ∈ H as defined in

(A.13).

Given (A.14), I can equivalently rewrite (A.12) as

a⊤U⊤HUd = 0 for any H ∈ H. (A.16)

I define C = U⊤HU. Using the fact that U is invertible and var(R0) = U⊤U, I have

C ∈ C ⇐⇒ H ∈ H, where C is defined in (25). Therefore, I can equivalently rewrite (A.16)

as a⊤Cd = 0 for any C ∈ C, which completes the proof of Lemma 2.

Lemma 2 allows me to write the equivalent IUF under orthogonalized b1,b2, . . . ,bN .

Assumption 3*. IUF under orthogonalized portfolios

For any given portfolio a ∈ RN and flow s, I construct the portfolio,

d = (cov(f1, s), cov(f2, s), . . . , cov(fN , s))
⊤ . (A.17)

If cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n, then cov(a⊤∆p(f), s) = 0.

Note that the IUF condition in Assumption 3 is equivalent to Assumption 3* only when

Assumption 4 holds. Without Assumption 4, IUF imposes no restrictions for eigenvec-

tors that correspond to the same eigenvalue. In that case, the orthogonalized portfolios

b1,b2, . . . ,bN are also not unique and my IUF condition does not simplify to Assumption

3*. I present the general case in Online Appendix A.
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I also prove the following coordinate transformation,

d = (cov(f1, s), cov(f2, s), . . . , cov(fN , s))
⊤ (A.18)

=

(
cov

(
N∑

n=1

b1,nqn, s

)
, cov

(
N∑

n=1

b2,nqn, s

)
, . . . , cov

(
N∑

n=1

bN,nqn, s

))⊤

(A.19)

=

(
N∑

n=1

b1,ncov(qn, s),
N∑

n=1

b2,ncov(qn, s), . . . ,
N∑

n=1

bN,ncov(qn, s)

)⊤

(A.20)

=B (cov(q1, s), cov(q2, s), . . . , cov(qN , s))
⊤ (A.21)

=
N∑

n=1

bncov(qn, s), (A.22)

where equation (A.18) follows from definition (26), equation (A.19) uses definition (27), and

bn,k is the (n, k)-th element of matrix B. Equations (A.20) and (A.21) are straightforward

algebraic manipulations, and equation (A.22) follows from B = (b1,b2, . . . ,bN). This co-

ordinate transformation (A.22) implies that the portfolio d is a linear combination of the

factor portfolios bn, with weights equal to the covariance between flow s and factor flow qn.

Using (A.22) and orthogonalization condition B⊤var(R0)B = IN in (28), I have

cov(b⊤
nR0,d

⊤R0) = b⊤
n var(R0)

(
N∑

m=1

bmcov(qm, s)

)
= cov(qn, s). (A.23)

That is, the covariance between the return on the factor portfolio bn and the return on the

portfolio d equals the covariance between the corresponding factor flow qn and flow s.

Given these observations, I can proceed to prove the theorem. First, I show that the

canonical form (30) satisfies the IUF in Assumption 3*. I derive the price impact under the

canonical form (30) as

∆p(f) = E[R0M̃(f)] = var(R0)BΛq = var(R0)
N∑

n=1

λnqnbn. (A.24)
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I project any portfolio a ∈ RN onto the factor portfolios b1,b2, . . . ,bN and obtain

a =
N∑

n=1

xnbn (A.25)

for some real numbers x1, x2, . . . , xN . The condition of the IUF in Assumption 3* is

0 = cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0)

=

(
N∑

m=1

xmbm

)⊤

var(R0)bncov(qn, s) = xncov(qn, s), (A.26)

for any n = 1, 2, . . . , N , where I use equations (28), (A.23), and (A.25).

I have

a⊤∆p(f) =

(
N∑

m=1

xmbm

)⊤

var(R0)

(
N∑

n=1

λnqnbn

)
=

N∑
n=1

xnλnqn, (A.27)

where I use equations (28), (A.24), and (A.25). Therefore, I have

cov(a⊤∆p(f), s) =
N∑

n=1

xncov(qn, s)λn. (A.28)

Note that the IUF’s assumption implies that xncov(qn, s) = 0 for any n = 1, 2, . . . , N in

(A.26). Therefore, by equation (A.28), I have cov(a⊤∆p(f), s) = 0, thereby showing that

the IUF holds. Moreover, equation (35) implies that

f⊤∆p(f) = q⊤B⊤var(R0)BΛq = q⊤Λq. (A.29)

Because Λ is positive definite, Assumption 2 holds.

Second, I show that, if the unique F-SDF in (23) satisfies the IUF, the F-SDF can be
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written in the canonical form. Using equation (27), I simplify (23) as

M̃(f) =
N∑

n=1

N∑
m=1

qmbn,mg
⊤
n (R0 − E[R0])

=
N∑

m=1

qm

N∑
n=1

bn,mg
⊤
n (R0 − E[R0]) =

N∑
m=1

qmh
⊤
m(R0 − E[R0]), (A.30)

where I define hm =
∑N

n=1 bn,mgn. Therefore, the price impact under the F-SDF (A.30) is

∆p(f) = E[R0M̃(f)] = var(R0)
N∑

m=1

qmhm. (A.31)

I use the IUF for portfolio a = bl and flow s = qm for any l ̸= m. I have from (A.22),

d =
N∑

n=1

bncov(qn, qm) = πmbm, (A.32)

because var(q) = diag(π1, π2, . . . , πN). Thus, I have cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0

for any n = 1, 2, . . . , N , because B⊤var(R0)B = IN . Thus, the IUF implies that

0 = cov(a⊤∆p(f), s) = cov

(
b⊤
l var(R0)

N∑
n=1

qnhn, qm

)
= πmb

⊤
l var(R0)hm. (A.33)

Thus, for any given m = 1, 2, . . . , N , I can choose arbitrary l ̸= m, such that

b⊤
l var(R0)hm = 0. (A.34)

I project hm onto the factor portfolios b1,b2, . . . ,bN and obtain hm =
∑N

n=1 θm,nbn. Using

the IUF condition (A.34) and B⊤var(R0)B = IN , I have θm,n = 0 for any m ̸= n. Therefore,

I can rewrite the F-SDF form (A.30) as

M̃(f) =
N∑

n=1

θn,nqnb
⊤
n (R0 − E[R0]). (A.35)
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I rename θn,n = λn and obtain the canonical form (30). Lastly, using (A.29) and Assumption

2, I have λn > 0 for all n. The proof is complete.

A.5 Proof of Proposition 4

Note that there exists some N × N invertible matrix O such that B̃O = B and Oq = q̃,

where B and q are the orthogonalized factor portfolios and flows in the canonical form (30).

By (31), I have

M̃(f) = (O−1Λ̃Oq̃)⊤B⊤(R0 − E[R0]). (A.36)

By (30), the above equation implies that O−1Λ̃O = Λ, where Λ = diag(λ1, λ2, . . . , λN) is

the diagonal price-of-flow-induced-risk matrix. Because the orthogonalized B and q satisfy

Lemma 1, conditions (28) and (29) translate into (33) and (34).

A.6 Proof of Theorem 2

I first show the sufficiency direction. From Theorem 1 and Proposition 4, if the orthogonal-

ized model (42) satisfies the IUF, there exists some N × N invertible matrix O, such that

O−1diag(λ̃1,1, λ̃2,2, . . . , λ̃N,N)O is a diagonal matrix for any free parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N .

Denote the (n,m)-th entry of O−1 as xn,m and the (n,m)-th entry of O as yn,m. I then know

that xn,mym,l = 0 for any m and n ̸= l. Suppose that there exist some m and l ̸= l′, such that

ym,l ̸= 0 and ym,l′ ̸= 0. I then know that xn,m = 0 for any n = 1, 2, . . . , N . This contradicts

the fact that O is invertible. Therefore, any row of O has exactly one non-zero element.

Together with the fact that O is invertible, any column of O also has exactly one non-zero

element. In other words, O is just a scaling and reordering matrix. Because B̃O = B and

Oq = q̃, I have cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 for any n ̸= m.

To show (46), note that I have, by (41) and cov(b̃⊤
l R0, b̃

⊤
nR0) = 0 for n ̸= l,

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0) =

N∑
m=1

λ̃l,mq̃mvar(b̃
⊤
l R0). (A.37)
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I then have

∂b̃⊤
l ∆p(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.38)

Similarly, I have, by (42),

b̃⊤
l ∆p̄(f) =

N∑
n=1

λ̃n,nq̃ncov(b̃lR0, b̃
⊤
nR0) = λ̃l,lq̃lvar(b̃lR0), (A.39)

and

∂b̃⊤
l ∆p̄(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.40)

This shows that (46) holds.

Under the price impact model (41), the expected compensation for risk is

E[f⊤∆p(f)] =E[q̃⊤B̃⊤var(R0)B̃Λ̃q̃] =
N∑

n=1

N∑
m=1

λ̃n,mvar(b̃
⊤
nR0)cov(q̃m, q̃n) (A.41)

=
N∑

n=1

λ̃n,nvar(b̃
⊤
nR0)var(q̃n), (A.42)

where the second equality in (A.41) uses cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and equality (A.42) uses

cov(q̃n, q̃m) = 0 for any n ̸= m. Therefore, the expected compensation E[f⊤∆p(f)] under

models (41) and (42) are the same for any N2 parameters λ̃n,m. By equation (45), the

expected utility E[u(W (f))] under models (41) and (42) are also the same.

Next, I show the necessity direction. I have, by (41),

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0). (A.43)

I then have

∂b̃⊤
l ∆p(f)

∂q̃l
=

N∑
n=1

λ̃n,lcov(b̃
⊤
l R0, b̃

⊤
nR0). (A.44)
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Similarly, I have, by (42),

b̃⊤
l ∆p̄(f) =

N∑
n=1

λ̃n,nq̃ncov(b̃lR0, b̃
⊤
nR0), (A.45)

and

∂b̃⊤
l ∆p̌(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.46)

Because (46) holds for any Λ̃ = {λ̃n,m}, cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 for any n ̸= m.

Under the price impact model (41), the expected compensation is

E[f⊤∆p(f)] = E[q̃⊤B̃⊤var(R0)B̃Λ̃q̃] =
N∑

n=1

N∑
m=1

λ̃n,mvar(b̃
⊤
nR0)cov (q̃n, q̃m) , (A.47)

where I use cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 for any n ̸= m. By (45), if the expected utility E[u(W (f))]

remains invariant under models (41) and (42), the expected compensation E[f⊤∆p(f)] also re-

mains invariant. Therefore, cov(q̃n, q̃m) = 0 for any n ̸= m. By Theorem 1, cov(b̃⊤
nR0, b̃

⊤
mR0) =

0 and cov(q̃n, q̃m) = 0 for any n ̸= m imply that the orthogonalized model (42) satisfies the

IUF for any parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N .

A.7 Proof of Proposition 5

By the flow-based Hansen-Jagannathan bound in Proposition 2, condition (48) implies

max
∥f∥=1

∆p(f)⊤var(R0)
−1∆p(f) ≤ H2. (A.48)

Under the N -factor model (35), the squared maximum price impact ratio is

∆p(f)⊤var(R0)
−1∆p(f) =

N∑
n=1

λnqnb
⊤
n var(R0)

N∑
n=1

λnqnbn =
N∑

n=1

λ2
nq

2
n, (A.49)
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where I use the orthogonalization B⊤var(R0)B = IN . I consider the flow f =
∑N

n=1 qnbn,

with qm = 1/∥bm∥ for some specific m and qm = 0 for m ̸= n. Clearly, ∥f∥ = 1, so by (A.48)

and (A.49), I have |λm| ≤ H∥bm∥. That is, all price-of-flow-induced-risk coefficients λn are

uniformly bounded for all F-SDF M̃(·).

I can simplify the pricing error of the price impact as

∆p(f)−∆p̄(f) = var(R0)
N∑

n=K+1

λnqnbn =
N∑

n=K+1

cnqn, (A.50)

where I define the N × 1 vector cn = var(R0)λnbn. Because λn are uniformly bounded, each

element of every cn is also uniformly bounded for all F-SDF M̃(·). I have

∥∆p(f)−∆p̌(f)∥2 =
N∑

n=1

(
N∑

k=K+1

cn,kqk

)2

. (A.51)

Using the fact that qk are uncorrelated with each other, I have

E[∥∆p(f)−∆p̌(f)∥2] =
N∑

n=1

E

(
N∑

k=K+1

cn,kqk

)2

=
N∑

n=1

N∑
k=K+1

c2n,kπk. (A.52)

Because all cn,k are uniformly bounded for all F-SDF M̃(·), if
∑N

n=K+1 πn tends to zero, then

E[∥∆p(f)−∆p̌(f)∥2] tends to zero uniformly for all F-SDF.
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Online Appendix of
“Flow-Based Arbitrage Pricing Theory”

The online appendix provides additional theoretical results omitted in the paper.

A General Theory of F-SDF with Duplicate Eigenvalues

In this appendix, I provide the general theory of F-SDF without imposing regularity As-

sumption 4 in the main text. That is, I allow the matrix var(Uf) to have possibly duplicate

eigenvalues.

A.1 Linear Model of the F-SDF

To state the canonical form of the F-SDF under the general case, I conduct eigenvalue

decomposition to obtain

Uvar(f)U⊤G = GΠ, (OA.1)

where the eigenvalue matrix is

Π =



π1Ir1 0 · · · 0

0 π2Ir2 · · · 0

· · · · · · · · · · · ·

0 0 · · · πJIrJ


(OA.2)

with π1 > π2 > · · · > πJ > 0. The matrix Uvar(f)U⊤ has J distinct positive eigenvalues,

with each eigenvalue πj having rj degrees of duplication for j = 1, 2, . . . , J . With duplicate

eigenvalues, eigenvectors G are generally not unique. I arbitrarily pick one and construct

the corresponding orthogonalized factors B = U−1G following the proof of Lemma 1 in the

main text.
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DEFINITION O.1. The canonical form of the F-SDF is

M̃(f) = (Λq)⊤B⊤(R0 − E[R0]), (OA.3)

where the price-of-flow-induced-risk matrix Λ is an N ×N block-diagonal matrix

Λ =



Ψ1 0 · · · 0

0 Ψ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · ΨJ


, (OA.4)

where each Ψj is an rj × rj positive definite matrix for j = 1, 2, . . . , J .

I now prove Theorem 1 in the general case. First, I show that the canonical form (OA.3)

satisfies the IUF. The price impact under the canonical form (OA.3) is

∆p(f) = E[R0M̃(f)] = var(R0)BΛq. (OA.5)

For any portfolio a ∈ RN , flow s, and the corresponding portfolio d that satisfy a⊤Cd = 0

for all C ∈ C, the goal is to show cov(a⊤∆p(f), s) = 0.

I project portfolio a ∈ RN onto the orthogonalized factors b1,b2, . . . ,bN ,

a =
N∑

n=1

xnbn = Bx, (OA.6)

with the N × 1 vector x = (x1, x2, . . . , xN)
⊤. I can therefore simplify

cov(a⊤∆p(f), s) = a⊤var(R0)BΛcov(q, s) = x⊤Λcov(q, s), (OA.7)

because of the orthogonalization B⊤var(R0)B = IN . Note that Λ is a block-diagonal matrix

of the form (OA.4). Therefore, to show cov(a⊤∆p(f), s) = 0, it is sufficient to show that
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xlcov(qm, s) = 0 for all l and m such that the (l, l)-th and (m,m)-th elements of matrix Π

in (OA.2) correspond to the same eigenvalue.

Using the coordination transformation (A.22) in the main text and (OA.6), I simplify

the IUF condition as

0 = a⊤Cd = x⊤B⊤CBcov(q, s). (OA.8)

I define the set

H =
{
H ∈ RN×N

∣∣HUvar(f)U⊤ = Uvar(f)U⊤H
}
. (OA.9)

Recall that I define the matrix B = U−1G from a given of set of eigenvectors G of matrix

Uvar(f)U⊤ (see equation (OA.1)). Using the transformation C = U⊤HU, I have that

a⊤Cd = 0 for all C ∈ C if and only if x⊤G⊤HGcov(q, s) = 0 for all H ∈ H.

I define O as an N × N matrix with only the (l,m)-th element being one and all other

elements being zero. I define the matrix H̃ = GOG⊤. Using (OA.1), I have

H̃Uvar(f)U⊤ = GOG⊤GΠG⊤ = GOΠG⊤ = GΠOG⊤ = Uvar(f)U⊤H̃, (OA.10)

where the key step ΠO = OΠ uses the fact that the (l, l)-th and (m,m)-th elements of

matrix Π in (OA.2) correspond to the same eigenvalue. Therefore, H̃ ∈ H and

0 = x⊤G⊤H̃Gcov(q, s) = x⊤Ocov(q, s) = xlcov(qm, s). (OA.11)

Because l and m are arbitrary as long as they correspond to the same eigenvalue in Π, I

have that cov(a⊤∆p(f), s) = 0, implying that the IUF holds.

Moreover, equation (OA.5) implies that

f⊤∆p(f) = q⊤B⊤var(R0)BΛq = q⊤Λq. (OA.12)

Because Λ is positive definite, f⊤∆p(f) > 0 for any f ̸= 0.
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Second, I show that the IUF implies that the F-SDF can be written in the canonical form

(OA.3). Following the proof of Theorem 1 in the main text, I write the F-SDF as

M̃(f) =
N∑

n=1

qnh
⊤
n (R0 − E[R0]) (OA.13)

for some hn ∈ RN and derive the corresponding price impact model as

∆p(f) = var(R0)
N∑

n=1

qnhn. (OA.14)

I use the IUF for portfolio a = bl and flow s = qm, where the (l, l)-th and (m,m)-th

elements of matrix Π in (OA.2) correspond to distinct eigenvalues. Using the coordinate

transformation (A.22) in the main text, I have

d =
N∑

n=1

bncov(qn, qm) = var(qm)bm. (OA.15)

I next show that b⊤
l Cbm = 0 for all C ∈ C, where C is defined in the main text as

C =
{
C ∈ RN×N | var(R0)var(f)C = Cvar(f)var(R0)

}
.

Proof. For any given matrix C ∈ C, I define the matrix

H = (U−1)⊤CU−1. (OA.16)

Then H satisfies

U⊤Uvar(f)U⊤HU = U⊤HUvar(f)U⊤U, (OA.17)

which simplifies to

Uvar(f)U⊤H = HUvar(f)U⊤. (OA.18)

I define the matrix

L = G⊤HG. (OA.19)
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Using equations (OA.1) and (OA.18), I have

LΠ = G⊤HGG⊤Uvar(f)U⊤G = G⊤HUvar(f)U⊤G = G⊤Uvar(f)U⊤HG = ΠL.

(OA.20)

For any vector v in the span of the j-th part of the partition of matrix Π in (OA.2), I have

Πv = πjv. Therefore, I have

Π(Lv) = (ΠL)v = (LΠ)v = Lπjv = πj(Lv). (OA.21)

Therefore, Lv is also a vector in the span of the j-th part of the partition. Because I can

arbitrarily choose the vector v and the part j = 1, 2, . . . , J , matrix L must be

L =



Φ1 0 · · · 0

0 Φ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · ΦJ


, (OA.22)

where each Φj is an rj × rj matrix for j = 1, 2, . . . , J .

The form (OA.22) and L = G⊤HG imply that whenever the (l, l)-th and (m,m)-th

elements of matrix Π in (OA.2) correspond to distinct eigenvalues, I have g⊤
l Hgm = 0,

where gl and gm are l-th and m-th column of G. Recall the definitions H = (U−1)⊤CU−1

and B = U−1G. Therefore, I have b⊤
l Cbm = 0.

The IUF condition therefore implies that

0 = cov(a⊤∆p(f), s) = cov

(
b⊤
l var(R0)

N∑
n=1

qnhn, qm

)
= var(qm)b

⊤
l var(R0)hm. (OA.23)

What remains follows the proof of Theorem 1 in the main text. Specifically, I project hm

onto the factor portfolios b1,b2, . . . ,bN and obtain hm =
∑N

n=1 θm,nbn. The IUF condition
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(OA.23) implies that θm,n = 0, for any (n, n)-th and (m,m)-th elements of matrix Π that

correspond to distinct eigenvalues. Therefore, I recover the block-diagonal form of the price-

of-flow-induced-risk matrix of the F-SDF, as shown in (OA.4). Lastly, because of (OA.12)

and the assumption of positive compensation for risk, Ψj is positive definite for all j. The

proof is complete.

Lastly, I present the general linear model of the F-SDF when var(Uf) have duplicate

eigenvalues. It is straightforward to see that Proposition 4 in the main text still holds,

except that Λ is replaced by the block-diagonal form (OA.4).

A.2 Optimality of the IUF Orthogonalization

I show the optimality of the IUF orthogonalization, without imposing regularity Assumption

4 in the main text.

In the general case, Definition 2 of model orthogonalization in the main text needs to

be modified to account for duplicate eigenvalues. The orthogonalized model now has the

block-diagonal price-of-flow-induced-risk matrix that is consistent with (OA.2).

DEFINITION O.2. Each set of N linearly independent portfolios B̃ = (b̃1, b̃2, . . . , b̃N)

defines a model orthogonalization. Specifically, the N2 model under portfolios B̃ is

∆p(f) = var(R0)B̃Λ̃q̃, (OA.24)

with portfolio flows q̃ = (q̃1, q̃2, . . . , q̃N)
⊤ and the N ×N price-of-flow-induced-risk matrix

Λ̃ =



Ψ̃1,1 Ψ̃1,2 · · · Ψ̃1,J

Ψ̃2,1 Ψ̃2,2 · · · Ψ̃2,J

· · · · · · · · · · · ·

Ψ̃J,1 Ψ̃J,2 · · · Ψ̃J,J


, (OA.25)

where Ψ̃j,l is an rj × rl matrix. The orthogonalized N-factor model under portfolios B̃ is
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defined as

∆p̄(f) = var(R0)B̃Λ̄q̃, (OA.26)

with the N ×N price-of-flow-induced-risk matrix

Λ̄ =



Ψ̃1,1 0 · · · 0

0 Ψ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Ψ̃J,J


. (OA.27)

I now generalize Theorem 2 of the main text.

THEOREM O.1. Fix any model orthogonalization B̃ = (b̃1, b̃2, . . . , b̃N). The orthogonal-

ized model (OA.26) satisfies the IUF for any parameters Ψ̃1,1, Ψ̃2,2, . . . , Ψ̃N,N if and only if

for any N2 parameters Λ̃ in (OA.25),

� a one-unit shock to portfolio flow q̃n causes the same amount of impact to the price of

portfolio b̃n under the N2 model (OA.24) and the orthogonalized model (OA.26),

∂b̃⊤
n∆p(f)

∂q̃n
=

∂b̃⊤
n∆p̄(f)

∂q̃n
. (OA.28)

� the arbitrageur’s expected utility E[u(W (f))] remains invariant under (OA.24) and

(OA.26).

Proof. The proof relies on three intermediate results.

The first result is that the orthogonalized model (OA.26) satisfies the IUF for any param-

eters Ψ̃1,1, Ψ̃2,2, . . . , Ψ̃N,N if and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 whenever

the (n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigenvalues.

Proof. First, I show the sufficiency direction. From Theorem 1 of the general case, if the

orthogonalized model (OA.26) satisfies the IUF, then there exists some N × N invertible
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matrix O, such that for any Λ̄ in (OA.27), O−1Λ̄O is a block-diagonal matrix of form

(OA.27). I denote the (j, l)-th block of O−1 as Xj,l, which is an rj × rl matrix. I denote the

(j, l)-th block of O as Yj,l, which is an rj × rl matrix. I then know that Xj,lΨ̃l,lYl,k = 0

for any l, any j ̸= k, and any parameter matrix Ψ̃l,l. This implies that at most one of the

matrices Xj,l and Yl,k is a non-zero matrix. Suppose that there exist some l and k ̸= k′,

such that both Yl,k and Yl,k′ are non-zero matrices. Then all Xj,l are zero matrices for

j = 1, 2, . . . , J , which contradicts the fact that O is invertible. Therefore, for each l, at most

one of the matrices from Yl,k (k = 1, 2, . . . , J) is non-zero. Because O is invertible, for each

k, at least one of the matrices from Yl,k (l = 1, 2, . . . , J) is non-zero. Therefore, matrix O

has exactly J non-zero blocks, which belong to distinct columns and rows. Moreover, all of

these J blocks must be square matrices. Otherwise, I can find linearly dependent rows or

columns of O, contradicting the invertibility. Therefore, the matrix O is of the form

O =



Γ̃1,1 0 · · · 0

0 Γ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Γ̃J,J


(OA.29)

or its rearrangements, where Γ̃j,j is a rj × rj matrix. The only possible rearrangement of

O is exchanging any two blocks of columns over for j and j′, where the two rearranged

blocks j and j′ have the same dimension rj = rj′ . Because B̃O = B and Oq = q̃, matrix

O reorders blocks of portfolios B̃ = (b̃1, b̃2, . . . , b̃N) that correspond to distinct eigenvalues

with the same degree of multiplicity and recombines portfolios that correspond to the same

eigenvalue. The resulting portfolios B are the orthogonalized factor portfolios in canonical

form. Therefore, cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 whenever (n, n)-th and (m,m)-

th elements of matrix Π correspond to distinct eigenvalues.

Next, I show the necessity direction. Because cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0

whenever the (n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigen-
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values, all I need for the canonical form (OA.4) is to orthogonalize the portfolios B̃ =

(b̃1, b̃2, . . . , b̃N) within each duplicate eigenvalue. I am free to do so, because there is no

dimension reduction for the price-of-flow-induced-risk matrix within the same eigenvalue.

The canonical form (OA.4) satisfies the IUF by Theorem 1.

The second claim is that (OA.28) holds for any Λ̃ if and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0

whenever (n, n)-th and (m,m)-th elements of Π correspond to distinct eigenvalues.

Proof. Note that I have by (OA.24),

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0). (OA.30)

I then have

∂b̃⊤
l ∆p(f)

∂q̃l
=

N∑
n=1

λ̃n,lcov(b̃
⊤
l R0, b̃

⊤
nR0). (OA.31)

Similarly, I have by (OA.26),

b̃⊤
l ∆p̄(f) =

N∑
n=1

N∑
m=1

λ̄n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0) (OA.32)

and

∂b̃⊤
l ∆p̄(f)

∂q̃l
=

N∑
n=1

λ̄n,lcov(b̌
⊤
l R0, b̃

⊤
nR0). (OA.33)

If the (n, n)-th and (l, l)-th elements of matrix Π correspond to the same eigenvalue, I have

λ̃n,l = λ̄n,l by definition (OA.27). Therefore, (OA.31) and (OA.33) are equal for any Λ̃ if

and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever (n, n)-th and (m,m)-th elements of matrix Π

correspond to distinct eigenvalues.

The third claim is stated under the condition that cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever the

(n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigenvalues. The arbi-

trageur’s expected utility E[u(W (f))] remains invariant under models (OA.24) and (OA.26)
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if and only if cov(q̃n, q̃m) = 0 whenever the (n, n)-th and (m,m)-th elements of matrix Π

correspond to distinct eigenvalues.

Proof. I partition the portfolio flows q̃ according to eigenvalue values,

q̃⊤ = (q̃1, q̃2, . . . , q̃J)
⊤, (OA.34)

where q̃j is an rj × 1 vector. Similarly, I partition the covariance B̃⊤var(R0)B̃ as

B̃⊤var(R0)B̃ =



Φ̃1,1 0 · · · 0

0 Φ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Φ̃J,J


, (OA.35)

where each Φ̃j,j is an rj × rj matrix and I use cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever the (n, n)-th

and (m,m)-th elements of matrix Π correspond to distinct eigenvalues.

Under the price impact model (OA.24), the expected compensation is

E[f⊤∆p(f)] = E[q̃⊤B̃⊤var(R0)B̃Λ̃q̃] =
J∑

j=1

J∑
l=1

E
[
q̃⊤
j Φ̃j,jΨ̃j,lq̃l

]
. (OA.36)

Similarly, under the price impact model (OA.26), the expected compensation is

E[f⊤∆p̄(f)] = E[q̃⊤B̃⊤var(R0)B̃Λ̄q̃] =
J∑

j=1

E
[
q̃⊤
j Φ̃j,jΨ̃j,jq̃j

]
. (OA.37)

As shown in the main text, the arbitrageur’s expected utility E[u(W (f))] remains invariant

under models (OA.24) and (OA.26) if and only if the expected compensation E[f⊤∆p(f)]

remains invariant. Because Ψ̃j,l are free parameters, the expected compensation (OA.36)

and (OA.37) are the same if and only if cov(q̃j, q̃l) = 0 for any j ̸= l. The last statement

is precisely cov(q̃n, q̃m) = 0 whenever the (n, n)-th and (m,m)-th elements of matrix Π
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correspond to distinct eigenvalues.

The three claims together imply that Theorem O.1 is true.

B Portfolio Construction Via Weighted Least Squares

In this appendix, I consider portfolio construction via weighted least squares (WLS).

As in the main text, I denote the N -asset flows as f and the K portfolios’ weights as

B. I consider the portfolio flows constructed via WLS as q = (B⊤WB)−1B⊤Wf for some

N ×N weighting matrix W.

To understand the WLS construction, I conduct Cholesky decomposition to obtain W =

(U−1)⊤U−1, for some N ×N upper triangular matrix U. I consider the N portfolios given

by the portfolio-weight matrix U. Following Section 2.2 in the main text, flows into these

N portfolios are f̃ = U−1f . Note that both U and B are portfolio weights in terms of the N

underlying assets. I now consider the portfolio weights B̃ of the K portfolios (with weights

B on the N assets) in terms of the N portfolios (with weights U on the N assets). By

definition, bn,k =
∑N

m=1 un,mb̃m,k, where bn,k is the dollar amount of asset n held by portfolio

k (with weights B), un,m is the dollar amount of asset n held by portfolio m (with weights

U), and b̃m,k is the dollar amount of portfolio m (with weights U) held by portfolio k (with

weights B). By matrix multiplication rule, I have B = UB̃.

With f̃ = U−1f and B = UB̃, I have

q = (B⊤WB)−1B⊤Wf = (B̃⊤B̃)−1B̃⊤f̃ . (OB.1)

Therefore, the WLS construction can be interpreted as first rotating the N -asset flows f

into N equivalent portfolios U and then projecting these N portfolios onto the K portfolio

weights B̃, which is the equivalent of B but is expressed in terms of the N portfolios.
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C Static CARA-normal Price Impact Model

In this appendix, I show that the static CARA-normal price impact model is a special case

of my N -factor price impact model with an additional restriction λ1 = λ2 = · · · = λN .

Consider a two-period economy t = 0 and t = 1. There is a mass µ of infinitesimal

arbitrageurs. There are N assets in the economy, indexed by n = 1, 2, . . . , N . The total

fixed supply of assets is an N × 1 vector S, where the unit of supply is the number of shares.

These assets are held equally by all arbitrageurs. A risk-free bond is in perfectly elastic

supply at a gross interest rate RF > 1. The N assets have payoff X at time t = 1, which

is an N × 1 vector of random variables. At time 0, the flow into asset n is hn, and I write

the flow as an N × 1 vector as h = (h1, h2, . . . , hN). Unlike in the baseline setup, the unit

of flow is expressed in the number of shares, not dollar amounts. I later recover the flow in

dollar amounts. With flow h, each arbitrageur now holds (S − h)/µ shares of assets, and I

denote the time-0 price of assets as the N × 1 vector P(h).

The setup so far is equivalent to my baseline setup in Section 2.1. I now introduce the

CARA-normal assumptions:

1. Each arbitrageur has CARA utility with parameter γ.

2. Payoff X is normally distributed with mean u and variance var(X).

In equilibrium, the arbitrageurs’ optimality condition implies

−h/µ = argmax
y

E[− exp(−γW (y))], (OC.1)

where the time-1 wealth of each arbitrageur is

W (y) = S⊤X/µ+ y⊤(X−P(h)RF ). (OC.2)
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Standard calculation implies that

P(h) =
u

RF

− γ

µRF

var(X)(S− h). (OC.3)

Therefore, the price change is

P(h)−P(0) =
γ

µRF

var(X)h. (OC.4)

I define price impact as

∆p(h) =

(
P1(h)− P1(0)

P1(0)
,
P2(h)− P2(0)

P2(0)
, . . . ,

PN(h)− PN(0)

PN(0)

)⊤

, (OC.5)

and fundamental return as

R0 =

(
X1

P1(0)
,

X2

P2(0)
, . . . ,

XN

PN(0)

)⊤

. (OC.6)

Using the fact that

var(X) = diag(P1(0), P2(0), . . . , PN(0))var(R0)diag(P1(0), P2(0), . . . , PN(0)), (OC.7)

I have

∆p(h) =
γ

µRF

var(R0)diag(P1(0), P2(0), . . . , PN(0))h. (OC.8)

At this stage, I define the flow in dollar amounts as

f = (P1(0)h1, P2(0)h2, . . . , PN(0)hN)
⊤ = diag(P1(0), P2(0), . . . , PN(0))h. (OC.9)
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Using equations (OC.8) and (OC.9), I obtain

∆p(f) =
γ

µRF

var(R0)f . (OC.10)

Using the orthogonalized factor portfolios and flows from Lemma 1 in the main text, I have

f =
∑N

n=1 qnbn. Therefore, the CARA-normal price impact model is

∆p(f) = var(R0)
N∑

n=1

γ

µRF

qnbn. (OC.11)

Comparing (OC.11) with my N -factor price impact model,

∆p(f) = var(R0)
N∑

n=1

λnqnbn, (OC.12)

I see that the CARA-normal framework imposes stronger restrictions on the price of flow-

induced risk than my model and requires, additionally, λ1 = λ2 = · · · = λN .

D Necessity of the IUF to the Flow-Based APT

One may wonder if there exists a version of the flow-based APT that does not impose the

IUF and directly reduces the N2 price impact model to some K2 model. That is, I start

with the N2 model

∆p(f) =
N∑

n=1

N∑
m=1

λn,mqmcov(R0,b
⊤
nR0), (OD.1)

and aim to approximate this model by the first K factors

∆p̌(f) =
K∑
k=1

K∑
j=1

λk,jqjcov(R0,b
⊤
k R0). (OD.2)

Can I bound the pricing error ∆p(f)−∆p̌(f) in a similar manner to the flow-based APT in

the main text?
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Figure O.1. Necessity of the IUF to the flow-based APT

K ×K
price of flow-induced risk λn,m

K × (N −K)
price of flow-induced risk λn,m

pricing error
tends to zero

(N −K)×K
price of flow-induced risk λn,m

pricing error does NOT
tend to zero

(N −K)× (N −K)
price of flow-induced risk λn,m

pricing error
tends to zero

factor flow
q1, q2, . . . , qK

idiosyncratic flow
qK+1, qK+2, . . . , qN

factor portfolio

b1

b2

bK

...

idiosyncratic portfolio

bK+1

bK+2

bN

...

Notes: This figure shows why the IUF is necessary for the flow-based APT. Without the IUF, the price
impact of factor flows on idiosyncratic portfolios does not tend to zero, as the variance of idiosyncratic flows
tends to zero. This effect is illustrated in the bottom-left block of the price-of-flow-induced-risk matrix. My
IUF first orthogonalizes the N2 prices of flow-induced risk to the N diagonal terms using the commonality
in flow-induced risk. The flow-based APT then reduces N diagonal prices of flow-induced risk to K using
the factor structure of flow-induced risk.

The answer is no. Figure O.1 illustrates the situation. The bound in the main text on

the volatility of the F-SDF implies a uniform upper bound on the N2 prices of flow-induced

risk λn,m. The flow-based APT assumes the variance
∑N

n=K+1 πn of idiosyncratic flows

qK+1, qK+2, . . . , qN tending to zero. This assumption ensures that the pricing error caused

by idiosyncratic flows
∑N

n=1

∑N
m=K+1 λn,mqmcov(R0,b

⊤
nR0) tends to zero, which corresponds

to the top-right and bottom-right blocks of Figure O.1.

However, note that

∆p(f)−∆p̌(f) =
N∑

n=1

N∑
m=K+1

λn,mqmcov(R0,b
⊤
nR0) +

N∑
n=K+1

K∑
m=1

λn,mqmcov(R0,b
⊤
nR0).

(OD.3)

The second term is the price impact of factor flows on portfolios that idiosyncratic flows

go into, which does not tend to zero. This component of pricing error corresponds to the

bottom-left block of Figure O.1. While flows qK+1, qK+2, . . . , qN are idiosyncratic, portfolios

bK+1,bK+2, . . . ,bN that correspond to these flows may be important risk factors. Factor

flows q1, q2, . . . , qK could have a large cross impact on these portfolios. Without the IUF,
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one lacks a proper theoretical justification for eliminating this bottom-left component.

Instead, my IUF approach first chooses the specific flows q1, q2, . . . , qN and corresponding

portfolios b1,b2, . . . ,bN using the commonality in flow-induced risk. Intuitively, idiosyn-

cratic portfolios have both negligible flows and negligible risks. The IUF implies that these

orthogonalized portfolios have no cross impacts. In Figure O.1, the IUF first orthogonalizes

theN2 prices of flow-induced risk to theN diagonal terms. The flow-based APT then reduces

the N diagonal prices of flow-induced risk to K using the factor structure of flow-induced

risk.
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