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Abstract

On many important multi-dealer platforms, customers mostly request quotes from

very few dealers. I build a model of multi-dealer platforms where dealers strategically

choose to respond or ignore a request. If the customer contacts more dealers, every

dealer responds with a lower probability and offers a stochastically worse price when

responding. These two negative effects overturn the customer’s benefit from poten-

tially receiving more quotes, worsening her overall price. In equilibrium, the customer

contacts only two dealers. Multi-dealer platforms are limited in their ability to pro-

mote price competition: No alternative design of information disclosure can improve

the customer’s payoff above this outcome.

JEL Classifications: D44, D47, D83

Keywords: Over-the-counter, multi-dealer platforms, request for quote, pre-trade transparency

∗Email: wangchj@wharton.upenn.edu I am grateful for helpful comments and suggestions from Yu An,
Sergei Glebkin, and John Kuong. Special thanks to Tomy Lee for extensive discussions that helped me better
understand the marginal contribution of my paper. I also thank Clarise Huang and Dylan Marchlinski for
proof reading the paper.

1



1 Introduction

Many over-the-counter (OTC) markets now feature trading platforms that allow a cus-

tomer to simultaneously request quotes from multiple dealers.1 These multi-dealer platforms

have the potential to greatly intensify competition among dealers, provided that customers

request quotes from a large number of dealers. On many important multi-dealer platforms,

customers mostly request quotes from very few dealers, for example from only three on Swap

Execution Facilities (SEFs) for index credit default swaps—the minimum required by regu-

lations (Riggs, Onur, Reiffen, and Zhu, 2020).2 Why do the customers contact so few dealers

that even a lowerbound of three seems to bind them? Because the benefit of greater compe-

tition from contacting more dealers proposed in existing theory ceases to exist, and in fact

becomes a cost, when the dealers are allowed to strategically ignore a customer’s request. I

add exactly one feature to an otherwise standard model: Dealers can endogenously choose

to respond or ignore a request for quote (RFQ). I show that contacting more dealers, rather

than spurring price competition among dealers, actually suppresses competition and leads

to worse prices. In equilibrium, the customer chooses to contact only two dealers. More gen-

erally, no alternative design of information disclosure about the number of contacted dealers

can improve the customer’s payoff above this outcome. In this sense, multi-dealer platforms

are limited in their ability to promote price competition.

Dealers’ ability to ignore a trade request is a natural yet often overlooked feature of OTC

trading. Whether an OTC trade is requested on a platform or not, dealers are not forced

1Examples include Bloomberg and Tradeweb for swaps, MarketAxess for bonds, and Refinitiv for curren-
cies.

2At the same time, the volume traded on platforms is relatively small in many OTC markets where
platform trading is not mandatory. For example, MarketAxess had 15% of trade volume for U.S. corporate
bonds in 2016Q1, and 20% as of August 2022. Most of its market share growth was gained during the
COVID pandemic in 2020.
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to respond, and indeed they quite often do not respond. Dealers’ revealed preference shows

that responding cannot be completely cost-free. The dealers must evaluate the asset, their

own inventories, and market conditions together with the identity of the customer, which

itself might be informative about the asset value or the customer’s willingness to pay. In

my model, the cost of such effort to properly form a response can be arbitrarily small. Yet,

that dealers endogenously decide whether to respond fundamentally transforms the intended

benefit from contacting more dealers into a cost.

The underlying economics comes from the following observation: It is more cost-efficient

to concentrate response probabilities among fewer dealers. I consider a simple numerical

example to illustrate this observation. If three dealers are contacted in an RFQ, I suppose

that they each respond with a probability 70%, 60%, and 50%, respectively. When at

least one dealer responds, a trade occurs. Thus, the aggregate expected gain from trade

depends on the individual dealer response probabilities through a sufficient statistic (1 −

70%)(1− 60%)(1− 50%), which is the probability that no dealer responds to the RFQ. On

the other hand, the aggregate expected cost of responding to the RFQ depends on the sum

of the response probabilities, 70% + 60% + 50%. Keeping the aggregate gain constant, one

can reduce the aggregate cost by reducing one dealer’s response probability, say from 50%

down to 0%, and raising another dealer’s response probability, say from 60% up to 80%.

The adjustment does not change the aggregate gain, because the probability that no dealer

responds remains the same, (1 − 70%)(1 − 80%)(1 − 0%) = (1 − 70%)(1 − 60%)(1 − 50%).

Yet the aggregate cost declines, 70% + 80% + 0% < 70% + 60% + 50%. Therefore, it is more

cost-efficient to shut down one dealer, and concentrate the response probabilities into the

remaining dealers.

My benchmark model has one of the most basic structures in economics: A customer
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buyer chooses to contact a number n of dealers simultaneously in order to purchase an asset.

Observing the customer’s choice n, each dealer chooses whether to respond and what price

to offer. Responding to the RFQ incurs a cost.

A dealer naturally trades off the response cost and its expected trading profit: It is

willing to respond only if the expected profit justifies responding. In the unique symmetric

subgame perfect equilibrium, each dealer mixes between responding or not, and offers a

distribution of prices conditional on responding. If the customer were to contact more dealers,

every contacted dealer would endogenously respond with a lower probability and offer a

stochastically higher price when responding to maintain each dealer’s individual rationality.

These two negative effects on dealer behavior more than offset the benefit to the customer

from potentially receiving more quotes. Anticipating the dealer behavior, the customer

contacts precisely 2 dealers in equilibrium.

Moreover, the customer contacts 2 dealers not only in the symmetric subgame perfect

equilibrium, but also in any subgame perfect equilibrium. The driving force comes from the

cost saving of response concentration. The cost saving, as shown in the above numerical

example, does not depend on the symmetry of dealers’ strategies.

An assumption of the model is that the number of contacted dealers is disclosed to

those dealers in a customer RFQ, as is the case on SEFs. I examine alternative platform

designs of information disclosure about n—the number of dealers contacted by the customer.

Not disclosing any information about the number n would make the customer contact as

many dealers as is feasible. However, the customer’s payoff decreases relative to her status

quo payoff when the number n is fully disclosed, as the customer expects a lower response

probability from each dealer and a worse overall price. These predictions match the patterns

on MarketAxess for corporate bonds, which does not disclose the number of contacted dealers
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by default. There, a customer on average contacts more than 25 dealers per RFQ, and

dealers’ response rate is only around 25% (Hendershott and Madhavan, 2015). In comparison,

dealers’ response rate is slightly below 90% on SEFs (Riggs et al., 2020).

Although making the number n of contacted dealers undisclosed does not lead to more

competitive prices, it does cause the customer to contact more dealers in equilibrium. More

generally, one may wonder whether some alternative information design that partially dis-

closes the number n could make the dealers’ prices more competitive than the status quo.

The answer is no unfortunately. No alternative design of information disclosure can improve

the customer’s payoff above the status quo. In this sense, multi-dealer platforms are limited

in their ability to promote price competition. The driving force again comes from the cost

saving of response concentration. The cost saving, as shown in the above numerical example,

does not depend on what information is disclosed about the number n.

The benchmark model also predicts that a dealer responds with a higher probability

when facing a larger order or when perceiving a larger gain from trade. Conditional on

responding, the dealer offers a stochastically lower price when facing a larger order or when

perceiving a smaller gain from trade. The model’s predictions are largely consistent with

empirical patterns documented in the literature.

1.1 Literature

This paper belongs to the recent literature on multi-dealer platforms.3 On SEFs, the

Commodity Futures Trading Commission used to require a customer to contact at least 2

dealers in an RFQ. On average, a customer contacted 2.9 dealers per request (McPartland,

3Examples include Collin-Dufresne, Junge, and Trolle (2020), Hau, Hoffmann, Langfield, and Tim-
mer (2021), Hendershott and Madhavan (2015), O’Hara and Alex Zhou (2021), Hendershott, Livdan, and
Schürhoff (2021), Liu, Vogel, and Zhang (2017), Vogel (2019), and Wittwer and Allen (2021).
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2014). The lowerbound then increased by 1, to 3 dealers per request in 2014. After the

change, Riggs et al. (2020) find that customers most frequently contact only 3 dealers, on

average 4 (one more than before the change), and rarely more than 5. If weighted by notional

quantity, customers contact even fewer dealers on average because larger orders tend to be

exposed to fewer dealers. These facts suggest that the lowerbound of 3 is most often binding

on customers.

Existing theories are able to explain why customers do not contact as many dealers as

possible, without explaining why they typically contact as few as possible in practice. Most

closely related to this paper are the theories of Riggs et al. (2020) and Baldauf and Mollner

(2022). Both papers generate an interior solution for the optimal number of dealers to contact

by trading off the benefit of dealer competition against either a direct “relationship cost” of

contacting more dealers (Riggs et al., 2020)4 or an indirect cost of front-running (Baldauf

and Mollner, 2022). These papers cannot explain why customers contact dramatically more

dealers on platforms that by default do not disclose the number of contacted dealers, such

as MarketAxess where customers contact more than 25 dealers on average. To reconcile the

large gap between SEFs and MarketAxess, those papers would require the relationship or

the front-running cost to be sufficiently high on one type of platform yet extremely low on

the other. My paper questions whether dealers indeed become more competitive when more

potential rivals are present in the first place. Letting dealers strategically decide whether to

respond in an otherwise standard model of price competition fundamentally overturns their

incentive to compete in the presence of more rivals. As a result, my paper does not need any

added trade-offs as those in Riggs et al. (2020) and Baldauf and Mollner (2022). I provide

4Riggs et al. (2020) also feature winner’s curse. In their model, “[t]he relationship channel generates an
interior solution for the optimal number of dealers requested, and the winner’s curse channel generates the
comparative statics that [they] eventually test.”
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a parsimonious model that unambiguously explain why customers contact very few dealers

when the number of contacted dealers is disclosed to the dealers and many when the number

is not disclosed. Moreover, unlike existing theories, my paper goes beyond a specific design

of multi-dealer platforms. By exploring general platform designs of information disclosure,

my paper contributes a novel result on the limits of such platforms in promoting price

competition.

My paper also belongs to the literature on auctions with entry.5 Existing papers are

concerned about the auction format—such as second-price auctions and the commitment to

a reservation price—which are far away from practical implementation on multi-dealer plat-

forms in real financial markets. My model differs in that the number of potential bidders is

chosen by the auctioneer, and may be fully disclosed, partially disclosed, or not disclosed to

the potential bidders. Thereby, my paper contributes a novel result on the optimal informa-

tion disclosure about the number of potential bidders, which is assumed to be exogenously

fixed in this literature.

With different focuses, Glebkin, Yueshen, and Shen (2022) and Yueshen (2017) also

feature an uncertain number of dealers who respond to a trade request. My model differs

from theirs in two aspects: (1) The number of contacted dealers is endogenously chosen

by the customer instead of being exogenously fixed; (2) each dealer endogenously mixes

between responding or not, instead of having response probabilities that do not depend on

any agent’s endogenous strategy. These two modeling distinctions are crucial for obtaining

my paper’s main results. In particular, if a dealer’s response probability were exogenously

fixed at some constant as in Glebkin et al. (2022) and Yueshen (2017), the customer would

contact as many dealers as is feasible, and her price would approach the competitive limit

5Examples include McAfee and McMillan (1987), Engelbrecht-Wiggans (1987), Levin and Smith (1994),
Menezes and Monteiro (2000), and Jovanovic and Menkveld (2022).
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when the pool of potential dealers is large (Appendix A).

This paper is broadly related to the literature on search friction,6 market concentration,7

and sticky relationship8 of OTC trading. Can these general features of OTC markets explain

why a customer contacts very few dealers on multi-dealer platforms? Most likely not. First,

the very objective of multi-dealer platforms is to reduce search friction by making it easier

for customers to reach out to many dealers at once. Second, these general arguments cannot

explain why a customer contacts many more dealers on platforms that by default do not

disclose the number of contacted dealers, such as MarketAxess. Therefore, these general

features of OTC markets cannot be the driving force that determines the external margin of

how many dealers a customer would contact on a multi-dealer platform.9

To the consumer search literature,10 which also feature mixed pricing strategies by firms,

this paper contributes a novel model where the number of responding firms is endogenously

determined by the firms’ own decisions of whether to respond instead of being exogenously

chosen by nature. If one replaces the firms’ endogenous decisions by an exogenous availability

constraint, then the customer would contact as many firms as is feasible (Appendix A).

6Duffie, Gârleanu, and Pedersen (2005) pioneered the OTC search literature. Examples include Atke-
son, Eisfeldt, and Weill (2015), Bethune, Sultanum, and Trachter (2021), Dugast, Üslü, and Weill (2022),
Hugonnier, Lester, and Weill (2020), Li, Rocheteau, and Weill (2012), Maurin (2022), Praz (2014), Tsoy
(2021), Vayanos and Weill (2008), and Wang (2022) among many others. Weill (2020) reviews the literature
of search models in OTC markets.

7Most OTC markets exhibit a highly concentrated core-periphery trading network (Abad, Aldasoro,
Aymanns, D’Errico, Fache Rousová, Hoffmann, Langfield, Neychev, and Roukny, 2016; Afonso, Kovner, and
Schoar, 2014; Bech and Atalay, 2010; Craig and von Peter, 2014; Hollifield, Neklyudov, and Spatt, 2017;
in’t Veld and van Lelyveld, 2014; King, Osler, and Rime, 2012; Li and Schürhoff, 2019; Peltonen, Scheicher,
and Vuillemey, 2014). Theoretical explanations include Chang and Zhang (2022), Farboodi, Jarosch, and
Shimer (2022), Sambalaibat (2022), Üslü (2019), and Wang (2016).

8Examples include Di Maggio, Kermani, and Song (2017) and Hendershott, Li, Livdan, and Schürhoff
(2020).

9Riggs et al. (2020) provide evidence that the relationship channel matters for the internal margin of
which dealers to contact and which dealer would more likely offer a better price, although no evidence is
provided for why relationship drives the external margin of how many dealers to contact.

10Stigler (1961) pioneered the consumer search literature. Examples include Varian (1980), Burdett and
Judd (1983), Stahl (1989), and Lester (2011).
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Another distinction is the absence of a search cost in my paper. The consumer search

literature assume a positive search cost for at least some customers. In my model, the

customer chooses to contact only two dealers for prices in the absence of any search cost.

The paper is organized as follows. Section 2 sets up the benchmark model. Section 3

solves for the unique symmetric equilibrium in closed form and obtains the main results

in any equilibrium. Section 4 examines alternative designs of information disclosure and

establishes the limits of multi-dealer platforms. Section 5 derives the models’ other empirical

predictions. Section 6 concludes.

2 Benchmark Model

2.1 Trading game

The trading game proceeds in three stages. In Stage 1, a customer seeking to buy one unit

of an asset chooses a number n of ex-ante identical dealers to contact in an RFQ. Observing

the customer’s choice n, each dealer j chooses whether to respond and what price pj to offer

in Stage 2. The asset’s expected payoff is 0, and the customer has an additional private

value v of owning the asset. Responding to the RFQ incurs a cost c > 0, which is assumed

to be less than the value v (c < v) so that there is a positive gain from trade. In Stage 3,

the customer chooses whether and against which dealer’s price to trade. I do not impose

any tie-breaking rule in the case of an indifference. All agents are risk-neutral with no time

discounting. Figure 1 summarizes the timing of the model.
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The customer chooses n.

Stage 1

Observing n, dealers
choose whether to respond
and what prices to offer.

Stage 2

Given the responses, the
customer chooses to trade
with dealer i ∈ {0, . . . , n}.

Stage 3

Figure 1: Timing

2.2 Strategies and equilibrium concept

The customer’s strategy consists of a couple (n, i), following which the customer contacts

n dealers in Stage 1 and trades with dealer i ∈ {0, 1, . . . n} in Stage 3 after receiving the

dealers’ responses (p1, . . . , pn). If dealer j chooses not to respond to the customer’s RFQ in

Stage 2, then pj = NA by convention. If the customer chooses not to trade in Stage 3, then

i = 0 by convention. Mixed strategies are allowed. The strategy of dealer j consists of a

couple (aj,n, Fj,n) for each number of dealers n chosen by the customer, where aj,n ∈ [0, 1]

is the probability with which the dealer responds to the RFQ, and Fj,n is the CDF of the

dealer’s price offer if the dealer does respond.

The solution concept is subgame perfect equilibrium. I first solve for the unique sym-

metric subgame perfect equilibrium, where all dealers employ the same strategy (a∗, F ∗).

Then I show that the main results hold in all subgame perfect equilibria (Theorem 2). In a

symmetric subgame perfect equilibrium,

(symmetry) aj,n = a∗n, and Fj,n = F ∗n for every n ∈ Z++ and j = 1, . . . n.

The agents’ optimality conditions are derived as follows. In Stage 3, the customer chooses

to trade with the dealer who offers the lowest price if that price is less than the customer’s
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private value, and otherwise does not trade:

i∗ =



argmin
j=1,...,n

pj if min
j=1,...,n

pj < v,

0 if min
j=1,...,n

pj > v.

argmin
j=1,...,n

pj or 0 if min
j=1,...,n

pj = v.

(1)

In Stage 2, every price p that belongs to the support of the equilibrium price distribution

F ∗n maximizes a dealer’s expected payoff given the other dealers’ pricing strategy for every

n ≥ 1,

p ∈ argmax
p̃∈R

(
p̃ 1{p̃≤v} (a∗n [1− F ∗n(p̃)] + 1− a∗n)n−1

)
∀p ∈ supp F ∗n , (2)

The right hand side of (2) is the expected trading profit that the dealer maximizes: When

offering a price p̃ ≤ v, the dealer trades with the customer if and only if every other dealer

either offers a price greater than p or does not respond, an event that occurs with probability

(a∗n[1− F ∗n(p̃)] + 1− a∗n)n−1.

The dealer’s individual rationality is given by

p 1{p≤v} (a∗n [1− F ∗n(p)] + 1− a∗n)n−1 ≥ c ∀p ∈ supp F ∗n . (3)

That is, the dealer’s equilibrium expected trading profit must be at least as large as its cost

c of responding to the RFQ. If the dealer responds with probability a∗n < 1, the dealer must

be indifferent between responding or not. In this case, (3) must hold as an equality,

if a∗n < 1, p 1{p≤v} (a∗n [1− F ∗n(p)] + 1− a∗n)n−1 = c ∀p ∈ supp F ∗n . (4)
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In Stage 1, the customer chooses the number of dealers n to maximize its expected payoff,

n∗ ∈ argmax
n∈Z+

[
v −EG∗n(p ∧ v)

]
, (5)

where 1−G∗n(p) = [a∗n(1− F ∗n(p)) + 1− a∗n]n .

Here, G∗n is the CDF of the best price offer p = minj=1,...,n pj, and v − EG∗n(p ∧ v) is the

customer’s expected payoff upon contacting n dealers.

Proposition 0. A symmetric subgame perfect equilibrium is a strategy profile (n∗, i∗, a∗, F ∗)

such that,

• the customer’s strategy (n∗, i∗) satisfies the optimality conditions (1) and (5), and

• all dealers employ the same strategy (a∗, F ∗), which satisfies the optimality conditions

(2) to (4).

2.3 Discussion

A dealer’s cost c of responding to a customer’s RFQ can arise from the effort and the

resources to evaluate the asset,11 the customer,12 market conditions, and the dealer’s own

inventory—activities that are necessary prior to forming a price offer. Instead of a response

cost on dealers, Riggs et al. (2020) impose a cost on the customer to contact more dealers.

The contact cost directly generates an interior solution for the customer’s optimal number

of dealers to contact that depends on the magnitude of the contact cost. In my model,

11The valuation of non-standard assets requires costly expertise (Glode, Green, and Lowery, 2012; Glode
and Opp, 2020; Li and Song, 2020; Chaderina and Glode, 2022).

12Price discrimination is a prominent feature of OTC trading: A given dealer typically offers different prices
to a hedge fund versus to an insurance company (Ramadorai, 2008; Hau et al., 2021; Bjønnes, Kathitziotis,
and Osler, 2015; Lee and Wang, 2018; Pinter, Wang, and Zou, 2020, 2021).
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contacting more dealers does not incur any cost. The response cost c is materialized only

when a dealer strategically decides to respond to the RFQ. Therefore, the response cost c

does not affect the customer’s choice as the cost does not appear in the customer’s utility

function. Further, the response cost c can be arbitrarily close to 0 or heterogeneous across

dealers (as an extension in Appendix C). In both situations, the customer always contacts

n∗ = 2 dealers in equilibrium.

The driving force that pushes the customer to contact only n∗ = 2 dealers is dealers’

ability to endogenously decide whether to respond. Existing work13 instead assume that

every dealer is available with an exogenously fixed probability α and responds whenever

available. With such an exogenous response probability, Appendix A shows that the customer

would contact as many dealers as is feasible (Proposition 5). Moreover, letting the available

dealers endogenously decide whether to respond would restore an interior solution on the

number n (Proposition 6). These results illustrate the opposing effects of an exogenous versus

an endogenous response probability: Letting dealers respond with an exogenous probability

pushes the customer to contact more dealers; whereas endogenizing their response probability

pushes the customer to contact fewer dealers. The exogenous availability constraint captures

a case of heterogeneous dealer valuations, in that the dealers with a high valuation for the

asset is not available to sell the asset.

The probability that a dealer endogenously responds can be interpreted as the attention

that the dealer allocates to the customer’s RFQ. Attention is costly. Then the cost c is the

dealer’s marginal cost of attention.

13Examples include Glebkin et al. (2022) and Yueshen (2017) and papers in the consumer search literature.
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3 Equilibrium

This section establishes that (1) the customer contacts only n∗ = 2 dealers in the unique

symmetric subgame perfect equilibrium (Theorem 1), (2) the customer’s ex-ante payoff is

the same across all subgame perfect equilibria (Theorem 2), and (3) with a mild tie-breaking

rule, the customer always contacts n∗ = 2 dealers in any subgame perfect equilibrium (The-

orem 2).

3.1 Symmetric subgame perfect equilibrium

Theorem 1. The benchmark model has a unique symmetric subgame perfect equilibrium

(n∗, i∗, a∗, F ∗), where

n∗ = 2, i∗ satisfies (1),

a∗n =


1−

( c
v

) 1
n−1

if n > 1,

1 if n = 1,

F ∗n(p) =


1−

(
c
p

) 1
n−1

1−
(
c
v

) 1
n−1

, and supp F ∗n = [c, v] if n > 1,

1p≥v if n = 1.

Theorem 1 shows that it is strictly optimal for the customer to contact only n∗ = 2 dealers

in the unique symmetric subgame perfect equilibrium. Next, I proceed with a backward

induction to derive the symmetric equilibrium.

In Stage 3, the customer’s optimal dealer choice i∗ is directly given by her optimality

condition (1).

In Stage 2, responding with any price higher than the customer’s value v is strictly

dominated by not responding. Thus, F ∗n(v) = 1 for any n ≥ 1. If the customer contacted

only n = 1 dealer, then it would be strictly optimal for the dealer to respond with probability
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a∗1 = 1 and offer the monopoly price v deterministically. When the customer contacts more

than 1 dealer, n > 1, then the price distribution F ∗n cannot have any atom. If F ∗n had an

atom at a price p0, undercutting by offering some price p0 − ε would yield a strictly higher

payoff than offering the price p0 for at least one dealer.14 Letting p̄ be the upperbound of

the dealer’s price support, p̄ := sup (supp F ∗n), then p̄ ≤ v. When a dealer offers a price p̄− ε

that arbitrarily approaches the upperbound p̄, the dealer gets to trade with the customer

if and only if no other dealers respond, an event that occurs with probability (1 − a∗n)n−1.

Thus, the dealer’s expected trading profit approaches p̄(1 − a∗n)n−1. If the dealer offers the

price v, her expected trading profit equals v(1 − a∗n)n−1. The dealer’s optimality condition

(2) implies that p̄ = v.

If a∗n = 1, then all the contacted dealers would respond and compete à la Bertrand,

offering the price 0 with probability 1 and earning no trading profit. This contradicts the

dealer’s individual rationality (3), because a given dealer would be strictly better off not

responding to save its response cost c. Hence, a∗n < 1. Then the dealer’s indifference

condition (4) is equivalent to

p (a∗n [1− F ∗n(p)] + 1− a∗n)n−1 = c, ∀p ∈ supp F ∗n . (6)

Setting p = v in (6) yields

v(1− a∗n)n−1 = c ⇐⇒ a∗n = 1−
( c
v

) 1
n−1

. (7)

14When every dealer offers the same price p0, at least one dealer trades with the customer with a probability
less than 1 regardless of how the customer breaks her tie. Then that dealer is strictly better off offering the
slightly lower price p0 − ε to undercut the other dealers.
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Then equation (6) uniquely determines the price distribution F ∗n ,

F ∗n(p) =
1−

(
c
p

) 1
n−1

1−
(
c
v

) 1
n−1

, and supp F ∗n = [c, v] . (8)

Proposition 1. (i) The probability a∗n that each dealer responds is strictly decreasing in

the number of dealers n > 1 contacted by the customer. (ii) Conditional on responding,

each dealer’s price distribution F ∗n′ first-order stochastically dominates F ∗n for n′ > n > 1,

F ∗n′ �(1) F
∗
n .

When the customer contacts one more dealer, two effects arise: (i) Each dealer “pays

less attention” to the RFQ and responds with a lower probability a∗n+1 < a∗n. The decline in

the dealers’ response probability directly affects the quality of the best price offer that the

customer expects. The reduction of dealers’ response probability further leads to a second

effect: (ii) Each responding dealer’s price becomes less competitive F ∗n+1 �(1) F
∗
n , despite

there being potentially more competing dealers. That the dealers can endogenously decide

whether to respond is crucial for Part (ii) and thus for Theorem 1. If the response probability

were exogenously fixed at some constant α instead of varying endogenously with the number

of dealers n contacted by the customer, Appendix A shows that the dealer’s price distribution

Fα
n would become stochastically smaller (that is, more competitive) if the customer contacts

a larger number n of dealers. With such an exogenous response probability, the customer

would contact as many dealers as is feasible in equilibrium (Proposition 5).

Does Proposition 1 rely on any parametric assumption? No. To show this, I derive

Proposition 1 from a dealer’s individual rationality without resorting to the closed form

solutions (7) and (8) for a∗n and F ∗n . First, I show that a∗n+1 < a∗n. When dealer j offers

the upperbound price v, the dealer’s expected trading profit is given by v(1 − a∗n)n−1. The
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dealer’s individual rationality equates this expected trading profit to the dealer’s response

cost c. If the dealers were to keep their response probability unchanged when the customer

contacts one more dealer, a∗n+1 = a∗n, then the probability that dealer j trades with the

customer when offering the price v would strictly decrease due to the presence of one more

contacted dealer. As a result, j would fail its individual rationality. To offset the effect of

including one more dealer and restore the individual rationality for j, other dealers’ response

probability a∗n+1 has to decline by just enough to keep the probability of j trading with the

customer constant, (1− a∗n+1)n = (1− a∗n)n−1.

Next, I explain why F ∗n+1 �(1) F
∗
n . If the dealers were to keep their price distribution

unchanged when the customer contacts one more dealer, F ∗n+1 = F ∗n , then the probability(
a∗n+1[1− F ∗n(p)] + 1− a∗n+1

)n
that dealer j trades with the customer when offering a given

price p would become strictly lower,

(
a∗n+1

[
1− F ∗n+1(p)

]
+ 1− a∗n+1

) n
n−1 =

(
1− F ∗n(p) + F ∗n(p)(1− a∗n+1)

) n
n−1

< 1− F ∗n(p) + F ∗n(p)(1− a∗n+1)
n

n−1

= 1− F ∗n(p) + F ∗n(p)(1− a∗n) = a∗n [1− F ∗n(p)] + 1− a∗n.

As a result, j would fail its individual rationality. The inequality above follows from the

convexity of the function x 7→ xn/(n−1). To offset the effect of including one more dealer,

other dealers’ price distribution F ∗n+1 has to be stochastically larger to restore the individual

rationality for j.

These two negative effects on dealer behavior more than offset the benefit to the customer

of potentially receiving one more quote, and the customer expects a worse overall price.

Therefore, Proposition 1 provides the basis for the customer to contact fewer dealers in

Stage 1. I now turn to solve the customer’s problem in Stage 1.
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In Stage 1, the customer’s payoff is 0 when contacting only n = 1 dealer. If the customer

contacts more than one dealer, n > 1, the distribution G∗n of the best price offer p =

minj=1,...,n pj is given by

1−G∗n(p) = [a∗n(1− F ∗n(p)) + 1− a∗n]n =

(
c

p

) n
n−1

, ∀p ∈ [c, v].

If n increases, 1 − G∗n(p) strictly increases. That is, the best price offer p = minj=1,...,n pj

becomes first-order stochastically larger when the customer contacts more dealers. Therefore,

the customer’s unique optimal choice is n∗ = 2. This establishes Theorem 1.

Theorem 1 continues to hold in the exact same form when the customer is risk-averse: In

Stage 3, the customer optimally trades with the dealer offering the lowest price if that price

does not exceed the customer’s reservation value v; Thus in Stage 2, the dealers’ subgame

remains unaffected, and the dealers continue to follow the equilibrium strategy (a∗, F ∗); In

Stage 1, since the stochastic dominance G∗2 ≺(1) G
∗
3 ≺(1) . . . is first-order, risk aversion does

not affect the client’s choice of the number n at all. Therefore, a risk-averse customer also

contacts 2 dealers in the unique symmetric subgame perfect equilibrium.

3.2 Any subgame perfect equilibrium

There exists subgame perfect equilbria other than the symmetric one. For example,

one can modify the symmetric equilibrium as follows to obtain another subgame perfect

equilibrium: When the customer contacts more than 2 dealers, n > 2, one can let n − 2

of them not respond, and let the other two respond with probability a∗2 and offer the price

distribution F ∗2 conditional on responding. In such an equilibrium, the customer still earns
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the same ex-ante payoff of π∗2 as in the symmetric equilibrium, where

π∗n := v − EG∗n(p ∧ v). (9)

Generalizing this example, the next result establishes that (i) the customer’s ex-ante payoff

is π∗2 in any subgame perfect equilibrium, and (ii) subject to a mild tie-breaking rule, the

customer always contacts n∗ = 2 dealers in any subgame perfect equilibrium.

Theorem 2. (i) The customer’s ex-ante payoff is π∗2 in any subgame perfect equilibrium.

(ii) If one imposes a tie-breaking rule that the customer prefers to contact fewer dealers

whenever she is indifferent, then the customer always contacts 2 dealers in any subgame

perfect equilibrium.

The proof, provided in Appendix B, generalizes that of Theorem 1. The underlying

economicscomes from the observation that it is more cost-efficient to concentrate response

probabilities among fewer dealers. To illustrate this observation, for a given number of

contacted dealers, n, I let a∗1,n, . . . , a
∗
n,n be the n dealers’ equilibrium response probabilities.

The aggregate expected gain from trade is v[1−(1−a∗1,n) . . . (1−a∗n,n)]. That is, the aggregate

gain depends on the individual response probabilities a∗1,n, . . . , a
∗
n,n only through the sufficient

statistic (1− a∗1,n) . . . (1− a∗n−1,n)(1− a∗n,n), which is the probability that no dealer responds

to the customer’s RFQ. Keeping this aggregate gain constant, one can reduce the expected

response cost c(a∗1,n + . . .+ a∗n−1,n + a∗n,n) by reducing one dealer’s response probability, say

a∗n,n, down to 0 and raising another dealer’s response probability, say a∗n−1,n appropriately.
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That is, the minimization problem

min a∗n−1,n + a∗n,n

subject to (1− a∗n−1,n)(1− a∗n,n) = constant

is solved when either a∗n−1,n = 0 or a∗n,n = 0. In other words, it is more cost-efficient to

concentrate response probabilities among fewer dealers. Applying this argument inductively,

one obtains that it is more cost-efficient to let at most 2 dealers respond with a positive

probability.

When the customer contacts exactly 2 dealers, her ex-ante payoff is shown to be π∗2. Thus

in any subgame perfect equilibrium, the customer’s ex-ante payoff always equals π∗2, which

she can achieve by contacting only 2 dealers.

I further exploit this observation of cost-efficiency to generalize Theorem 1 with alter-

native platform designs. An assumption of the model is that the number n of contacted

dealers is disclosed to the n dealers, as is the case on SEFs. The next section shows that no

alternative design of information disclosure about the number n can improve the customer’s

payoff.

4 Alternative Designs

In practice, many multi-dealer platforms (such as SEFs) disclose the number of contacted

dealers to those dealers in a customer RFQ (Riggs et al., 2020), perhaps as a way to motivate

the dealers to offer more competitive prices. Proposition 1 shows that upon observing a larger

number n of contacted dealers, the dealers’ reduced response probability more than offsets

their competitive pressure, leading to both individually and overall less competitive prices.
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This section examines alternative platform designs of the information disclosure about the

number n. I first consider the other extreme case where the platform designer does not

disclose any information about the number n. Then I search for the optimal design of

information disclosure that maximizes price competitiveness. Overall, no alternative design

of information disclosure can improve the customer’s payoff above her status quo payoff when

the number of contacted dealers, n, is fully disclosed.

4.1 No disclosure

I modify the benchmark model as follows: (1) The dealers cannot observe how many

other dealers are contacted by the customer. (2) The customer could contact at most n̄

dealers (n̄ > 2), because it will turn out that the customer would contact as many dealers

as is feasible in equilibrium. (3) I assume the tie-breaking rule that the customer prefers to

contact fewer dealers whenever she is indifferent. (4) To account for imperfect information

as the number n becomes unobservable, I use the solution concept of symmetric perfect

Bayesian equilibrium (PBE), where all dealers employ the same strategy (aunobs, F unobs). I

do not impose any restriction on off-path beliefs. The remaining setup is identical to the

benchmark model in Section 2.

With the number of contacted dealers n being unobservable, a dealer’s response strategy

(aunobs, F unobs) can no longer depend on the number n. There are two symmetric PBE, one

of which is degenerate in that the customer submits no RFQ at all. I first solve for the

unique non-degenerate equilibrium, then spell out the degenerate one.

Formally, a symmetric PBE is non-degenerate if the customer submits an RFQ with a

positive probability. In a non-degenerate equilibrium, the customer’s ex-ante payoff must

be strictly positive. Thus, the dealers must respond and offer prices strictly less than the
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monopolistic v with a positive probability, aunobs > 0 and F unobs(v−) > 0. Hence, it is

strictly optimal for the customer to contact as many dealers as is feasible, nunobs = n̄. In

equilibrium, the dealers have the correct conjecture about the equilibrium choice nunobs = n̄

of the customer, leading to the following equilibrium result.

Proposition 2. I consider the modified model where the number of contacted dealers is not

disclosed. (i) There exists a unique non-degenerate PBE (nunobs, i∗, aunobs, F unobs), where i∗

is the same as in Theorem 1, and

nunobs = n̄, aunobs = a∗n̄, F unobs = F ∗n̄ .

A dealer believes that the customer contacted n̄ dealers whenever it receives an RFQ. (ii)

The customer’s ex-ante payoff becomes strictly lower compared to her status quo payoff π∗2

given by (9) when the number of contacted dealers, n, is fully disclosed.

Once the number n becomes undisclosed, the customer can no longer commit to contact

fewer than n̄ dealers, and thereby receives a lower equilibrium payoff. Specifically, the

customer’s equilibrium payoff becomes π∗n̄, which is what she would have earned if she had

contacted n = n̄ dealers in the benchmark model. This payoff is strictly less than the

customer’s equilibrium payoff π∗2 in the benchmark model where she contacts 2 dealers in

equilibrium, π∗n̄ < π∗2. That is, the customer receives overall worse prices and a lower

equilibrium payoff despite her contacting more dealers.

In the U.S. corporate bond market, MarketAxess does not disclose the number of con-

tacted dealers by default.15 Consistent with Proposition 2, a customer on average contacts

more than 25 in an RFQ, and dealers’ response rate is only around 25% (Hendershott and

15A customer has the option to disclose its number of contacted dealers in a global setting, although not
on a request-by-request basis.
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Madhavan, 2015, Table VI). In comparison, the response rate is slightly below 90% on SEFs

(Riggs et al., 2020, Table 3). To jointly explain these numbers, a rough computation based

the relationship 1− (c/v)1/(n−1) = a∗n estimates that the cost-to-value ratios c/v that I would

need for SEFs and MarketAxess are nearly identical, (1− 90%)4−1 ≈ (1− 25%)25−1 ≈ 10−3.

The trading cost in basis point is also much higher on MarketAxess than on SEFs, although

such a comparison may be confounded by other factors such as the lower liquidity of corpo-

rate bonds relative to index credit default swaps.

Next, I turn to spell out the degenerate equilibrium:

• In Stage 1, the customer submits no RFQ at all;

• In Stage 2, a dealer believes that it is the only dealer contacted by the customer

whenever it receives an RFQ. The dealer responds and offers the deterministic price v

with probability 1;

• In Stage 3, the customer’s dealer choice remains to be i∗ as given by her optimality

condition (1), if the customer had received quotes.

It is easy to verify that the above constitutes a symmetric PBE. Proposition 7 (Appendix B)

shows that there exists no other symmetric PBE.

4.2 Optimal information disclosure

Although making the number n of contacted dealers undisclosed does not lead to more

competitive prices, it does cause the customer to contact more dealers in equilibrium. One

may wonder whether there exists an alternative information design with partial disclosure

that could make the dealers’ prices more competitive than the status quo. The answer is no

unfortunately.
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Formally, a design of information disclosure (S, µ) consists of a countable realization

space S and a family of distributions {µ(·|n)}n∈Z++ over the space S. The design of in-

formation disclosure is common knowledge among all market participants. Here are three

examples of information designs.

• Example 1 (full disclosure): When S = Z++ and µ(s|n) = 1{s=n}, ∀s ∈ S, the infor-

mation design fully discloses the number n.

• Example 2 (no disclosure): When S is a singleton, the information design discloses

nothing about the number n.

• Example 3 (partial disclosure): When S = {odd, even} and µ(odd|n) = 1{n is odd}, the

information design discloses and only discloses whether n is odd or even.

I generalize the benchmark model to allow for any arbitrary design of information disclo-

sure (S, µ). In Stage 1, the customer chooses the number n of dealers to contact. A signal

s is drawn from the distribution µ(·|n) and is observed by the contacted dealers, who then

chooses whether to respond and which price to offer in Stage 2. In Stage 3, the customer

chooses whether and against which dealer’s price to trade. As in the benchmark model, I do

not impose any tie-breaking rule in the case of an indifference. All agents are risk-neutral

with no time discounting. The solution concept is symmetric PBE, where all dealers employ

the same strategy (aµ, F µ). I do not impose any restriction on off-path beliefs. Figure 2

summarizes the timing of the generalized model.

The way that information is optimally disclosed is identical to that of Bayesian Persuation

(Kamenica and Gentzkow, 2011), in that the platform designer sends a signal about the

state of the world n, and the contacted dealers receive the signal. There is one fundamental
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The customer chooses n.
A signal s ∼ µ(·|n).

Stage 1

Observing s, dealers
choose whether to respond
and what prices to offer.

Stage 2

Given the responses, the
customer chooses to trade
with dealer i ∈ {0, . . . , n}.

Stage 3

Figure 2: Timing: Dealers now observe a signal s instead of the number n directly

distinction: Here, the receivers’ prior belief about the state of the world n is endogenously

determined by the customer’s equilibrium choice. In Bayesian Persuasion, the receiver’s prior

belief about the state of the world is exogenously given.

In my setup, fully disclosing the state of the world n is optimal.

Theorem 3. Given any design of information disclosure (S, µ), the customer’s ex-ante pay-

off in any symmetric PBE is less than or equal to her status quo payoff π∗2 given by (9).

Although the customer contacts only 2 dealers when the number of her contacted dealers

is fully disclosed, no alternative design of information disclosure can improve her payoff above

this outcome. Theorem 3 establishes the limits of multi-dealer platforms in promoting price

competition.

The proof of Theorem 3, provided in Appendix B, generalizes that of Theorem 1. The

underlying economics again comes from the cost saving of response concentration. The cost

saving does not depend on what information is disclosed about the number n. Specifically,

conditional on any signal realization s ∈ S that is drawn with a positive probability under

a given equilibrium, I let χs(n) be the posterior probability that the customer contacted n

dealers. The conditional expectations of the aggregate gain from trade and the aggregate

response cost simply average the gain and the cost across all on-path choices n with their

respective posterior probabilities χs(n). Given each on-path choice n ≥ 2, it is more cost-
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efficient to concentration response probabilities among fewer dealers. Taking the expectations

across all on-path choices n naturally preserves this property of cost saving.

5 Empirical Predictions

The benchmark model in Section 2 can be easily extended to include an order size q

and to yield more testable predictions. These predictions are largely consistent with facts

documented in the literature.

The benchmarket model is extended as follows: In Stage 1, a customer seeking to buy

q units of the asset chooses a number n of ex-ante identical dealers to contact in an RFQ.

The order size q is an exogenous parameter and thus is common knowledge among market

participants. Stages 2 and 3 remain identical to those in the benchmark model. To ensure

a positive gain from trade, I assume that c < vq.

Proposition 3. The extended model with an order size q has a unique symmetric subgame

perfect equilibrium (n∗, i∗, aq, F q), where n∗ and i∗ are the same as in Theorem 1, and

aqn =


1−

(
c

vq

) 1
n−1

if n > 1,

1 if n = 1,

F q
n(p) =


1−

(
c
pq

) 1
n−1

1−
(
c
vq

) 1
n−1

, and supp F q
n =

[
c

q
, v

]
if n > 1,

1p≥v if n = 1.

Compared to Theorem 1, the customer’s equilibrium strategy (n∗, i∗) remains unchanged.

The only difference lies in the expressions of the dealer’s equilibrium strategy (aqn, F
q
n), in

that the cost c is normalized by the quantity q and becomes the per-unit cost c/q. This
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difference arises from the fact that equation (7) becomes

vq(1− aqn)n−1 = c ⇐⇒ aqn = 1−
(
c

vq

) 1
n−1

.

The remaining proof is otherwise identical to that for Theorem 1.

Based on the above equilibrium result, the next proposition provides testable predic-

tions on a dealer’s response probability and price distribution. I write aq,v2 for the response

probability aq2 and F q,v
2 for the price distribution F q

2 to state the effects of the value v.

Proposition 4. (i) The equilibrium response probability aq,v2 is strictly increasing in the

order size q and the value v. (ii) Conditional on responding, each dealer’s equilibrium price

distribution F q,v
2 becomes first-order stochastically smaller with a larger size q or a smaller

value v,

F q,v
2 �(1) F

q′,v
2 for q < q′ and F q,v′

2 �(1) F
q,v
2 for v < v′.

On SEFs for index credit default swaps, Riggs et al. (2020) document patterns that are

largely consistent with the predictions of Propositions 1 and 4. Specifically, they find that

a dealer’s likelihood of responding to an RFQ decreases in the number of contacted dealers

(Proposition 1 Part (i)) and increases in notional quantity (Proposition 4 Part (i)). Customer

RFQs are more likely to result in actual trades if order sizes are larger or nonstandard, which

is consistent with the interpretation that those orders imply larger gain from trade between

customers and dealers (Proposition 4 Part (i)). Conditional on responding to RFQs, they

find that dealers’ quoted spreads and customers’ transaction costs become larger if more

dealers are contacted in the RFQ (Proposition 1 Part (ii)) or if order sizes are nonstandard

(Proposition 4 Part (ii)), although the effects are mild. If order sizes are larger, however,

they find that dealers’ quoted spreads become slightly larger, with an economically and
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statistically insignificant magnitude.

6 Conclusion

On many important multi-dealer platforms such as SEFs, customers mostly request

quotes from very few dealers. I build a model of multi-dealer platforms where a customer

can simultaneously request quotes from any number of dealers, and each dealer strategi-

cally chooses to respond or ignore the request. In this otherwise standard model of price

competition, letting dealers endogenously decide whether to respond overturns their incen-

tive to compete. If the customer contacts more dealers, every dealer responds with a lower

probability and offers a stochastically worse price when it responds. These two negative

effects more than offset the benefit to the customer from potentially receiving more quotes

and worsen the overall price for the customer. The more general underlying economics is

response concentration: It is more cost-efficient to concentrate response probabilities among

fewer dealers. In equilibrium, the customer optimally contacts only two dealers. Multi-dealer

platforms are limited in their ability to promote price competition: No alternative design of

information disclosure can improve the customer’s payoff above this outcome.
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Hendershott, T., D. Livdan, and N. Schürhoff (2021): “All-to-All Liquidity in
Corporate Bonds,” Working Paper.

Hendershott, T. and A. Madhavan (2015): “Click or Call? Auction versus Search
in the Over-the-Counter Market: Click or Call? Auction versus Search in the Over-the-
Counter Market,” The Journal of Finance, 70, 419–447.

Hollifield, B., A. Neklyudov, and C. Spatt (2017): “Bid-Ask Spreads, Trading
Networks, and the Pricing of Securitizations,” The Review of Financial Studies, 30, 3048–
3085.

Hugonnier, J., B. R. Lester, and P.-O. Weill (2020): “Heterogeneity in Decentral-
ized Asset Markets,” Working Paper.

in’t Veld, D. and I. van Lelyveld (2014): “Finding the Core: Network Structure in
Interbank Markets,” Journal of Banking & Finance, 49, 27–40.

Jovanovic, B. and A. J. Menkveld (2022): “Equilibrium Bid-Price Dispersion,” Journal
of Political Economy, 130, 426–461.

30



Kamenica, E. and M. Gentzkow (2011): “Bayesian Persuasion,” American Economic
Review, 101, 2590–2615.

King, M. R., C. Osler, and D. Rime (2012): “Foreign Exchange Market Structure,
Players, and Evolution,” in Handbook of Exchange Rates, John Wiley & Sons, Ltd, chap. 1,
1–44.

Lee, T. and C. Wang (2018): “Why Trade Over-the-Counter? When Investors Want
Price Discrimination,” Working Paper.

Lester, B. (2011): “Information and Prices with Capacity Constraints,” American Eco-
nomic Review, 101, 1591–1600.

Levin, D. and J. L. Smith (1994): “Equilibrium in Auctions with Entry,” The American
Economic Review, 84, 585–599.
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Appendices

A Exogenous Availability Constraint

The dealers’ ability to endogenously decide whether to respond is a driving feature of the

model. To illustrate its role, this appendix considers two variants of the model that include

an exogenous availability constraint.

First variant.

The first variant differs from the benchmark model in two aspects: (1) Instead of deciding

whether to respond at a cost, each contacted dealer is available with an exogenously fixed

probability α and responds whenever available, and (2) the customer could contact at most n̄

dealers (n̄ > 1), because it will turn out that the customer would contact as many dealers as is

feasible in equilibrium. The first variant is otherwise identical to the benchmark model. That

is, this variant differs from the benchmark model in that the dealers’ exogenous availability

constraint replaces their ability to endogenously decide whether to respond.

With such an exogenous response probability α, the next proposition establishes that each

dealer’s pricing becomes more competitive when the customer contacts more dealers (as in

a standard model of price competition), and the customer contacts n̄ dealers in equilibrium.

Proposition 5. (i) The first variant has a unique symmetric subgame perfect equilibrium

(nα, i∗, Fα), where i∗ is the same as in Theorem 1, and

nα = n̄, Fα
n (p) =


1− (1− α)

(
v
p

) 1
n−1

α
, and supp Fα

n =
[
v(1− α)n−1, v

]
if n > 1,

1p≥v if n = 1.
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In particular, each dealer’s price distribution Fα
n becomes first-order stochastically smaller as

n increases. When n̄→∞, the equilibrium price distribution Fα
n̄ converges to the competitive

limit 0 in distribution.

Proof. The backward induction for the first variant is similar to that for the benchmark

model. The only change is that a contacted dealer no longer needs to be indifferent between

responding or not, as it now responds with an exogenous probability instead of endogenously

deciding whether to respond. That is, the indifference condition (4) need not hold.

In Stage 3, the customer’s optimal dealer choice i∗ is directly given by her optimality

condition (1).

In Stage 2, responding with any price higher than the customer’s value v is strictly

dominated by not responding. Thus, Fα(v) = 1. If the customer contacted only n = 1

dealer, then it is strictly optimal for the dealer to offer the monopoly price v deterministically

whenever the dealer is available. When the customer contacts more than 1 dealer, n > 1,

then the price distribution Fα
n cannot have any atom. If Fα

n had an atom at a price p0,

undercutting by offering some price p0 − ε would yield a strictly higher payoff than offering

the price p0 for at least one dealer. Letting p̃ be the upperbound of the dealer’s price

support, p̃ := sup (supp Fα
n ), then p̃ ≤ v. When the dealer offers a price p̃−ε that arbitrarily

approaches the upperbound p̃, the dealer’s expected trading profit approaches p̃(1− α)n−1.

If the dealer offers the price v, her expected trading profit equals v(1− α)n−1. The dealer’s

optimality condition (2) implies that p̃ = v.
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Then (2) is equivalent to

p (α[1− Fα
n (p)] + 1− α)n−1 = v (1− α)n−1 , ∀p ∈ supp Fα

n .

⇐⇒ Fα
n (p) =

1− (1− α)
(
v
p

) 1
n−1

α
, and supp Fα

n =
[
v(1− α)n−1, v

]
.

In Stage 1, the customer’s payoff is 0 when contacting only n = 1 dealer. If n > 1, the

distribution Gα
n of the best price offer p = minj=1,...,n pj is given by

1−Gα
n(p) = [α (1− Fα

n (p)) + 1− α]n , ∀p ∈ [v(1− α)n−1, v].

If n increases, Fα
n (p) strictly increases and thus 1−Gα

n(p) strictly decreases. That is, the best

price offer p = minj=1,...,n pj becomes first-order stochastically smaller when the customer

contacts more dealers. Therefore, the customer’s unique optimal choice is nα = n̄.

Second variant.

The second variant differs from the first in two aspects: (1) Each available dealer can

endogenously decide whether to respond at a cost c, while a non-available dealer simply

does not respond, and (2) the customer could contact any arbitrary number of dealers. The

second variant is otherwise identical to the first one. That is, the second variant reintroduces

dealers’ decisions of whether to respond to the first variant.

This feature restores an interior solution for the equilibrium number of contacted dealers.

Proposition 6. The second variant has a unique symmetric subgame perfect equilibrium
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(nα,c, i∗, aα,c, Fα,c), where i∗ is the same as in Theorem 1, and

nα,c = m or m− 1, m is uniquely determined by a∗m−1 > α ≥ a∗m,

aα,cn =


1 if n < m,

a∗n
α

if n ≥ m,
Fα,c
n =


Fα
n if n < m,

F ∗n if n ≥ m.

When the available dealers are able to endogenously decide whether to respond, the ex-

ogenous availability constraint becomes non-binding when a∗n ≤ α, because the dealers would

respond with a probability a∗n that is lower than α anyway. Since the endogenous response

probability a∗n decreases to 0 as n increases, it declines below the exogenous probability α

when n is above a certain threshold m. When n ≥ m, the exogenous availability constraint

becomes irrelevant and the dealers behave as in the benchmark model of Section 2. That is,

each dealer’s effective response probability remains to be αaα,cn = a∗n and its price distribu-

tion is Fα,c
n = F ∗n . Thus, the customer strictly prefers to contact fewer dealers in this range.

When n < m, the exogenous availability constraint is binding and the dealers behave as in

the first variant. Thus, the customer strictly prefers to contact more dealers in this range.

Overall, the customer’s optimal choice is nα,c = m or m−1, depending on how close the two

probabilities a∗m and α are when a∗m declines below α.

The backward induction for the second variant is similar to that for the benchmark model.

The only change is that the dealers need not be indifferent between responding or not when

the exogenous availability constraint is strictly binding. That is, the indifference condition

(4) need not hold when n < m. I do not repeat the formal proof.
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B Proofs

Proof of Theorem 1. The proof is given immediately after Theorem 1.

Proof of Proposition 1. Part (i): Since c < v, then (c/v)1/(n−1) is strictly increasing in

n. Thus, the probability a∗n is strictly decreasing in n.

Part (ii): Fixing any p ∈ [c, v], I let c/p = η and c/v = δ, then δ < η < 1 and

lnF ∗n(p) = ln
(

1− η
1

n−1

)
− ln

(
1− δ

1
n−1

)
.

It suffices to show that lnF ∗n(p) is strictly decreasing in n. I view n as a continuous variable

and take the partial derivative of lnF ∗n(p) with respect to n to obtain

∂

∂n
lnF ∗n(p) =

1

n− 1

[
η̃ ln(η̃)

1− η̃
− δ̃ ln(δ̃)

1− δ̃

]
,

where δ̃ := δ1/(n−1) < η1/(n−1) =: η̃. Since the function x 7→ (x lnx)/(1 − x) is strictly

decreasing in x ∈ (0, 1), then ∂
∂n

lnF ∗n(p) < 0. Hence for any p ∈ [c, v], F ∗n(p) is strictly

decreasing in n. That is, F ∗n ≺(1) F
∗
n′ for n < n′.

The next two lemmas are useful to prove Theorem 2.

Lemma 1. Given a price p0, after the customer contacts any number n of dealers, at most

one contacted dealer’s price distribution can have an atom at the price p0 in any subgame

perfect equilibrium of the benchmark model.

Proof. I suppose that two price distributions F ∗j,n and F ∗j′,n have an atom at p0. Since

dealer j and j′ must earn strictly positive expected trading profits when offering the price p0

to compensate for the cost of responding, then either j or j′ is strictly better off undercutting
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by offering some price p0− ε. This contradicts the optimality of the price p0 for dealer j and

j′. Lemma 1 follows.

Lemma 2. Given a contacted dealer j, if there exits some price p0 < v and ε > 0 such that

(p0, p0 + ε) ∩ supp F ∗j′,n = ∅ for any other contacted dealer j′ 6= j, then the price p0 cannot

be in the price support of dealer j, p0 /∈ supp F ∗j,n.

Proof. I suppose that the condition of Lemma 2 holds.

Step 1 : By offering any price p ∈ (p0, p0 + ε), dealer j gets to trade with the customer

with a constant probability. Conditional on such a trade, the trading profit earned by j

equals the price p, which is strictly increasing in p. Thus, the expected trading profit earned

by j is either 0, which is not enough to cover the response cost c, or strictly increasing in

p ∈ (p0, p0 + ε). Hence, no price p ∈ (p0, p0 + ε) can be in the price support of dealer j,

p 6∈ supp F ∗j,n, ∀p ∈ (p0, p0 + ε).

Step 2 : If the distribution F ∗j,n has an atom at p0, no other price distribution F ∗j′,n can

have an atom at p0 (Lemma 1). Then dealer j is strictly worse off offering the price p0 than

some price p ∈ (p0, p0 + ε). Hence, the distribution F ∗j,n cannot have an atom at p = p0. By

the same argument, any other price distribution F ∗j′,n cannot have an atom at p = p0 either.

Step 3 : When dealer j offers a price p0− ε′ that arbitrarily approaches the price p0 from

below, j either gets to trade with the customer with probability 0 or is strictly better off

offering some price p ∈ (p0, p0 + ε) since no other price distributions have an atom at p0.

Hence for some ε′ > 0, no price p ∈ (p0, p0 − ε′) can be in the price support of dealer j,

p 6∈ supp F ∗j,n, ∀p ∈ (p0, p0 − ε′).
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The conclusions of Steps 1-3 together imply that p0 cannot be in the price support of

dealer j, p0 /∈ supp F ∗j,n.

Proof of Theorem 2. I fix any arbitrary subgame perfect equilibrium. If the customer

contacts only n = 1 dealer, the dealer would respond with probability 1 and offer the

monopoly price v. Thus, the customer’s payoff is 0.

If the customer contacts some given number n ≥ 2 of dealers, I show that the customer’s

expected payoff does not exceed π∗2.

Given a dealer j, I let p̄j be the upperbound of the dealer’s price support, and p̄−j be the

highest upperbound of the other contacted dealers’ price supports:

p̄j := supp F ∗j,n, p̄−j := max
j′ 6=j

p̄j′ .

If a dealer j′ responds with probability 0, then p̄j′ := −∞ by convention. If p̄−j < v, then

Lemma 2 implies that p̄−j 6∈ supp F ∗j,n. Hence, Lemma 2 further implies that p̄−j 6∈ supp F ∗j′,n

for any other dealer j′ ∈ j. Then p̄−j cannot be the upperbound of any dealer’s price

distribution, which contradicts the definition of p̄−j. Thus, p̄−j = v for any dealer j.

At most one of the contacted dealers can have an atom at v in its price support (Lemma 1).

Without loss of generality, I let dealer 1 be such that p̄1 = v and all other dealers do not

have an atom at v. When dealer 1 offers a price p ∈ supp F ∗1,n that arbitrarily approaches v,

the dealer’s expected trading profit approaches v
(
1− a∗2,n

)
. . .
(
1− a∗n,n

)
. This limiting gain

must be at least c,

v
(
1− a∗2,n

)
. . .
(
1− a∗n,n

)
≥ c

⇐⇒
(
1− a∗2,n

)
. . .
(
1− a∗n,n

)
≥ c

v
. (10)
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Thus, all the other dealers must respond with a probability less than 1. Hence, their expected

payoffs must all equal 0.

It then follows that the customer’s expected payoff does not exceed π∗2,

v

[
1−

n∏
j=1

(
1− a∗j,n

)]
− c

n∑
j=1

a∗j,n︸ ︷︷ ︸
aggregate expected payoff

−

[
v

n∏
j′=2

(
1− a∗j′,n

)
− c

]
a∗1,n︸ ︷︷ ︸

expected payoff of dealer 1

= v
[
1−

(
1− a∗2,n

)
. . .
(
1− a∗n,n

)]
− c

[
a∗2,n + . . .+ a∗n,n

]
≤ v

[
1−

(
1− a∗2,n

)
. . .
(
1− a∗n,n

)]
− c

[
1−

(
1− a∗2,n

)
. . .
(
1− a∗n,n

)]
(11)

≤ v
[
1− c

v

]
− c

[
1− c

v

]
(following from (10)) (12)

= v
[
1− (1− a∗2)2]− c [a∗2 + a∗2] = π∗2.

Inequality (11) above follows from x+ y ≤ xy + 1 for 0 ≤ x, y ≤ 1 and an induction over n:

a∗2,n + . . .+ a∗n,n

= n− 1−
[(

1− a∗2,n
)

+ . . .+
(
1− a∗n−2,n

)
+
(
1− a∗n−1,n

)
+
(
1− a∗n,n

)]
≥ n− 1−

[(
1− a∗2,n

)
+ . . .+

(
1− a∗n−2,n

)
+
(
1− a∗n−1,n

) (
1− a∗n,n

)
+ 1
]

≥ . . .

≥ n− 1−
[(

1− a∗2,n
)
. . .
(
1− a∗n,n

)
+ n− 2

]
≥ 1−

(
1− a∗2,n

)
. . .
(
1− a∗n,n

)
.

In the special case where the customer contacts 2 dealers, I show that the customer’s

expected payoff equals π∗2. First, inequality (11) becomes an equality. Further, Lemma 2

implies that both dealers’ price supports must share the same lowerbound p ≥ c. If p > c,

then undercutting by offering some price p−ε would yield a strictly positive payoff to dealer
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2. Thus, p = c. When dealer 1 offers a price p ∈ supp F ∗1,2 that arbitrarily approaches c, the

dealer’s limiting payoff is non-positive. Thus, the expected payoff of dealer 1 must also be

0. Thus, (10) must hold as an equality, 1− a∗2,2 = c/v. Hence, (12) becomes an equality too.

Thus in any subgame perfect equilibrium, the customer’s ex-ante payoff equals π∗2, which

she can achieve by contacting only 2 dealers. Theorem 2 follows.

Proof of Proposition 2. The proof is given immediately before Proposition 2.

Proposition 7. I consider the modified model where the number of contacted dealers is not

disclosed. All symmetric PBE are provided in Section 4.1 and there exists no other symmetric

PBE.

Proof. Proposition 2 establishes the unique non-degenerate symmetric PBE. It is easy

to verify that the other candidate degenerate equilibrium provided in Section 4.1 indeed

constitutes an PBE. It suffices to show that there exists no other degenerate symmetric

PBE.

In a given degenerate symmetric PBE, the customer’s ex-ante payoff is 0. Thus, every

dealer must offer the monopolistic price v deterministically whenever it receives an RFQ and

decides to respond, F unobs(v−) = 0. Upon receiving an RFQ and under any belief about

how many other dealers are contacted by the customer, a given dealer j can secure a strictly

positive payoff by offering some price p ∈ (c, v). Hence, dealer j optimally responds and offers

the monopolistic price v with probability 1. For such a response strategy to be optimal for

dealer j against other dealers’ response strategy, dealer j has to believe that the customer

contacted no other dealers. Proposition 7 follows.

Proof of Theorem 3. Given a design of information disclosure (S, µ) and a symmetric

PBE, I fix any signal realization s ∈ S that is drawn with a positive probability under the
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PBE. That is,
∑∞

n=1 µ(s|n)ξ(n) > 0, where ξ(n) is the prior probability that the customer

contacts n dealers under the PBE. It suffices to show that the customer’s expected payoff

conditional on the signal realization s does not exceed π∗2.

I let (aµs , F
µ
s ) denote the dealer’s equilibrium strategy upon observing the signal s. Re-

sponding with any price higher than the customer’s value v is strictly dominated by not

responding. Thus, F µ
s (v) = 1. Further, the price distribution F µ

s cannot have any atom. If

F µ
s had an atom at some price p0, then undercutting by offering some price p0 − ε would

yield a strictly higher payoff than offering the price p0 for at least one contacted dealer.

Letting p̂ be the upperbound of the dealer’s price support, p̂ := sup (supp F µ
s ), then

p̂ ≤ v. When a dealer offers a price p̂− ε that arbitrarily approaches the upperbound p̂, the

dealer’s expected trading profit approaches p̂
∑

n≥1 χs(n) (1− aµs )n−1, where χs is the dealer’s

posterior belief about the number n of contacted dealers upon observing the signal s. When

the dealer offers the price v, her expected trading profit equals v
∑

n≥1 χs(n) (1− aµs )n−1.

Thus, p̂ = v. Then the dealer’s individual rationality is given by

v
∑
n≥1

χs(n) (1− aµs )n−1 ≥ c

⇐⇒
∑
n≥1

χs(n) (1− aµs )n−1 ≥ c

v
. (13)

It then follows that the customer’s expected payoff conditional on the signal realization s
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does not exceed π∗2,

v

[
1−

∑
n≥1

χs(n) (1− aµs )n
]
− c

∑
n≥1

χs(n)naµs︸ ︷︷ ︸
aggregate conditional expected payoff

−

[
v
∑
n≥1

χs(n) (1− aµs )n−1 − c

]
aµs︸ ︷︷ ︸

one dealer’s conditional expected payoff

= v

[
1−

∑
n≥1

χs(n) (1− aµs )n−1

]
− c

∑
n≥1

χs(n)(n− 1)aµs

≤ v

[
1−

∑
n≥1

χs(n) (1− aµs )n−1

]
− c

∑
n≥1

χs(n)
[
1− (1− aµs )n−1]

≤ v
[
1− c

v

]
− c

[
1− c

v

]
(following from (13))

= π∗2.

Proof of Proposition 4. Part (i): Since c/(vq) is strictly decreasing in the order size q

and the value v. Thus, the probability aq2 is strictly increasing in the size q and the value v.

Part (ii): Fixing any p ∈ [c/q, v],

1− F q
2 (p) =

c
p
− c

v

q − c
v

is strictly decreasing in the size q and strictly increasing in the value v. Therefore, F q
2 �(1) F

q′

2

for q < q′ and F v′
2 �(1) F

v
2 for v < v′.

C Heterogeneous Response Costs

The benchmark model in Section 2 can be easily extended to allow for heterogeneous

response costs across dealers. In the extended model, this appendix shows that the customer

always contacts 2 dealers in equilibrium.
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To the benchmark model in Section 2, I add a Stage 0 in which each dealer j privately

observes its response cost cj. The response costs are independently and identically distributed

with a CDF H whose support is within [0, v], cj
iid∼ H, H(0) = 0 and H(v−) = 1. The

remaining setup is identical to the benchmark model in Section 2.

Theorem 4. The extended model with heterogeneous response costs has a unique symmet-

ric subgame perfect equilibrium
(
n∗, i∗, aH , F ∗

)
, where n∗, i∗ and F ∗ are the same as in

Theorem 1, and aH is a function of the response cost cj,

aHn (cj) =



1 if n > 1 and H(cj) ≤ a∗n,

0 if n > 1 and H(c−j ) ≥ a∗n,

a∗n −H(c−j )

H(cj)−H(c−j )
if n > 1, H(c−j ) < a∗n, and H(cj) > a∗n,

1 if n = 1,

Compared to Theorem 1, the only difference is how a dealer decides whether to respond

in equilibrium. Instead of mixing between responding or not, dealer j decides to respond

based on its response cost cj: Dealer j responds with probability 1 if its response cost cj is

below a threshold, and does not respond if its cost cj is above the threshold; if the cost cj

equals the threshold, j might mix between responding or not. When the cost distribution

H has no atom, allowing heterogeneous costs purifies the dealer’s decision to respond. A

dealer’s unconditional response probability remains at a∗n as in Theorem 1. Then conditional

on responding, the dealer’s problem of what prices to offer remains unaffected. Therefore,

the customer’s problem of how many dealers to contact also remains unaffected. The proof

is otherwise identical to that for Theorem 1.
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