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1 Introduction

Teamwork is pervasive in modern economies. When multiple agents work together on a project,

they care about how much effort each of them will put in, and hence about the incentives that each

of them received from the principal. Yet directly observing the incentives of other agents working

on the same project is often not possible, because in many settings, contracts are bilateral and

seen only by the parties signing them.1 The privacy of contracts makes teamwork more difficult to

incentivize. In this paper, we show that contractual privacy has important consequences for the way

in which team projects are organized. In particular, settings with private contracting are likely to

be more hierachical than they would be were contracts public.2 Our results can be used to study,

including to pay transparency and hierarchy within an organization; the delegation of control over

incentive structures in market-based settings such as investment banking syndicates, and venture

capital partnerships; and to the outsourcing or subcontracting of production decisions.

We consider a model in which efforts are complementary in production, so each agent needs to

be sure that the other team members have strong incentives in order to find it worthwhile to put in

high effort himself.3 The principal retains the profit from the project that is not used to pay agents,

and this, coupled with the privacy of contract offers, creates a commitment problem. The principal

would like to promise each agent that she will provide high bonuses to the other agents because,

due to the complementarity of effort, each agent will work harder, knowing that the others are also

working hard. But the principal can always privately renege on such cheap talk when compensation

contracts are private and not contingent on the incentives provided to other agents on the team.

Each agent rationally expects that the principal will behave opportunistically, thus making it more

expensive for the principal to incentivize agents in teams than if bonus structures were transparent.

We can make a preliminary observation, therefore, that private contracting will lead to suboptimal

pay and effort provision by agents as compared to the second-best when contracts are public. We then

1While compensation contracts can in principle be verified in a court of law, such verification is costly, particularly
for third parties. Even though it might be possible to make contracts public on some occasion, contracting parties
could always renegotiate privately afterwards (Aghion, Dewatripont, and Rey (1994)). Recent evidence suggests that
the majority of employees do not know how much money their peers make, nor do they know the compensation budget
offered to their boss (IWPR (2017); Cullen and Perez-Truglia (2020)).

2In this paper, we take the privacy of contracts as given and focus on organizational design. For recent contributions
rationalizing the privacy of contracts within a given organizational structure, see Cullen and Pakzad-Hurson (2019)
and Halac, Lipnowski, and Rappoport (2021).

3The privacy of contracts will also matter when agents’ efforts are substitutes. We choose to work with complemen-
tarities, both for tractability, and because we think that positive externalities are a realistic feature of many interesting
team-based settings. Gryglewicz and Mayer (2022) study a dynamic model where a financial intermediary and a firm
make substitute efforts. DeMarzo and Kaniel (2021) study a model with individual outputs where agents care about
each others’ compensation relative to their own, and their effort exerts negative externalities on other agents.
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turn our attention to features of the real world environment that mitigate this problem. In particular,

the contracting parties observe the bonus contract—so, if the principal were to delegate contracting

to one of the agents, then that agent-delegate would observe the bonus provided to the other agent

(the “sub-agent”). While delegation of contracting does not in itself affect how many contracts are

observed within an organization (since we assume that all contracting remains bilateral), it does

affect who observes those contracts. The impact of delegation on the distribution of information

about compensation can be beneficial to the principal: it improves the transparency of incentives to

the agents making effort choices.

Our first main result is that delegating contracting to one of the agents, rather than keeping

it centralized in the principal’s hands, always raises total compensation and thus helps to restore

incentives. The reason for the improvement in incentives is precisely that it allows transparency

of contracting in the places where it is most important: between agents working together on a

joint project. It allows one of the agents to observe the other’s (steep) incentives, with positive

feedback effects on effort. However, the problem with delegated contracting is that when the principal

relinquishes control of incentive provision, providing only a “budget” for total compensation without

stipulating its distribution, this leads to skewed incentives. Those who now have responsibility for

distributing the compensation budget extract excessive rents, resulting in the power of incentives

being more unequal than would be optimal in a second-best world. This means that the ability to

use delegation to commit to stronger incentives is beneficial for the principal only when agents are

skilled enough, and similar enough. In this case, on the one hand, effort complementarities are most

important and fear of expropriation is most damaging, and on the other, rent extraction is most

limited. A subsidiary result here is that if agents are heterogeneous, the principal should put the

more skilled agent in charge of determining the allocation of the compensation budget, making him

the “team leader”, so that the excessive incentives are paid out to the agent whose effort responds

more strongly to them.

Our second, and perhaps most surprising, main result, is that increasing transparency is not

the only factor driving the principal’s decision to delegate contracting. We show that delegation of

contracting can still be an optimal choice for the principal even when the observability of contracts is

deliberately held constant between delegated and centralized structures. To this end, we let the contract

that is observable under delegation (i.e., the contract between the team leader and the team member)

be also observable under centralization of contracting. The reason why delegation can still be optimal

in this case is subtle. Although the two agents now observe the same contracts, transparency remains

incomplete, so the principal still suffers from a commitment problem related to the contract of the

agent which remains private. The commitment problem arising from this incomplete transparency

results in skewed pay in centralized as well as delegated settings, but the skew is different, and
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sometimes better for the principal, with delegation. Thus, delegation is beneficial not only because

it improves transparency (our first result) but also because it sometimes mitigates the deleterious

impact of remaining opacity (our second result).

The intuition for our second result is as follows. When there are complementarities between

agents, incentive contracts serve a dual purpose—they not only directly motivate the recipient, but

they also indirectly motivate the teammates of the recipient, who work harder because their effort is

complementary to the effort of the agent receiving the public bonus. When contracting is centralized,

other things being equal, the principal sets higher pay for agents whose bonuses are publicly observed,

because these bonus serve both purposes. By contrast, when compensation choices are delegated,

the agent making those choices will, because of his inevitable self-seeking behavior, receive higher

pay. This skew in incentives is better for the principal when the principal is able to put the more

skilled agent in charge of contracting, as long as that agent’s subordinate is sufficiently skilled and

sufficiently similar to the agent-delegate himself. Rent-seeking by the latter will be then be mitigated,

and moreover, the pay skew is in the principal’s preferred direction (towards the more skilled agent).

So, in a world where contracts are not fully transparent, delegation of contracting can be an optimal

response even when it does not affect which or how many contracts are publicly observed by agents.

Our theory applies to any setting in which different agents must work together on a joint output

and contracts are imperfectly observed. This includes many prominent economic and financial appli-

cations: teamwork within organizations; the outsourcing of projects by corporations; venture capital;

investment banking syndicates for IPOs and bond underwriting; and loan syndications. Interestingly,

many of these applications feature hierarchies, which are at least partly the choice of those involved.

Corporations can choose whether to employ a team in house to undertake a project (which would

correspond to centralized contracting, where all agents are directly compensated by the principal) or

to outsource a project (corresponding to delegation, where the principal deals with only one agent,

who contracts with all the other agents). Firms running a “bake off” for a desirable IPO or loan

syndication can choose whether to have a single bookrunner or lead bank, which will then be allowed

to select and compensate the other participating banks out of the agreed spread, or to insist on

multiple lead managers. While there are surely many reasons other than the privacy of contracts

bearing on why these various settings feature hierarchies,4 our theory helps us to understand in each

case the implications of the hierarchy for the incentives of teams which are organized in this way.

4There is a large theoretical literature exploring the causes and consequences of delegation within organizations,
which we survey in section 8 below. However, this literature has not, to our knowledge, touched on the question of
why or under what circumstances incentive or compensation decisions should be delegated. The outsourcing literature,
discussed in section 7, has also left aside the specific issue of contract pay-delegation because it mostly assumes a two-
level production process where compensation is determined by ex post Nash bargaining. The finance literature,
discussed in the same section, has almost universally taken the hierarchical structure as given.
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In particular, if the principal at the top (investor, issuing firm, ...) delegates the power to make

contracting decisions down the hierarchy to a lead bank or general partner, there will be both a

cost and a benefit. The benefit is that incentives for the agent to whom the contracting has been

delegated will certainly increase, leading to an increase in that agent’s effort beyond what could be

attained without delegation. The cost is that incentives for agents further down the hierarchy will be

lower than the principal would desire — because of rent extraction by the agent who is “middleman”

— and may or may not be higher than they would be if the principal were able to contract directly

with these sub-agents. The benefits of such delegation or subcontracting are likely to offset the costs

as long as the skills of the agents in the hierarchy are high, similar to one another, and their efforts

are complementary, which seems to be true of many of the settings described above.

The remainder of the paper is organized as follows. Section 2 presents the economic setup. Section

3 solves for the optimal contract under centralized contracting, while Section 4 does the same under

delegated contracting. In Section 5 we compare the two contracting schemes and find conditions under

which it is optimal to delegate to one agent the authority to compensate the other agent. Section

6 studies optimal delegation when the observability of contracts is kept constant across contracting

schemes (i.e., only one compensation contract is publicly observable with centralized or delegated

contracting). In Section 7 we discuss financial and other applications of our theory. We defer our

discussion of related literature to Section 8, before concluding in Section 9. Appendix A contains

the proofs, while the Online Appendices B and C present the derivation of the optimal contracts in

a centralized contracting scheme with two or one observable contracts, respectively.

2 Economic Setting

We consider an economy with two dates. At date 0, a principal makes an investment in a risky

project and needs to hire two agents to implement it. The two agents can individually exert effort to

increase the project’s expected output, which is realized at date 1. The effort that each agent i = 1, 2

exerts at date 0, denoted by ei for i = 1, 2, is unobservable to the other agent and to the principal.

All three players in this economy are risk-neutral and have limited liability.

Technology. We denote the output of the risky project by X and we assume that it follows a

Bernoulli distribution. The project either succeeds or fails. The probability of success of the project,

denoted by π, is affected by the effort choices of the two agents:
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X(e1, e2) =

{
1 with prob. π(e1, e2)

0 with prob. 1− π(e1, e2).
(1)

Given the realized output in the two states, π(e1, e2) coincides with the expected output of the

project, E[X(e1, e2)].

Effort. For tractability, we model the probability of success π as a Cobb-Douglas function of the

two agents’ effort choices:

π(e1, e2) = eα1
1 e

α2
2 , (2)

where αi ∈ (0, 1) represents the elasticity of π with respect to agent i’s effort ei. This effort elasticity

measures the agent’s ability to “transform” effort into output and so can be interpreted as the agent’s

skill level. The probability function π is strictly increasing and concave in the effort level of each

agent, ∂π/∂ei > 0 and ∂2π/∂e2i < 0. This implies that additional effort increases the expected

output with diminishing returns. Notably, our specification exhibits complementarity between the

agents’ effort levels, ∂2π/∂e1∂e2 > 0, so that one agent’s effort is more productive the higher is

the effort exerted by the other. Effort from both agents is needed for the project to succeed since

π(0, e2) = π(e1, 0) = 0. Moreover, to guarantee that π is a well-defined probability function, we

restrict the effort choice ei to be continuous in [0, 1].5

Exerting effort is costly for the agents, and we assume that they have a quadratic cost function,

ci =
e2i
2
, (3)

which is strictly increasing and convex in the effort choice ei.
6 Finally, we normalize each agent’s

reservation utility (i.e., their outside options) to zero.7

5Cobb-Douglas functions are commonly used to represent the effect of the levels of inputs to production on total
output. In the context of agency theory, Bhattacharyya and Lafontaine (1995), for instance, consider a downstream
Cobb-Douglas production function for a franchising business, where the inputs of production are the effort levels of
the franchisee and the franchisor. In the context of venture capital, Repullo and Suarez (2004) adopt a specification
similar to ours in to capture the effort complementarities between an entrepreneur and a venture capitalist.

6Our model can easily accommodate a more general heterogeneous cost function such as ci = ei
κi/κi, where κi

captures the elasticity of the effort cost with respect to the effort level of agent i. Heterogeneous costs of effort (κ1 6= κ2)
do not add additional insights to the problem since, as we discuss in the next sections, the optimal contracts only
depend on the ratios αi/κi. We therefore normalize κ1 = κ2 = 2 and we analyze the implications of heterogeneous
agents by use of different effort elasticities (α1 6= α2).

7The setting can be extended to allow for positive reservation utilities for each agent. When agents have positive
reservation utilities, the results become stronger in the sense that the principal’s temptation to cut promised bonuses in
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centralized contracting delegated contracting

principal

agent 1 agent 2

principal

Agent

Subagent

Figure 1: Contracting Schemes

Contracts. The principal needs both agents to implement the project, but she can choose whether

to contract directly with both agents, or whether instead to hire only one agent and let this agent

hire (and hence write a contract with) the other agent. We refer to the two contracting schemes

as centralized contracting and delegated contracting, respectively. In the latter scheme, for ease of

exposition, we will refer who does the hiring as the Agent and to the agent who is hired by the other

agent as the Subagent. Depending on the setting, one can think of the Agent as the manager, or the

general contractor, and the Subagent as the worker, or subcontractor. Importantly, when the agents

are heterogeneous (α1 6= α2), the principal also chooses with which agent she will contract directly

if she decides to adopt a delegated contracting scheme. Figure 1 illustrates the structure of the two

contracting schemes. The centralized contracting scheme corresponds to a flat hierarchy whereas the

delegated contracting scheme is a steeper hierarchy.

In both contracting schemes, only two contracts are written and we are interested in exploring

the case in which these bilateral contracts are private information to the parties signing them. This

means that each contract is observable only by the two parties who sign it. Therefore, while in the

case of centralized contracting it is the principal who observes two contracts, in the case of delegated

contracting it is the Agent. Our model, therefore, features two types of hidden actions: unobservable

effort and unobservable contracts. Any enforceable contract is based on what is observable by all

three players, which is a realization x of the project’s output X(e1, e2).

For a given realization x ∈ {0, 1} of the project’s output, we denote by b(x) the principal’s total

compensation budget for the agents, and by φi(x) the fraction of the budget that is allocated to agent

an ex post opportunistic way becomes worse, and so the need to delegate contracting to improve observability becomes
stronger. It can be shown that with strictly positive reservation utilities, delegated contracting will sometimes be
optimal even when agents’ efforts are substitutes rather than complements (details available from the authors on
request). For simplicity, we will work with a model with zero reservation wages.
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i, where
∑2

i=1 φi(x) = 1. It follows that agent i’s contingent compensation is equal to φi(x)b(x). Since

in the low state of the world the project fails and does not deliver any output, and the principal and

agents all have limited liability, the compensation budget and hence the payments to the agents are

all equal to zero in that state. Therefore, in what follows we drop the dependence of the contracts

on the cashflow x and we simply refer to b(1) and φi(1) as b and φi.

In the centralized contracting scheme, the principal chooses both the size of the compensation

budget b and its allocation between the two agents φi. The word “centralized” indicates that both

these decisions are retained by the principal. By contrast, in the delegated contracting scheme, the

principal only sets b, the fraction of output that will be used for compensation, whereas the decision

regarding the division of the compensation budget φi is delegated to the Agent.

Note that our separation of promised payments to agents into budget b and share φi is only for

expositional convenience.8 The offers that agents actually receive are in dollar terms, so that under

centralized contracting, an agent is promised a certain dollar amount (equal to φib) when the project

succeeds, but can infer neither φi nor b from this offer. Similarly, under delegated contracting, the

Subagent receives a dollar offer and from this can infer nothing about the total compensation budget

nor the pay of the Agent. The Agent, on the other hand, observes the dollar amount that the

principal will pay him if the project succeeds and the dollar amount he promises the subagent in that

case, and hence both his own and the Subagent’s incentive pay.

Payoffs. The expected payoff of the principal, denoted by v, is given by the project’s payoff if it

succeeds minus the compensation budget, times the probability of success,

v = (1− b)eαii e
αj
j . (4)

The expected payoff of agent i, denoted by ui, is given by his expected compensation minus his cost

of effort,

ui = (φib)e
αi
i e

αj
j −

e2i
2
. (5)

Before studying the optimal choice that the principal makes at date 0 between the two contract-

ing schemes, we first characterize the optimal contracts in two schemes separately, and discuss the

fundamental role played by the observability of these contracts.

8In particular, this represention will allow us to nicely distinguish the two effects of delegation: the gain from
observability, which comes in the form of a larger budget, from the cost from rent extraction, which comes in the form
of a distortion in the shares of the budget allocated to each agent.
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3 Centralized Contracting

In this section we consider the centralized contracting scheme in which the principal contracts di-

rectly with both agents. We model the interaction between the principal and the two agents as a

noncooperative game. The sequence of events is as follows:

(i) The principal makes two simultaneous take-it-or-leave-it offers to the two agents. Each offer

includes a compensation level, contingent on the success of the project.

(ii) Each agent observes only his own offer and decides whether to accept the offer and, in that

case, how much effort to exert.

(iii) If the project succeeds, the principal uses the project’s output to pay the agents the compensa-

tion specified in the accepted contracts and collects the residual. If the project fails, no player

receives anything.

We solve for the optimal contracts by working backwards. First, we take as given the principal’s

choice of compensation budget b and allocation φi, and derive each agent i’s optimal effort choice

ei which maximizes his expected payoff ui given his belief about the other agent’s effort. Second,

given the two agents’ optimal effort choices (e1, e2), we derive the optimal choices of b and φ which

maximize the principal’s expected payoff v. Notice that since contracts are not publicly observable,

an agent’s choice of effort cannot be contingent on the effort level exerted by the other agent, nor

on the contract privately signed by the other agent. This creates a role for beliefs about effort levels

and contracts that has been missing from the literature so far but which is central to our analysis.

Before proceeding to the formal analysis, let us highlight the importance of being able to observe

the contracts of other complementary agents contributing to the same project. Suppose the principal

were able to make and commit to publicly observable contract offers, and consider the pair of optimal

public contracts that the principal would choose in this case. (These are second best contracts in that

the agents can perfectly observe each others’ contracts but still effort itself is not contractible; they

are derived in the Online Appendix B). Now suppose that when contracts are private, the principal

tries to offer agent i his optimal public contract, and promises agent i that she will also offer agent

j the latter’s optimal public contract. Would the agents in this setting continue to exert the same

effort they would if contracts were indeed public? The answer is no.

To see why, suppose that one of the agents were to exert the level of effort associated with public

contracts; then, it would be optimal for the principal to deviate with the other agent and write him

a better contract which economizes on incentive payments. The principal can be made better off and

8



the other agent no worse off by this deviation, because the second agent’s compensation contract is

not a best response to the first agent’s. Or, to put it another way, when the second agent puts in

more effort, he exerts a positive externality on both the principal and the first agent (who are both

more likely to receive a positive payoff at date 1), and the principal’s optimal bilateral contract with

the second agent internalizes the exernality on the principal and the second agent but not on the

first agent. Anticipating the “opportunistic” behavior of the other pair, each agent demands more

compensation to exert a given effort than they would if contracts were public. If contracts were

public, each agent could confidently expect higher effort from the other agent (given the observed

contract), raising the productivity of their own effort, and so making higher effort more worthwhile

for a given level of compensation. With private contracts, therefore, incentive provision in direct

contracting schemes is more expensive than with public contracts.

In solving the centralized contracting game, we will be looking for a Perfect Bayesian equilibrium

(PBE) with strictly positive effort.9 Formally, after receiving the compensation offer φib from the

principal, agent i solves for his optimal level of effort ei, taking as given agent j’s conjectured effort

level êj. In equilibrium, each agent’s conjecture about the effort level exerted by the other agent

must be correct and correspond to the equilibrium effort level, denoted by eCi (C for centralized

contracting): êi = eCi , for i = 1, 2.10

The optimal level of effort exerted by agent i, therefore, is a function of his compensation and

the conjectured effort of agent j:

ei(φib, êj) = arg max
ei

(φib)π(ei, êj)−
e2i
2
, (6)

=
(
αiφibê

αj
j

) 1
2−αi . (7)

As in standard principal-agent problems with moral hazard, agent i’s optimal effort increases

with the compensation φib he receives when output is high. Moreover, agent i exerts more effort the

higher the effort he believes agent j’s will exert, reflecting the complementarities between their effort

choices.

9An equilibrium with zero effort from both agents also exists. However, it is Pareto dominated by the equilibrium
with strictly positive effort levels analyzed in this paper. The recent literature on unique-implementation (e.g., Segal
(2003), Winter (2004), Halac, Lipnowski, and Rappoport (2021), Halac, Kremer, and Winter (2022)) focuses on
mechanisms that rule out Pareto dominated equilibria.

10This solution approach has been widely used in the industrial organization literature (e.g., Crémer and Riordan
(1987), Horn and Wolinsky (1988), Hart and Tirole (1990), O’Brien and Shaffer (1992), Laffont and Martimort (2000),
Rey and Tirole (2007)), in finance (e.g., DeMarzo and Kaniel (2021)), and applied to a wide variety of other settings
(e.g., Segal (1999)).
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The principal’s problem is to choose the compensation budget b and its allocation between the

two agents (φi, 1− φi) so as to maximize the expected residual output from the project v, subject to

the two agents’ incentive compatibility (IC) and individual rationality (IR) constraints,

(
b(êi, êj), φi(êi, êj)

)
= arg max

b, φi

(1− b) π
(
ei(φib, êj), ej((1− φi)b, êi)

)
. (8)

The IC constraint of agent i is given by the optimal effort choice in (7). Agents’ IR constraints are

always satisfied given their outside options of 0.11 Since the principal rationally takes into account

(through the IC constraints) each agent’s conjecture of the other agent’s effort level, the optimal

budget and allocation are a function of the agents’ beliefs. Imposing this equilibrium condition after

solving the optimization problem in (8), we obtain the optimal contracts in the centralized contracting

scheme, which the following proposition characterizes.

Proposition 1. With centralized contracting, the optimal compensation budget and allocation are

bC =
2(αi + αj − αiαj)

4− αiαj
, (9)

φCi =
1

2
+

1

2

(
αi − αj

αi + αj − αiαj

)
, (10)

respectively. It follows that:

(i) the compensation budget bC increases with both effort elasticities, αi and αj;

(ii) the allocation φCi increases with αi, decreases with αj and is larger than 1/2 iff αi > αj;

(iii) agent i’s compensation φCi b
C increases with αi and decreases with αj.

In our setting, the effort elasticities of the two agents (α1, α2) are the only drivers of the optimal

contracts. Proposition 1 shows that the higher are the agents’ skill levels, the larger the total

compensation budget. When the agents are more productive, the principal finds it more worthwhile

to increase the probability of success of the project (through stronger incentives) at the cost of a

lower residual output (1 − b). Moreover, it is optimal for her to pay the agent with the higher skill

more. The higher an agent’s skill, the larger the fraction of the compensation budget allocated to

him. This implies that an increase in the skill of one agent induces two competing effects on the

dollar compensation of the other agent: a positive effect through an increase in the total budget, and

11We assume that the principal can always choose not to implement the project, so we are only interested in contracts
which can generate a non-negative profit for the principal (b < 1).
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a negative effect through a decrease in the fraction of the budget he receives. Proposition 1 reveals

that the latter effect always dominates.

The optimal budget and allocation obtained in Proposition 1 are based on the maintained assump-

tion that contracts are not publicly observable. In the Online Appendix B, we derive the optimal

public contracts in a centralized contracting scheme. These are second-best contracts and are denoted

by (b∗, φ∗). The next corollary provides the comparison.

Corollary 1. Under centralized contracting, the optimal compensation budget is lower with private

contracts than with public contracts, bC < b∗, while the fraction of the budget allocated to the most

skilled agent is higher, φCi > φ∗i if αi > αj. Overall, both agents receive lower compensation and exert

lower effort when contracts are private, φCi b
C < φ∗i b

∗, for any i.

Part of the intuition for the lower compensation and effort has already been explained above—it is

not credible for the principal to propose the second-best public information contracts when contracts

are private as the agents are aware that these second-best contracts are not best responses to one

another; the principal will deviate and offer contracts with lower compensation. To see the same

result in a different way, note that with public contracts, there are two reasons why the principal

sets a relatively high compensation for (say) agent 1. First, increasing agent 1’s bonus has a direct

effect on agent 1’s effort. But second, increasing agent 1’s bonus, by making agent 1 work harder in

equilibrium, also increases agent 2’s effort. This gives the principal an extra reason to increase agent

1’s compensation when contracts are public which is absent when contracts are private as agent 2

does not then observe the increase in agent 1’s compensation. The same argument applies to any

potential increase in agent 2’s compensation. So compensation and effort are lower when contracts

are private.

When contracts are private, the principal also skews compensation towards the more skilled agent

relative to what she would when contracts are public. This is because the direct effect of increasing

compensation on effort is now the driving force behind the principal’s choice (the indirect effect on

the other agent’s effort, mentioned above, is now absent). The more skilled agent’s effort is more

responsive to increases in compensation than the unskilled agent’s (for whom the cost of effort is

higher) and so it makes sense to concentrate more of the budget on the more skilled agent.
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4 Delegated Contracting

In this section we analyze a delegated contracting scheme in which the principal sets only the total

compensation budget. She contracts with only one Agent, promising to pay to him the total budget

if the project succeeds. That Agent then contracts with a Subagent, and agrees to pay the Subagent

a dollar amount if the project succeeds. The payment to the Subagent will be drawn from the

total compensation budget paid by the principal to the Agent and so must be less than this total

compensation budget by limited liability of the Agent. As with centralized contracting, we model

the interactions between the principal and the Agent, and between the Agent and the Subagent as a

noncooperative game. The sequence of events is as follows:

(i) The principal makes a take-it-or-leave-it offer to the Agent. The offer includes a compensation

budget, contingent on the success of the project. The Agent decides whether to accept the offer

or not. Contracting between the principal and the Agent is not observed by the Subagent.

(ii) After signing a contract in stage one, the Agent makes a take-it-or-leave-it contract offer to the

Subagent. The offer includes a compensation level, contingent on the success of the project.

The Subagent decides whether to accept the offer or not. Contracting between the Agent and

the Subagent is not observed by the principal.

(iii) If the Agent and the Subagent have accepted contracts in stage one and stage two, respectively,

they decide how much effort to exert.

(iv) If the project succeeds, the principal uses the project’s output to pay the Agent according to

the contract signed in stage one and collects the residual. The Agent uses what he receives

from the principal to pay the Subagent according to the contract signed in stage two and keeps

the residual part of the budget. If the project fails, no player receives anything.

Similarly to the centralized contracting case, we look for an equilibrium with strictly positive

effort choices, and solve the principal’s contracting problem by working backwards. However, since

it is now the Agent who decides how to allocate the budget, there are two differences between the

principal’s problem in the delegated contracting scheme and in the centralized contracting scheme.

First, the principal no longer has direct control over the allocation of the budget; and second, the

Agent now observes the contract that has been signed by the Subagent when he chooses his own

effort. The Subagent, however, still does not observe the contract between the principal and the

Agent, so he is in essentially the same situation as that in the centralized contracting scheme.
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The optimal level of effort exerted by the Subagent, therefore, is a function of his compensation

and the conjectured effort of the Agent:12

eS(φSb, êA) = arg max
eS

(φSb)π(êA, eS)− e2S
2
, (11)

= (αSφSbê
αA
A )

1
2−αS . (12)

Properties of the Subagent’s optimal effort eS parallel those characterizing the optimal effort of an

agent in the centralized contracting scheme (i.e., ei in (7)).

What is different from the centralized contracting scheme is that the Agent observes both contracts

in the delegated contracting scheme. As a result, the Agent plays a best response to the Subagent

conjecture of the his effort by exerting an optimal effort level which is a function of the budget he

received from the principal, the allocation he has offered to the Subagent, and the Subagent’s beliefs:

eA(b, φA, êA) = arg max
eA

(φAb)π
(
eA, eS((1− φA)b, êA)

)
− e2A

2
, (13)

=
(
αAφA (αS(1− φA)êαAA )

αS
2−αS b

2
2−αS

) 1
2−αA . (14)

For a given allocation of the budget, the Agent’s optimal effort level increases with the size of the

budget b. However, the budget allocation φA has a nonlinear effect on the Agent’s effort choice. This

is due to the complementarity in effort provision. On one hand, a large φA means the Agent keeps

more budget for himself which provides greater incentives for the Agent to exert more effort. On the

other hand, if he keeps too much, that will leave too little for the Subagent. As a result, the Subagent

will exert low effort, which, given complementarity, discourages the Agent from making much effort

himself.

We continue solving the problem by backward induction. For a given budget b, specified in the

contract between the principal and the Agent, we solve for the optimal budget allocation φA that

maximizes the Agent’s expected payoff, conditioning on the best responses eA(b, φA, êA) in (14) and

eS(φSb, êA) in (12):

φA(b, êA) = arg max
φA

(φAb)π
(
eA(b, φA, êA), eS((1− φA)b, êA)

)
− eA(b, φA, êA)2

2
. (15)

12In the delegated contracting scheme, we use subscript A and S when referring to the Agent and the Subagent,
respectively.
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We then solve for the optimal compensation budget b that maximizes the principal’s expected

residual output, conditioning on the chain of best responses φA(b, êA) in (15), eA(b, φA, êA) in (14)

and eS(φSb, êA) in (12):

b(êA) = arg max
b

(1− b)π
(
eA(b, φA(b, êA), êA), eS((1− φA(b, êA))b, êA)

)
. (16)

As in the centralized contracting scheme, both the Agent’s and the Subagent’s IR constraints are

always satisfied given their outside options of 0. In equilibrium, the Subagent’s conjecture about

the effort level exerted by the Agent must be correct and correspond to his equilibrium effort level,

denoted by eDA (D for delegated contracting): êA = eDA . Imposing this equilibrium condition after

solving the optimization problem in (16), we obtain the optimal contracts in the delegated contracting

scheme, which are presented in the following proposition.

Proposition 2. With delegated contracting, the optimal compensation budget and allocation are

bD =
2(αA + αS)− αAαS

4
, (17)

φDA =
1

2
+

1− αS
2

, (18)

respectively. It follows that:

(i) the compensation budget bD increases with both effort elasticities, αA and αS;

(ii) the allocation φDA is independent of αA, decreases with αS and is always larger than 1/2;

(iii) the Agent’s compensation φDAb
D increases with αA and decreases with αS iff αA >

2−2αS
2−αS

;

(iv) the Subagent’s compensation (1− φDA)bD increases with both αA and αS.

Proposition 2 reveals that, as in the centralized contracting scheme, the higher the skill level

of the agents (i.e., Agent and Subagent in this case), the larger the compensation budget. The

intuition remains the same: the principal gives stronger incentives (by increasing the budget) when

the agents are more productive. Interestingly, though, with our Cobb-Douglas specification for the

probability of success, the allocation of the budget, chosen optimally by the Agent, is independent

of the Agent’s skill. Instead, the Agent always keeps at least half of the budget for himself, and then

gives the Subagent a fraction of the second half of the budget, depending on the subagent’s skill.

The Subagent’s share of the whole budget equals skill level, αS. The more skilled the Subagent, the

lower the rents that the Agent extracts from the compensation budget.
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An increase in the Agent’s skill induces the principal to increase the compensation budget, but

does not affect the allocation. Therefore, contingent on the success of the project, the dollar compen-

sation of both the Agent and the Subagent are increasing in αA. An increase in the Subagent’s skill,

instead, generates not only a higher budget, but also a more balanced allocation, since φDA approaches

1/2 when αS approaches 1. While this always increases the dollar compensation of the Subagent in

the high state of the world, it can decrease that of the Agent. This is because the decrease in rent

extraction may dominate the increase in the budget.

We define the rent extraction of the Agent as the additional fraction of the compensation budget

that the Agent keeps for himself, compared to the second-best allocation φ∗A = αA/(αA + αS).

Denoting the rent extraction by ∆A, it follows that

∆A ≡ φDA − φ∗A = αS

(
1

αA + αS
− 1

2

)
(19)

is always strictly positive since αi ∈ (0, 1) for any i. Moreover, the rent extraction ∆A always

decreases with the skill of the Agent, αA, whereas it decreases with the skill of the Subagent, αS, only

when the Subagent is sufficiently skilled. The trade-off between the rent extraction distortion, which

results in an inefficient allocation of compensation between the two agents, and the observability

gain, which increases incentives, is the key driver of the optimal choice between centralized and

delegated contracting, and is the focus of the next section. For now, we summarize our empirical

predictions regarding compensation, effort and outputs for delegated versus centralized hierarchies

in the following corollary.

Corollary 2. Compared to the centralized contracting scheme, in the delegated contracting scheme:

(i) the Agent always receives higher compensation upon success and exerts higher effort;

(ii) the Subagent receives higher compensation upon success iff the Agent’s skill level is high enough,

αA > ᾱcA(αS), and exerts higher effort iff αA > ᾱeA(αS), where the thresholds ᾱcA(αS) and ᾱeA(αS)

decrease in αS, and are such that ᾱeA(αS) < ᾱcA(αS);

(iii) the probability of success, and hence the expected output, is higher iff the Agent’s skill level

is high enough, αA > ᾱπA(αS), where the threshold ᾱπA(αS) decreases in αS, and is such that

1/2 < ᾱπA(αS) < ᾱeA(αS).

Compared to centralized contracting, both the compensation budget and its allocation to the

Agent are larger in the delegated contracting scheme. Therefore, in this scheme, the Agent receives

a higher compensation if the project succeeds, φDAb
D > φCAb

C , which in turn makes him exert higher
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effort in equilibrium. Regarding the effort level and compensation of the Subagent, as well as the

probability of success of the risky project, we have two competing effects. The larger budget under

delegated contracting tends to increase them, but the lower budget allocation (due to the Agent’s rent

extraction) tends to decrease them. When the Agent is skilled enough (αA > ᾱπA(αS)), the increase

in his effort under delegated contracting increases the probability of success of the risky project,

even when the Subagent’s effort decreases (ᾱπA(αS) < αA < ᾱeA(αS)). When the Agent is more

skilled (αA > ᾱeA(αS)), the impact of the Agent’s higher effort increases the Subagent’s effort, even

when the Subagent’s compensation is lower under delegated contracting (ᾱeA(αS) < αA < ᾱcA(αS)).

This happens because the complementarity of effort provision. As the Agent’s skill further increases

(αA > ᾱcA(αS)), the positive effect through the higher the compensation budget dominates, increasing

the Subagent’s compensation as well. The three thresholds identified in Corollary 2 are decreasing

in the Subagent’s skill because when αS increases, the compensation budget and the Subagent’s

allocation increase more when the principal chooses to delegate.

5 Optimal Contracting Scheme

Having analyzed the optimal (private) contracts in the centralized and delegated contracting schemes,

in this section we discuss the optimal choice that the principal makes between the two hierarchical

structures. In particular, we show that when the agents’ skills are sufficiently high, the principal

prefers to contract with only one agent, delegating to that agent the power to compensate the other

agent. Specifically, we provide formal conditions under which delegated contracting is optimal.

5.1 Optimal Hierarchy with Delegation

Before comparing the principal’s expected payoff under the two contracting schemes, we first estab-

lish with whom, among the two agents, the principal prefers to contract directly, when relying on

delegated contracting. This pins down which agent plays the role of Agent, and which Subagent, in

this contracting scheme. Naturally, when the agents are homogeneous (α1 = α2), the principal is

indifferent as to whether she contracts directly with agent 1 or agent 2. However, when the agents

are heterogeneous (α1 6= α2), the principal is not indifferent but strictly prefers one of them as the

Agent with whom to contract directly. Lemma 1 below summarizes the principal’s optimal choice.

Lemma 1. With delegated contracting, the principal always delegates to the more skilled agent: αA =

max{α1, α2} and αS = min{α1, α2}.
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Without loss of generality, in what follows we consider the case α1 > α2, i.e., agent 1 is more

skilled than agent 2. Lemma 1 reveals that, in the delegated contracting scheme, the principal finds

it optimal to contract directly with agent 1 and to delegate to him the power to contract with agent

2. In other words, it is optimal for the principal to have the more skilled agent be the Agent,

and consequently the less skilled one be the Subagent. There are two opposing effects behind this

result. For a given rent extraction ∆, the principal would prefer to contract with the less skilled

agent, i.e., agent 2. This is because agent 2 is relatively more exposed to opportunism if he does not

observe the contract signed by the other agent, as agent 1’s effort is more important overall. Effort

complementarity is stronger for the less skilled agent because the impact of the effort of the more

skilled agent on the less skilled one is larger than vice versa.13

The second, countervailing, effect is induced by the different rents that the two agents would

choose to extract if given the role of the Agent. In particular, given the optimal contract in Propo-

sition 2, it follows that agent 2, the less skilled agent, would extract more rents than agent 1:

∆2 = (1 − α1/2) − φ∗2 > ∆1 = (1 − α2/2) − φ∗1. So, the allocation distortion induced by the rent

exaction of agent 2 is larger, and makes the principal inclined to contract directly with agent 1.

Lemma 1 shows that overall the second effect dominates: the higher rent extraction distortion from

delegating to agent 2 is more detrimental to the principal than the lower observability gain through

effort complementarity from delegating to agent 1. This makes it optimal for the principal to delegate

to the most skilled agent.

We illustrate these effects in Figure 2, where we plot the expected payoff of the principal in the

delegated contracting scheme, as a function of a generic allocation of the budget to agent 1,

vD = K(bD) [φα1
1 (1− φ1)

α2 ]
1

2−α1−α2 . (20)

The function K(·) does not depend on the allocation of the budget, and is given explicitly in (A.18).

Importantly, since the optimal compensation budget bD in (17) is independent of the principal’s choice

of Agent, K(bD) is constant across the two possible cases of delegation: (i) the principal delegates to

agent 1 (A = 1), (ii) the principal delegates to agent 2 (A = 2). For each of these cases, we mark with

a solid dot the expected payoff of the principal corresponding to the optimal (delegated) contracts:

vDA=1 = K(bD)

[
(φ∗1 + ∆1︸ ︷︷ ︸

φDA=1

)α1(1− φ∗1 −∆1)
α2

] 1
2−α1−α2

, (21)

13The elasticity of the marginal product of agent i’s effort, πei ≡ ∂π/∂ei, with respect to agentj’s effort, Eπei
ej , is

equal to αj . Therefore, if α1 > α2, a 1% increase in agent 1’s effort increases the productivity of agent 2 by more
compared to the increase in productivity of agent 1 induced by a 1% increase in agent 2’s effort.
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Figure 2: Optimal delegation hierarchy

This figure plots the principal’s expected payoff in the delegated contracting scheme, as a function of the
budget allocation to agent 1, φ1, for the optimal compensation budget bD. The solid blue dots, corresponding
to vDA=i for i = 1, 2, represent the principal’s expected payoff under the optimal contracts (bD, φDA=i). The
solid black dot, corresponding to vDA=2(∆1), represents the principal’s expected payoff under the contracts
(bD, φ1 = φ∗1 −∆1). Parameter values are: α1 = 0.8, α2 = 0.2.

vDA=2 = K(bD)

[
(1− φ∗2 −∆2)

α1(φ∗2 + ∆2)
α2

] 1
2−α1−α2

= K(bD)

[
(φ∗1 −∆2︸ ︷︷ ︸

φDS=1

)α1(1− φ∗1 + ∆2)
α2

] 1
2−α1−α2

, (22)

where the last equality follows from the identity φ∗i = 1 − φ∗j . A comparison between (21) and (22)

shows two differences. The first is the sign in front of the rent extraction: when the principal delegates

to agent 1, the rent extraction increases the budget allocation to agent 1, whereas it decreases it when

the principal delegates to agent 2. The second difference is the extent of the rent extraction: ∆1 6= ∆2

if α1 6= α2. These two differences correspond to the two opposing effects characterizing the optimal

delegation choice of the principal.

In order to isolate these effects, we also plot the expected payoff of the principal when she delegates

to agent 2, but now we articially impose that agent 2 chooses agent 1’s optimal rent extraction ∆1,
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vDA=2(∆1) = K(bD)

[
(φ∗1 −∆1)

α1(1− φ∗1 + ∆1)
α2

] 1
2−α1−α2

. (23)

Given the same rent extraction ∆1, the difference between (21) and (23) captures the difference in

observability gains through effort complementarity. Under the maintained assumption that agent 1

is more skilled than agent 2 (α1 > α2), the plot in Figure 2 shows that vDA=1 > vDA=2. In particular,

it highlights that it is the larger rent extraction by agent 2 — compared to that of agent 1 — that

makes the principal worse off. Indeed, if the two agents were to extract the same rent ∆, then the

principal would prefer to delegate to agent 2, since vDA=2(∆) > vDA=1(∆) for any ∆ > 0 (see Proof of

Lemma 1 in the Appendix). For instance, when the rent extraction ∆A = ∆1 for both agents, the

plot in Figure 2 shows that vDA=2(∆1) > vDA=1.

5.2 Optimal Delegation

Given the optimal choice of the principal to delegate to the more skilled agent in the delegated

contracting scheme, we now discuss the conditions under which she prefers delegated contracting to

centralized contracting. A comparison of the compensation budgets and allocations characterizing

the optimal contracts in the two contracting schemes, yields that

bC < bD, φCi < φDA=i, (24)

where, given the result in Lemma 1, agent i is the more skilled of the two agents. So, compared to

centralized contracting, the principal allocates a larger compensation budget when delegating, and,

in that case, the more skilled agent receives a larger fraction of the budget.

The different compensation budgets and allocations across the two contracting schemes affect

the principal’s expected payoff in opposite ways. We first note that, in our setting, the equilibrium

expected payoff of the principal – as well as the equilibrium effort levels, the probability of success,

and the agents’ expected payoffs – admit the same functional form across the two contracting schemes:

vC = v(bC , φCi ) and vD= v(bD, φDA=i), where

v(b, φi) = (1− b) [(αib)
αi(αjb)

αjφαii (1− φi)αj ]
1

2−αi−αj . (25)

For a given allocation φi, the function v(b, φi) is maximized at a level of the compensation budget

equal to (α1 + α2)/2, which corresponds to the optimal compensation budget under second-best
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(public) contracts b∗. Since bC < bD < b∗, and v(b, φi) is increasing in b in the interval (0, b∗] and

decreasing otherwise, the larger budget associated with delegated contracting is beneficial to the

principal. This reflects the fact that more contract observability allows the principal to credibly

commit to a larger budget, which increases agents’ incentives, and hence her expected profitability.

Indeed, since the Agent is the one offering the contract to the Subagent, the Agent does not fear

expropriation by the principal, who could, instead, (secretly) save on the contract offered to the other

agent with centralized contracting. This makes the Agent’s effort respond more strongly to changes

in compensation, which in turn induces the principal to reduce her stake in the future output, in

exchange of a higher likelihood of success of the risky project.

For a given budget b, instead, the function v(b, φi) is maximized for a budget share equal to

αi/(α1+α2), which corresponds to the optimal budget allocation under second-best (public) contracts

φ∗i . Since φ∗i 6 φCi < φDi , and v(b, φi) is increasing in φi in the interval (0, φ∗i ] and decreasing otherwise,

the larger budget share associated with delegated contracting is detrimental to the principal. This

reflects the distortion in the efficiency of effort provision induced by the Agent, who under-incentivizes

the Subagent in order to extract rents. For instance, when the two agents are equally skilled (α1 = α2),

the principal allocates the compensation budget equally to these agents when contracting with both

of them directly, since their marginal productivities in generating expected output are the same.

With delegated contracting, instead, the Agent allocates more than half of the budget to himself, as

he finds it optimal to increase his own stake in the future output, despite the negative effect that

this has on the likelihood of success of the risky project.

The principal’s loss of control over the budget allocation is the price to pay in order to gain the

benefits of more contract observability. Under what conditions it is worthwhile for the principal to

pay this price? Can the two agents also benefit from delegation? The following proposition answers

these questions.

Proposition 3. The principal prefers delegated contracting over centralized contracting iff the Agent’s

skill is high enough, αA > ᾱA(αS), where the threshold ᾱA(αS) decreases with the Subagent’s skill αS.

Delegated contracting is Pareto improving iff αA > ᾱeA(αS) > ᾱA(αS).

Proposition 3 states that it is beneficial for the principal to delegate contracting if the agent that

is relatively more skilled (i.e., the Agent) is skilled enough. Indeed, when αA is sufficiently large, the

benefit induced by more observability under delegated contracting dominates the cost of the loss of

control. The intuition is as follows. First, the additional compensation budget that the principal

optimally gives to the agents when choosing delegation, bD − bC , is increasing in the Agent’s skill.
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This is because the higher transparency of contracts makes the Agent’s effort more responsive to

compensation, while the high skill of the Agent makes the probability of success of the project more

responsive to her effort. So, the principal benefits more from the observability of contracts when the

Agent has higher skill.

Second, the distortion in effort provision due the Agent’s rent extraction is also reduced when the

Agent is more skilled. In particular, since the optimal budget allocation φDA in (18) is independent

of αA, it is the increase in the second-best allocation φ∗A in (B.2) that makes the rent extraction

∆A in (19) decrease with the Agent’s skill. Intuitively, when the Agent is more skilled, it is optimal

from the perspective of principal as well as the Agent to heavily tilt the budget allocation towards

the Agent. Therefore, in this case, the rent extraction due to the loss of control becomes less of a

problem, and consequently the principal loses less from giving up control over the budget allocation.

Proposition 3 also reveals that delegation can be Pareto improving. Notice that this happens under

the same condition as when the Subagent’s effort increases (see corollary 2). Thus, the Subagent’s

utility can be higher from delegation even though his direct compensation in the case of success falls

because of rent extraction. The reason is that the Agent exerts more effort under delegation, raising

the Subagent’s productivity sufficiently that the Subagent decides to work more despite reduced

rewards in the case of success. The increase in the probability of success from both agents working

more increases the subagent’s expected compensation.

We illustrate these effects in Figure 3, where we consider the case α1 > α2. The left panel

shows the principal’s expected payoff in the delegated contracting scheme (solid blue line) and in

the centralized scheme (dashed red line), as a function of the budget allocation to agent 1 (i.e., the

Agent). The plot highlights how, fixing the allocation φ1, the principal is always better off under

delegated contracting. In particular, we identify the difference between the two curves at the optimal

allocation under centralized contracting, vC(bD) − vC , as the benefit of making the contract of the

Subagent observable to the Agent. Moving to the right of vC(bD) along the solid blue line captures

the cost induced by the Agent’s rent extraction, which in equilibrium is quantified by the difference

vC(bD)− vD. For the chosen parameters (α1 = 0.8 and α2 = 0.7), the plot shows that the benefit of

delegation is larger than the cost, making vD > vC .

The shaded area in the middle panel shows the region of the plane defined by the agents’ skills

(subject to αA > αS) in which the principal prefers delegated contracting over centralized contracting.

The darker shading indicates the subregion in which delegated contracting is Pareto improving. For

any Subagent’s skill αS, there exists a level of the Agent’s skill above which delegated contracting

is chosen by the principal. This skill level is depicted by the solid line and corresponds to the

threshold ᾱA. Moreover, for any Subagent’s skill αS, there exists a level of the Agent’s skill above

21



Figure 3: Optimal contracting scheme

The left panel plots the principal’s expected payoff in the delegated contracting scheme (solid blue line)
and in the centralized scheme (dashed red line), as a function of the budget allocation to agent 1, φ1, for
the optimal compensation budget bD and bC , respectively. The solid blue and red dots, corresponding to
vD and vC , represent the principal’s expected payoff under the optimal contracts (bD, φDA=1) and (bC , φC1 ),
respectively. The solid black dot, corresponding to vC(bD), represents the principal’s expected payoff under
the contracts (bD, φC1 ). The middle panel plots the region of agents’ skill (αA, αS) in which delegated
and centralized contracting are optimal. The solid line represents the threshold ᾱ(αS). The dashed line
represents the threshold ᾱeA(αS). The dotted line delimits the relevant region αA > αS . The right panel
plots the percentage increase in the principal’s expected payoff when choosing delegated over centralized
contracting, vD/vC − 1, as a function of the Subagent’s skill αS . Parameter values are: α1 = 0.8, α2 = 0.7.

which delegated contracting is Pareto improving. This skill level is depicted by the dashed line and

corresponds to the threshold ᾱeA. This confirms the above intuition that contracting with a more

skilled Agent increases the benefit of delegation and decreases its cost. The thresholds ᾱA and ᾱeA
decrease with αS because the Agent engages in less rent extraction when the Subagent is more skilled.

Finally, the right panel plots the percentage change in the principal’s expected payoff when she

chooses delegated over centralized contracting, as a function of the Subagent’s skill. That the per-

centage change is positive and increasing in αS when the Subagent is sufficiently skilled confirms

the forces at play discussed above. The plot further reveals that the net benefit of more contract

transparency can be significant when the agents are particularly skilled, making their effort com-

plementarities particularly important. The non-monotonic behavior of (vD − vC)/vC in this plot

reflects the fact that the Agent’s rent extraction ∆A decreases with αS when the Subagent’s skill is

sufficiently low.
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6 Delegation with Common Observability

In the previous section, we saw that the principal’s choice between delegated and centralized contract-

ing is governed by the trade-off between improved observability of contracts and more control over

the division of the agents’ compensation budget. In this section, we show that delegated contracting

may also be preferred by the principal even when the observability of contracts is the same across the

two contracting schemes. Thus improving observability is not the only reason why delegation may be

preferred, even in our stripped-down set-up. We will show that when observability is imperfect, but

the same across centralized and delegated contracting settings, compensation will be skewed away

from the second best in either case, and that sometimes delegated contracting permits the principal

to commit to a better distribution of compensation than does centralized contracting.

To highlight this effect, in this section we will allow the less skilled agent’s contract (i.e., the

Subagent’s contract) to be publicly observed. In particular, suppose that the Agent can observe (and

hence can condition his decision on) the contract signed by the Subagent in the centralized contracting

scheme as well as the delegated contracting scheme. We denote the optimal compensation budget and

allocation in the centralized scheme with one public contract by (b′, φ′), and derive them in Online

Appendix C.

Proposition 4. When the less skilled agent’s contract is public, the principal prefers delegated con-

tracting over centralized contracting iff both the Agent and Subagent are skilled enough, αA > ¯̄αA(αS)

and αS > ¯̄αS. The threshold ¯̄αA(αS) > ᾱA(αS) decreases with the Subagent’s skill for αS > ¯̄αS.

Proposition 4 reveals that, even though the two contracting schemes have the same observability

of contracts, delegated contracting may still be preferable for the principal. To see the reason for this

result, note first that the principal gains from the improved observability: his payoff from centralized

contracting with one public contract is higher than when both contracts are private, even though

the total compensation budget he chooses under this arrangement is also larger. This is because

the principal would really like to commit to offering both agents higher compensation, because when

each agent knows that the other is receiving strong incentive pay, the complementarity between the

agents’ efforts kicks in: the agents work harder for a given prize, knowing that their own effort is

more effective when the other agent is working hard. The difficulty for the principal is that he is

unable to commit to high compensation for agents whose contracts are private because when their

pay is unobservable by the other agent, the principal prefers to privately reduce it. So it is better

for the principal to have one contract observable than none. However, having only one contract

observable distorts the principal’s allocation of the compensation budget in favor of the agent whose
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Figure 4: Optimal contracting scheme with one public contract

The left panel plots the principal’s expected payoff as a function of the budget allocation to agent 1, φ1,
for the optimal compensation budget bD = b′. The solid blue dot, corresponding to vD, represents the
principal’s expected payoff under the optimal contracts (bD, φDA=1). The solid black dot, corresponding to
v′, represents the principal’s expected payoff under the contracts (b′, φ′1). The middle panel plots the region
of agents’ skill (αA, αS) in which delegated and centralized contracting are optimal. The solid black line
represents the threshold ¯̄α(αS). The dotted line delimits the relevant region αA > αS . The right panel
plots the percentage increase in the principal’s expected payoff when choosing delegated over centralized
contracting, as a function of the Subagent’s skill αS . Parameter values are: α1 = 0.9, α2 = 0.7.

contract is public. For each dollar the principal publicly promises to pay this agent, the principal

anticipates both: (i) the direct effect of more effort from the recipient of the higher pay; and (ii) the

indirect effect of more effort from the other agent who observes his co-worker’s higher pay, anticipates

the latter’s higher effort and hence puts in more effort himself. By contrast, every dollar paid to

the agent whose contract is unobserved only generates the first, direct, effort response. So with

centralized contracting, the principal optimally skews the distribution of the compensation budget

when only one contract is observable.

This compensation distortion under centralized contracting creates room for delegation to im-

prove matters even when observability is held fixed. Because delegation allows rent extraction by

the agent, compensation is also distorted relative to the second best in this case. But if the rent

extraction is not too severe, then the distortion can be smaller than the distortion associated with

centralized contracting. The first panel of figure 4 illustrates one such case: compensation under

centralized contracting is more distorted than compensation under delegated contracting, resulting
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in a lower expected payoff for the principal, v′ < vD. Why then, does the principal not offer the same,

less distorted compensation under centralized contracting? The answer is that such an offer would

not be credible: the Subagent would anticipate that the principal would secretly cut the promised

compensation to the Agent because it is not optimal for him to offer such large compensation to the

Agent privately. By contrast, because the Subagent in the delegated hierarchy knows that the Agent

engages in rent extraction, he can be confident that the Agent is receiving a substantial portion of

the compensation budget even though the actual contract that the Agent receives is his own private

information. Thus the commitment to a structure where rent extraction occurs allows the principal

to commit to a different, and potentially less distorted, division of the compensation budget from

what he would choose in equilibrium under centralized contracting.

Under what conditions is it useful for the principal to use the delegated contract structure to

commit to a different budget allocation even when one contract is observable? Proposition 4 states

that it is when both agents are particularly skilled. In this case: (i) the rent extraction is low, and

(ii) the complementarity between agents, and the need to incentivize the Subagent more effectively

is large. The plots in Figure 4 confirm this finding.

7 Applications

Our theory applies to any setting in which teamwork is present and contractual observability is

imperfect. In the following, we highlight some financial and economic applications where we believe

that the issues that we address are particularly pertinent.

• Venture capital : In a typical venture capital (VC) investment, limited partners (the principal)

contract with general partners (the Agent) who then have responsibility for contracting with

entrepreneurial companies (the Subagent). Our model can be applied to this setting since

normally, the LPs provide funding, while the GPs and the entrepreneurs must both make

effort in order for the venture to succeed, and the contracts between these latter two are not

generally very transparent to investors.14 Our model provides a different perspective to most of

the theoretical literature on venture capital, which has adopted a simplified, two-tier structure

in which LPs and GPs are grouped together as a single agent (e.g., Casamatta (2003), Repullo

14Indeed, Gornall and Strebulaev (2020) argue that the complexity of venture firms share structure makes it difficult
for investors to value their stake in venture-backed firms, i.e., to assess the incentive power of contracts between
general partners and entrepreneurial firms. Note that our theory does not require that investors do not observe the
entrepreneurs’ contracts, only that they do not control them. Even if sophisticated investors can adequately assess
how incentives are divided between the general partners and the entrepreneurs, it would be very unusual for them to
stipulate what the terms of the contract between them should be: this is left to the discretion of the general partners.
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and Suarez (2004), and Hori and Osano (2013)). The focus of these papers is on solving

the double-sided moral hazard problem between GPs and LPs (Bhattacharyya and Lafontaine

(1995)), neglecting the conflict of interest between GPs and LPs. By contrast, building on

this paper, Liu (2020) considers a VC setting with a full three-tier structure in which the

entrepreneur (one of the agents who must make effort) owns the project, and offers contracts to

competitive investors (rather than a monopolistic principal), a consultant (who must also make

effort) and/or a VC firm (which bundles investor financing and consulting). Gryglewicz and

Mayer (2022) study a three-tier hierarchy where a financial intermediary (VC/PE) firm and

an entrepreneurial firm make additive efforts, and the intermediary makes a take-it-or-leave it

offer to investors for funding. Their focus is on the dynamic evolution of incentives and they

do not study the impact of the hierarchical structure on expected output and agency rents.

• Investment banking syndicates : Firms usually use financial syndicates when they wish to obtain

large loans, or issue equity or bonds. In the case of loan syndications, the issuer (the principal)

usually organizes a competition (“a bake off”) to select a lead bank (the Agent).15 The lead

bank takes charge of due diligence on the loan, but all banks perform some monitoring, the

extent of which is not easily verified. The company typically contracts only with the lead banker,

and this contract will specify the spread that the borrower will pay on the loan. The spread

and other fees earned by other members of the syndicate (the subagents) is usually delegated

to the lead banker to decide. Occasionally the issuing firm will instead choose several lead

managers to contract with directly, corresponding to a more centralized form of contracting.16

Similarly, underwriting a typical initial public offering (IPO) involves a set of banks, all of whom

make effort in selling the issue (Corwin and Schultz (2005)).17 But these banks are organized

into a hierarchy (Pichler and Wilhelm (2001)). One bank wins the initial competition to be

book runner and this bank determines the very complicated schedule of fees and rewards that

will ultimately be paid to the other managers of the issue (Chen and Ritter (2000)).

• Mutual fund families : Generally, mutual fund investors do not contract directly with fund

managers, but instead allocate their capital to a mutual fund family, which then is responsible

for hiring and compensating fund managers. While the fund manager chooses investors’ asset

allocation, his choices are facilitated and supported by the resources provided by the fund

15See Esty (2001) for a case study of Chase Manhattan’s syndication of one particular loan.
16Pichler and Wilhelm (2001) argue that the hierarchical structure makes the lead bank’s effort observable, which it

would not be otherwise, and hence improves incentives. Luo (2022) argues that the hierarchy of claims in investment
banking syndicates can facilitate truthful cheap talk communication between its members about the likelihood of
project success.

17Hatfield, Kominers, Lowery, and Barry (2020) find that the lead bank’s need for other banks help in underwriting
process may help sustain collusion in the initial “bake off” for the right to lead the syndicate.

26



family: a setting with complementary efforts. Our model shows that this three-tier structure

has costs and benefits. The benefit is that the fund family has incentives to put in effort to

providing resources, a trading platform and access to information for the manager, since it

observes that he has a suitable contract which will provide him with incentives; the cost is

that the fund family extracts too large a share from the investor’s point of view: given the fees

paid to the mutual fund family, the investor would prefer the manager to have higher-powered

incentives).18

• Outsourcing : When the principal decides to contract with a single agent for supply of the

good that two agents work on together, we can interpret this as outsourcing: the principal

asks the team of agents to supply output and delegates employment of the second agent to

the first one. Centralized contracting, by contrast, corresponds to production “in house”, or

vertical integration, since the principal directly contracts with all of the agents working on

the project, and none of those agents see each others’ contracts; all of them depend directly

on the principal for compensation. The existing outsourcing literature has the assumption of

incomplete contracts (Williamson (1985), Grossman and Hart (1986)) as a central tenet. It

argues that when contracts are incomplete, outsourcing gives suppliers ownership of key assets,

and hence greater bargaining power ex post, and enhanced incentives to produce ex ante.19

Our theory provides an alternative view of the costs and benefits of outsourcing, based on

complete contracting. In our paper, outsourcing is not needed to provide direct incentives to

any particular supplier because these are contractible. Instead, we show that the privacy of

contracts can drive outsourcing, because it implies that indirect incentives can be lacking for in-

house production. (The existing literature assumes that all contracts, in-house or out-sourced,

are public). With private contracts, headquarters might be unable to commit to providing

sufficient incentives to each of two in-house agents (which could be individuals or divisions of

the firm) working together. If instead, production is outsourced to one of the agents, that agent

controls, and therefore observes, the incentives provided to the other. Our theory suggests that

the likelihood of outsourcing will depend on the privacy of contracts, the importance of incentive

provision, and the level of skill asymmetries and complementarities associated with the task

that agents need to carry out. It is complementary to the existing theoretical literature since

18See Elton, Gruber, and Blake (2003) for a discussion of managerial incentives in the mutual fund industry.
19A series of papers (McLaren (2000), Grossman and Helpman (2002), Grossman and Helpman (2005), Grossman

and Rossi-Hansberg (2012), and Legros and Newman (2013), highlight industry feedback mechanisms which can lead
to multiple equilibria in choices about outsourcing versus vertical integration. Hold-up is less likely, and search costs
are lower, in markets with more unintegrated providers. If integration involves fixed costs but reduces variable costs,
then it will be driven by margins, which are in turn endogenous to the amount of integration.
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asset ownership plays no role; and hence it may provide a better explanation for the outsourcing

of some services.20

• Compensating teams within organizations : Recent evidence has shown that there is very little

transparency of compensation contracts within organizations.21 Although the reasons for pay

secrecy are outside the scope of our paper,22 our model shows that one consequence of the

lack of pay transparency is that it may become worthwhile for firms to delegate bonus-setting

to team-leaders, and to choose the most skillful employees for this role.23 Our theory also

predicts that organizations where pay schemes are more transparent can organize in flatter,

more centralized, ways without compromising incentives.

While each of these applications has its own particularities, (e.g., efforts may take different forms:

screening adversely-selected entrepreneurs or issuers, picking stocks and providing investment re-

search and back-office support, working on a team project in an organization, or producing a product

with multiple inputs for headquarters,...), they all have in common complementary efforts and opac-

ity of contracts to outsiders. Therefore our theory can speak to the costs and benefits of delegating

incentive contracting to effort-taking parties in each case. When contracts are private, one may often

see delegated structures (which would be dominated with public contracts); or, if delegated structures

exist for exogenous reasons, the delegation of control over contracting will be less harmful, and can

even be beneficial to the principal, when contracts are private. Where delegation occurs, the middle

man in the contracting (the Agent: the Lead Bank, the owner of the firm receiving the outsourcing

contract, the general partners in the venture fund, the fund family) inevitably extracts too much rent

20As in the venture capital literature, almost all theoretical papers on outsourcing model firms as two-level hierarchies,
where the levels must work together to produce output; the decision of whether to outsource is a question of how much
control to cede to the other unit, and under which circumstances. An interesting exception is Antràs and Chor (2013),
who model production as being composed of a continuum of complementary production processes. Alfaro, Bloom,
Conconi, Fadinger, Legros, Newman, Sadun, and Van Reenen (2018) distinguish the integration decision from the
decision to delegate or centralize decision rights. For them, integration has an option value: though integrating does
not minimize expected costs, it gives firm owners authority to choose to delegate or centralize decision rights, depending
on which problems arise in the future course of a relationship.

21According to the IWPR (2017), two thirds of private sector employees report that they are actively discouraged
or could be punished for discussing their pay with other workers. Cullen and Perez-Truglia (2020) provide revealed
preference evidence that individuals at a large Asian bank were unwilling to allow their peers to learn their salary.

22Publicizing pay can lead to the departure of key staff (Zenger (2016), BBC (2018)). Mandated pay transparency
in California cities resulted in pay reductions and a 75% increase in the quit rate (Mas (2017)).

23For example, Rose and Sesia (2010) describes how compensation at Credit Suisse was delegated both before and
after the financial crisis. Headquarters determined how much each of the bonus pool each division of the bank would
be allocated. The bosses in each division would determine how bonuses were divided up within the various parts
of the decision, and the leader of each team would be largely responsible for dividing bonuses among the members
of his team. Interestingly, Levin (2003) gives the example of bankers in two other banks who were aggrieved when
one year the bonus pool was much smaller than bankers considered that they had been led to expect based on bank
performance. In the context of our model, these provide examples of possible ex post expropriation by the principal.

28



from the principal’s point of view at the expense of those below him/her (the Subagent: non-lead

banks, workers in outsourced firms, entrepreneurs, fund managers). Delegation always results in

the principal paying more in compensation, but this can sometimes be beneficial for the principal

as it elicits more effort. If both the agent and the subagent are highly skilled and there is strong

complementarity between them, then delegation is more likely to be Pareto improving.

8 Related Literature

The problem of organizing contracting in a setting where agents have to work in a team goes back

at least to Alchian and Demsetz (1972), who observe that the role of an employer is to monitor

individual employees’ efforts when the market only observes joint output. Holmstrom (1982) observes

that instead of monitoring, the principal can write a public contract with the agents stipulating that

agents will not be compensated unless the output coincides with the Pareto optimal level. This

discrete drop in output resulting from a slight reduction in effort can be sufficient to allow agents

to attain the first-best. However, Eswaran and Kotwal (1984) point out that Holmstrom’s solution

does not consider the possibility for the principal to write an unobserved side contract with one of

the agents, where that agent agrees to exert a lower-than-first-best effort in exchange for a share of

the output the principal receives when output is below first-best. They do not, however, solve for

the optimal contract when such secret side-contracting is possible. In our paper, we explicitly take

into account the opportunism problem faced by the agents and solve for the optimal contract. We

also consider how creating hierarchy within the team can improve or worsen incentives.

Recent work on moral hazard in teams includes Rayo (2007), Garicano, Meirowitz, and Rayo

(2017), and Edmans, Goldstein, and Zhu (2013). The first two papers look at how relational contracts

interact with providing incentives in teams, whereas Edmans, Goldstein, and Zhu (2013) looks at

optimal team composition when agents’ effort affects not only the probability of a successful outcome,

but also other agents’ effort costs. Recent contributions on monitoring teams include Camboni and

Porcellacchia (2022) and Halac, Kremer, and Winter (2022). All of these papers assume public

contracts.

Our paper contributes to a small but growing theoretical literature on the consequences of pay

transparency (Halac, Lipnowski, and Rappoport (2021), Cullen and Pakzad-Hurson (2019)).24 Halac,

24There is also a literature on the benefits of transparency in organizations in general. Jehiel (2015) argues that full
transparency to agents in organizations is never optimal for the principal: while giving agents more information has
the benefit of allowing agents to tailor their action to the particular problem they are facing, it also makes incentive
constraints more difficult to satisfy. Various papers have shown that it may also be optimal for the principal to avoid
full transparency of information for himself. Prendergast (1993) notes that when the principal has prior expectations
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Lipnowski, and Rappoport (2021) consider a model similar to ours in which two agents work in a

team to produce a single output, and neither team-member observes the other’s actual pay package.

Differently to our paper, however, the principal can commit to a distribution of pay packages for

each agent, so it is only the realization of an agent’s actual incentive pay outcome that is private

information: that is, agents view their teammates’ pay packages as risky rather than subject to

strategic uncertainty. They focus on unique-implementation schemes that rule out bad equilibria

(Winter (2004)). They show that if the principal can commit to a randomization of pay contracts,

and yet keep the outcome of randomization private, bad equilibria can be excluded with pay levels

that are lower on average and less asymmetric than when the (realization of the) actual bonus contract

is public information. Such strategies are not available to the principal in our model, who lacks any

public commitment device on pay.

Cullen and Pakzad-Hurson (2019) investigate a very different setting: an asymmetric information

bargaining problem where a principal bargains bilaterally with each of a set of prospective agents.

The degree of transparency is measured by the speed at which information about individual pay

agreements leaks to other bargaining pairs. They show that full pay transparency enhances the

principal’s bargaining power in negotiations, since the principal knows that if she yields a higher wage

to one agent, all agents will learn that her reservation wage is higher—and hence the principal will be

forced to pay the same high wage to all the agents with whom she has not yet concluded a deal. Hence,

contrary to the result in Halac, Lipnowski, and Rappoport (2021), in equilibrium, transparency lowers

pay levels and reduces pay inequality. In our paper, moving from private contracts to full transparency

raises pay levels and reduces inequality.

Our assumption of effort complementarities is a specific form of positive externality that the

agents impose on one another. In a general model of contracting with externalities between agents,

including vertical relations, takeover battles, debt workouts, and network externalities, Segal (1999)

explores the principal’s incentive to deviate from an efficient trade profile when her contract offer

to each agent is only privately observed. He characterizes the optimal mechanism when agents’

contracts can be made contingent on other agents’ messages to the principal, but does not consider

how delegation may be used to solve the problem of contractual privacy.25

about the solution to a problem, agents will conform excessively to those expectations; Prat (2005) shows that when
the agent receives information about the state of the world before choosing his action, then it can be harmful to the
principal to learn about the agent’s action itself, rather than just the outcome of that action; Crémer (1995) shows
that when the agent has to make effort to produce output, the principal may do better when she does not acquire
information about the reasons for the agent’s failure. Our model is different from these since we have no uncertainty
about the state of the world, only strategic uncertainty.

25Katz (1991) studies delegation by a game-playing principal to an agent. He shows that when a principal delegates
his actions to an agent who shares the same preferences in a game, this has no impact when the contract between the
principal and the agent is private. It will of course affect the game if their preferences differ, or if contract is public
(e.g., Spencer and Brander (1983), Brander and Spencer (1985), Vickers (1985)). Moreover, if the contract is public
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DeMarzo and Kaniel (2021) build a model of contracting with externalities featuring multiple

agents with individual efforts and outputs subject to a common shock. The principal would ordinarily

use relative performance evaluation in such a context (Holmstrom (1982)), but DeMarzo and Kaniel

(2021)’s agents have a “keeping up with the Joneses (KUJ)” component to their preferences, meaning

that they want their compensation to keep pace with their peers’ compensation. Therefore, an agent

that makes more effort, or a principal that offers higher pay, exerts a negative externality on other

agents. In equilibrium, agents’ KUJ preferences result in a less negative (or even positive) load

of optimal compensation on peer output, providing one rationale for observed “payment for luck”

(Bertrand and Mullainathan (2001)). As an extension, the authors also analyze the case in which

contracts are private, finding that this exacerbates the externalities, agents’ effort may increase

beyond the first best, and principals’ profits are reduced compared to the case with public contracts.

This work is complementary to our own, since we analyze a setting where the externalities are

positive, arise from the impact of agents’ effort on other agents productivity, and only team output,

not individual outputs, is observable.

The problem of opportunism between a principal and two agents has some similarities to that

between an upstream monopolist and two retailers (see, e.g., Hart and Tirole (1990), McAfee and

Schwartz (1994)). But a key difference is that in the principal-agent framework, the vertical fore-

closure solution of integrating the principal with the agent may not be available.26 Instead, in the

principal-agent setting, a novel solution presents itself: the transparency of contracts can be improved

by contracting with a co-worker can be delegated to one of the agents — a solution that is typically

unavailable in the vertical integration context because of anti-trust concerns.

Like us, Aghion and Tirole (1997) study a double-sided moral hazard problem where delegation

can be advantageous. Their model, however, involves only two, not three, actors, and so cannot

speak to the organization of teams. It features a principal and an agent who may both make effort

to obtain information about which project should be adopted. The principal can encourage the

agent’s effort by delegating the choice of project to the agent, even though this might involve a

loss of control. The reasons for delegation in their paper, however, are quite different from ours: in

their model, delegation commits the principal to making a lower effort, encouraging the agent to

increase his own effort because efforts are substitutes. In our setting, there are two agents whose

efforts are complements and the principal makes no effort contribution; he delegates to increase the

transparency of one agent’s contract to the other. In delegating, the principal increases the effort

and can be made contingent on the contracts written by other principals with their agents then a folk theorem obtains
and a plethora of equilibrium outcomes can be supported (Katz (2006)).

26A further difference is that in the vertical integration framework, output, i.e., retailers’ strategic variable, is
verifiable, whereas in our setting, agents’ efforts are not. Thus, if the principal contracts directly with both agents,
the principal is stuck with the third best outcome (because neither effort nor contracts are observable).
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of one agent at the possible cost of reducing the effort of the other agent (subagent). We provide

conditions under which this is profitable for the principal.

Our paper is also related to the literature on delegation and hierarchies, surveyed by Mookherjee

(2006) and Poitevin (2000). The latter observes that the revelation principle ensures that delegation is

always weakly dominated by centralization, (e.g., Baron and Besanko (1992)), unless the centralized

mechanism is undermined by (i) costly communication between one or more agents or contract com-

plexity (e.g., Melumad, Mookherjee, and Reichelstein (1995); Melumad, Mookherjee, and Reichelstein

(1997)); (ii) renegotiation by the principal due to limited commitment (e.g., Beaudry and Poitevin

(1995); Baliga and Sjöström (2001)); or (iii) collusion between agents (e.g., Tirole (1986); Laffont

and Martimort (1998); Ortner and Chassang (2018); Troya-Martinez and Wren-Lewis (2018)).27 In

our paper, communication is costless, but the agents do not posses any information valuable to the

principal. Moreover, since the agents do not observe each others’ efforts, there is no role for col-

lusion between them. So, it is the inability of the principal to commit not to secretly renegotiate

contracts bilaterally that makes delegation optimal in our model. Interestingly, the prior literature

has been almost entirely concerned with delegation of tasks, and has not been much concerned with

the delegation of contracting itself.

9 Conclusion

We have analyzed a moral hazard in teams problem with the realistic innovation that compensation

contracts are observed only by their signatories, and not by third-parties. In this environment,

principals contracting with agents working in a team face a credibility problem. Since rewards depend

on the value of joint output, agents care not only about their own bonus (which they observe) but

also about their teammates’ effort on the project, and hence, indirectly, about their teammates’

incentive pay (which they do not observe). In particular, when effort productivity is complementary,

the principal cannot commit not to economize on other agents’ pay, thus inducing agents to choose

lower effort themselves. In this paper, we explore how these difficulties arising from contractual

privacy are affected by the organizational structure of teams.

Our theory highlights a novel trade-off that arises with private contracts between an observability

gain from delegation and a rent extraction cost. The principal can gain from making one of the agents

27Related work on hierarchies includes Qian (1994) and Rahman (2012), who investigate models in which an agent
must be incentivized to monitor the effort exerted by his immediate subordinates. A very different rationale for
hierarchies is set out by Garicano (2000), where heterogeneous agents have differing abilities to solve problems, and
difficult problems must be passed up the hierarchy to more able agents.
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“team leader,” giving him a compensation budget that he can choose to share between himself and

the other team members. The main benefit is that the team leader now observes all the contracts and

consequently no longer fears that the principal will opportunistically offer low pay to his colleague;

this improves the team leader’s incentives to make effort. The cost is that the team leader selfishly

retains too much of the compensation budget, paying his colleagues too little from the principal’s

point of view. We find that compared to centralized bonus provision, contractual delegation results

in higher total compensation, but results in excessive pay inequality. It is worthwhile when both

agents are sufficiently skilled (so that effort responds strongly enough to incentives) and not too

heterogeneous (so pay inequality is not too severe). Moreover, it is always optimal for the principal

to choose the more skilled agent as the team leader, as the ensuing rent extraction is less inefficient.

Despite the above trade-off, we also uncover that delegated contracting can sometimes have an

advantage over centralized contracting even with observability held constant across the two settings.

The reason for this surprising result is that as long as observability remains imperfect in both settings,

the distribution of compensation is skewed relative to the second best in both cases, but the direction

of the skew differs. With delegation, compensation will be skewed towards the agent with the power

to subcontract; whereas with centralized contracting, it will be skewed towards the agent with the

public contract. When agents are not too different, and the returns to increasing effort are high,

the skew that results from delegation is better for the principal. The principal cannot duplicate

the outcome of delegation using centralized contracts even though observability is the same, because

without complete observability, promises to increase the bonus of the agent with the unobservable

contract are merely cheap talk. Therefore, delegation provides a new way for the principal to commit

to higher pay for the team leader, despite his pay being unobserved by his teammates.

Our model reveals a key difficulty of providing incentives in teams in a world where contracts are

mostly private information. Our framework can also be useful in addressing other questions about

the design of organizations, hierarchies, and incentive structures. What happens to the optimality

of delegation versus centralization as the number of agents on the team increases, for example? How

should the number of levels of the hierarchy, and the number of agents in each level, be determined if

three or more agents must work together? How does the flatness or steepness of the optimal hierarchy

vary with the skill level of the agents, or with their asymmetry? We hope to address some of these

questions in future research.

Finally, our theory takes as given the difficulty in verifying other agents’ contracts, or equivalently,

the problems with making compensation public. We take this difficulty as a fact about the world.

Since, in our model, the principal would be better off if compensation contracts were made public, it

is important to understand the real world problems that firms and institutions endure as a result of
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being obliged to make compensation contracts public, and the costs that prevent others from doing

so. We conjecture that envy of other agents’ contracts is one such cost.28 It would be interesting

to explore in future work, theoretically and experimentally, the trade-offs that arise between making

the compensation of agents with unequal talents transparent, in order to induce greater effort when

efforts are complementary, and keeping them opaque in order to efficiently match incentives to skills

without inducing envy.

Appendix

A Proofs

Proof of Proposition 1. In the centralized contracting scheme with private contracts, agent i’s maximiza-
tion problem is
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since αi < 1. Therefore, solving for ei from (A.2), we obtain (7).

In order to induce positive effort from each agent, we consider (and later verify that) b > 0 and φi ∈ (0, 1).
Substituting (7) into (8) for i = 1, 2, the principal’s maximization problem becomes

(bC , φC) = arg max
b,φi

(1− b) αi
αi

2−αi αj

αj
2−αj ê
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28Perez-Truglia (2020) documents that when Norwegian income data become more easily available, lower-paid Nor-
wegians’ happiness and life satisfaction was reduced relative to their higher-paid peers. Card, Mas, Moretti, and Saez
(2012) document that pay transparency reduces job satisfaction and increases the probability of departure for lower-
paid workers, while Obloj and Zenger (2017) suggest that allowing bonus comparisons reduces employee productivity
because of envy. Cullen and Perez-Truglia (2019) distinguish horizontal transparency (knowledge of one’s peers’ salary)
from vertical transparency (knowledge of one’s boss’s salary), which have different effects on effort.
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Since φ, αi, and αj are all bounded in (0, 1), the first order condition can be reduced to

−b
2αi+2αj−2αiαj
(2−αi)(2−αj) + (1− b)2αi + 2αj − 2αiαj

(2− αi)(2− αj)
b
2αi+2αj−2αiαj
(2−αi)(2−αj)

−1
= 0,

yielding

bC =
2αi + 2αj − 2αiαj

4− αiαj
. (A.4)

The second order condition, evaluated at b = bC , is

αi
αi

2−αi αj

αj
2−αj ê

αiαj
2−αj
i ê

αiαj
2−αi
j φ

αi
2−αi (1− φ)

αj
2−αj

2αi + 2αj − 2αiαj
(2− αi)(2− αj)

b
2αi+2αj−2αiαj
(2−αi)(2−αj)

−2

×
[
−2b+ (1− b)

(
2αi + 2αj − 2αiαj
(2− αi)(2− αj)

− 1

)]
< 0,

since −2bC + (1 − bC)
(
2αi+2αj−2αiαj
(2−αi)(2−αj) − 1

)
= −1. Hence, bC maximizes the principal’s objective function.

Similarly, the first order condition with respect to φ is

(1− b)αi
αi

2−αi αj

αj
2−αj ê

αiαj
2−αj
i ê

αiαj
2−αi
j b

2αi+2αj−2αiαj
(2−αi)(2−αj)

(
αi

2− αi
φ

αi
2−αi

−1
(1−φ)

αj
2−αj −φ

αi
2−αi

αj
2− αj

(1−φ)
αj

2−αj
−1
)

= 0.

Since b = 1 is not an optimal choice for the principal, and αi, and αj are bounded in (0, 1), the first order
condition can be reduced to

αi
2− αi

φ
αi

2−αi
−1

(1− φ)
αj

2−αj − φ
αi

2−αi
αj

2− αj
(1− φ)

αj
2−αj

−1
= 0,

yielding

φC =
2αi − αiαj

2αi + 2αj − 2αiαj
. (A.5)

The second order condition is

(1− b)αi
αi

2−αi αj

αj
2−αj ê

αiαj
2−αj
i ê

αiαj
2−αi
j b

2αi+2αj−2αiαj
(2−αi)(2−αj) φ

αi
2−αi

−2
(1− φ)

αj
2−αj

−2×(
αi

2− αi

( αi
2− αi

− 1
)

(1− φ)2 − 2
αi

2− αi
φ

αj
2− αj

(1− φ) + φ2
αj

2− αj

( αj
2− αj

− 1
))

< 0,

since αi and αj ∈ (0, 1) imply αi
2−αi < 1 and

αj
2−αj < 1. Hence, φC maximizes the principal’s objective

function. Since αi and αj ∈ (0, 1), bC and φC ∈ (0, 1).

Agent i’s equilibrium compensation is φCbC =
2αi−αiαj
4−αiαi ∈ (0, 1), while agent j’s equilibrium compensa-

tion is (1− φC)bC =
2αj−αiαj
4−αiαi ∈ (0, 1). The equilibrium condition requires that

êi = eCi , (A.6)

êj = eCj . (A.7)
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Substituting (A.6) and (A.7) into the first order conditions of each agent’s effort (A.2), we obtain eCi = αi
1

2−αi (ej
C)

αj
2−αi (φCbC)

1
2−αi ,

eCj = αj
1

2−αj (ei
C)

αi
2−αj ((1− φC)bC)

1
2−αj .

Solving the system of equations in (eCi , e
C
j ), we obtain the equilibrium effort levels of the two agents:

eCi = αi

2−αj
2(2−αi−αj)αj

αj
2(2−αi−αj)

(
φC
) 2−αj

2(2−αi−αj)
(
1− φC

) αj
2(2−αi−αj)

(
bC
) 1

2−αi−αj , (A.8)

eCj = αi
αi

2(2−αi−αj)αj
2−αi

2(2−αi−αj)
(
φC
) αi

2(2−αi−αj)
(
1− φC

) 2−αi
2(2−αi−αj)

(
bC
) 1

2−αi−αj . (A.9)

Since bC , φC , αi, and αj are all bounded in (0, 1), eCi and eCj ∈ (0, 1). Substituting (A.8) and (A.9) into (2),
we obtain the equilibrium probability of success under centralized contracting

πC = αi
αi

2−αi−αj αj

αj
2−αi−αj

(
φC
) αi

2−αi−αj
(
1− φC

) αj
2−αi−αj

(
bC
) αi+αj

2−αi−αj .

The principal’s expected payoff, vC = (1 − bC)πC , is strictly positive since bC and πC ∈ (0, 1). So,
implementing the risky project under the centralized contracting scheme is profitable (in expectation) for
the principal. The expected payoffs of agent i and agent j are equal to

uCi =
(

1− αi
2

)
φCbCπC ,

uCj =
(

1− αj
2

)
(1− φC)bCπC ,

respectively. Since αi, αj , φ
C , bC , and πC are ∈ (0, 1), the agents’ expected payoffs are strictly positive. So,

both agents’ participation constraints are satisfied.

The optimal compensation budget, the budget allocation, as well as the agents’ total compensations,
have the following properties:

∂bC

∂αi
=

2(2− αj)
(4− αiαj)2

> 0,
∂bC

∂αj
=

2(2− αi)
(4− αiαj)2

> 0,

∂φC

∂αi
=

αj(2− αj)
2(αi + αj − αiαj)2

> 0,
∂φC

∂αj
= − αi(2− αi)

2(αi + αj − αiαj)2
< 0,

∂φCbC

∂αi
=

4(2− αj)
(4− αiαj)2

> 0,
∂φCbC

∂αj
= −2αi(2− αi)

(4− αiαj)2
< 0,

∂
(
1− φC

)
bC

∂αi
= −2αj(2− αj)

(4− αiαj)2
< 0,

∂
(
1− φC

)
bC

∂αj
=

4(2− αi)
(4− αiαj)2

> 0.

Proof of Corollary 1. The optimal private contracts in the centralized contracting scheme are given in
Proposition 1 and are equal to

bC =
2(αi + αj − αiαj)

4− αiαj
, φCi =

2αi − αiαj
2(αi + αj − αiαj)

.
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The optimal public contracts in the centralized contracting scheme, instead, are given in Proposition B.1 in
the Online Appendix B and are equal to

b∗ =
αi + αj

2
, φ∗i =

αi
αi + αj

.

We compare these optimal contracts along the following dimensions:

(i) Compensation budget, b: bC < b∗ since αi and αj ∈ (0, 1).

(ii) Budget allocation to agent i, φi: φ
C
i > φ∗i since 0 < αj < αi < 1.

(iii) Agent i’s compensation, φib:

φCi b
C =

2αi − αiαj
4− αiαj

, φ∗i b
∗ =

αi
2

implies that φCi b
C < φ∗i b

∗ since αi and αj ∈ (0, 1).

(iv) Agent j’s compensation φjb:

φCj b
C = (1− φCi )bC =

2αj − αiαj
4− αiαj

, φ∗jb
∗ = (1− φ∗i )b∗ =

αj
2

implies that φCj b
C < φ∗jb

∗ since αi and αj ∈ (0, 1).

Proof of Proposition 2. In the delegated contracting scheme with private contracts, the Subagent’s max-
imization problem is the same as that in the centralized contracting scheme. Therefore, the Subagent’s
optimal effort level is determined as

eS((1− φ)b, êA) = α
1

2−αS
S ê

αA
2−αS
A ((1− φ)b)

1
2−αS . (A.10)

The Agent’s maximization problem with respect to his effort level is given by

eA(b, φ, êA) = arg max
eA

φb eαAA eS((1− φ)b, êA)αS −
e2A
2
.

The first order condition with respect to eA is

φb αAe
αA−1
A eS((1− φ)b, êA)αS − eA = 0, (A.11)

and the second order condition is

φb αA(αA − 1)eαA−2A eS((1− φ)b, êA)αS − 1 < 0,

since αA < 1. Solving (A.11) for the effort level eA, we obtain

eA(b, φ, êA) = αA
1

2−αA αS
αS

(2−αA)(2−αS) ê
αAαS

(2−αA)(2−αS)

A φ
1

2−αA (1− φ)
αS

(2−αA)(2−αS) b
2

(2−αA)(2−αS) , (A.12)
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which corresponds to (14). Given his optimal effort choice, the Agent’s maximization problem with respect
to the budget allocation is given by

φDA = arg max
φ

φb eA(b, φ, êA)αAeS((1− φ)b, êA)αS − eA(b, φ, êA)2

2
,

= arg max
φ

(
1− αA

2

)
αA

αA
2−αA αS

2αS
(2−αA)(2−αS) ê

2αAαS
(2−αA)(2−αS)

A φ
2

2−αA (1− φ)
2αS

(2−αA)(2−αS) b
4

(2−αA)(2−αS) .

The first order condition with respect to φ is(
1− αA

2

)
αA

αA
2−αA αS

2αS
(2−αA)(2−αS) ê

2αAαS
(2−αA)(2−αS)

A b
4

(2−αA)(2−αS)

×
(

2

2− αA
φ

2
2−αA

−1
(1− φ)

2αS
(2−αA)(2−αS) − φ

2
2−αA

2αS
(2− αA)(2− αS)

(1− φ)
2αS

(2−αA)(2−αS)
−1
)

= 0.

Since, as we show later, the Agent’s equilibrium effort choice is bounded in (0, 1), the first order condition
can be reduced to

2

2− αA
(1− φ)− φ 2αS

(2− αA)(2− αS)
= 0,

yielding

φDA = 1− αS
2
. (A.13)

The second order condition, evaluated at φ = φDA is

(
1− αA

2

)
αA

αA
2−αA αS

2αS
(2−αA)(2−αS) ê

2αAαS
(2−αA)(2−αS)

A b
4

(2−αA)(2−αS)φ
2

2−αA
−2

(1− φ)
2αS

(2−αA)(2−αS)
−2 2

2− αA

×
[(

2

2− αA
− 1

)
(1− φ)2 − 2φ

2αS
(2− αA)(2− αS)

(1− φ) + φ2
αS

2− αS

(
2αS

(2− αA)(2− αS)
− 1

)]
< 0,

since(
2

2− αA
− 1

)
(1− φDA )2 − 2φDA

2αS
(2− αA)(2− αS)

(1− φDA ) + (φDA )2
αS

2− αS

(
2αS

(2− αA)(2− αS)
− 1

)
= −αS

2
.

Hence, φDA maximizes the Agent’s objective function.

The principal’s maximization problem is given by

bD = arg max
b

(1− b) eA(b, φDA , êA)αAeS((1− φDA )b, êA)αS ,

= arg max
b

(1− b) αA
αA

2−αA αS
2αS

(2−αA)(2−αS) ê
2αAαS

(2−αA)(2−αS)

A (φDA )
αA

2−αA (1− φDA )
2αS

(2−αA)(2−αS) b
2αA+2αS−αAαS
(2−αA)(2−αS) .

The first order condition with respect to b is

αA
αA

2−αA αS
2αS

(2−αA)(2−αS) ê
2αAαS

(2−αA)(2−αS)

A (φDA )
αA

2−αA (1− φDA )
2αS

(2−αA)(2−αS)

×
(
−b

2αA+2αS−αAαS
(2−αA)(2−αS) + (1− b)2αA + 2αS − αAαS

(2− αA)(2− αS)
b
2αA+2αS−αAαS
(2−αA)(2−αS)

−1
)

= 0.
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Since φDA , αA, and αS are all bounded in (0, 1), the first order condition can be reduced to

−b
2αA+2αS−αAαS
(2−αA)(2−αS) + (1− b)2αA + 2αS − αAαS

(2− αA)(2− αS)
b
2αA+2αS−αAαS
(2−αA)(2−αS)

−1
= 0,

yielding

bD =
2αA + 2αS − αAαS

4
. (A.14)

The second order condition, evaluated at b = bD, is

α
αA

2−αA
A αS

2αS
(2−αA)(2−αS) ê

2αAαS
(2−αA)(2−αS)

A (φDA )
αA

2−αA (1− φDA )
2αS

(2−αA)(2−αS)
2αA + 2αS − αAαS
(2− αA)(2− αS)

b
2αA+2αS−αAαS
(2−αA)(2−αS)

−2

×
[
−2b+ (1− b)

(
2αA + 2αS − αAαS
(2− αA)(2− αS)

− 1

)]
< 0,

since −2bD + (1 − bD)
(
2αA+2αS−αAαS
(2−αA)(2−αS) − 1

)
= −1. Hence, bD maximizes the principal’s objective function.

Since αA and αS ∈ (0, 1), bD and φDA ∈ (0, 1).

The Agent’s equilibrium compensation is φDAb
D =

(
1− αS

2

)
2αA+2αS−αAαS

4 ∈ (0, 1), while the Subagent’s

equilibrium compensation is (1 − φDA )bD = αS
2

2αA+2αS−αAαS
4 ∈ (0, 1). The equilibrium condition requires

that

êA = eDA . (A.15)

Substituting (A.15) into the first order condition of the Agent’s effort (A.11) and the first order condition
of the Subagent’s effort (A.10), we obtain{

eDA = αA
1

2−αA αS
αS

(2−αA)(2−αS) (eA
D)

αAαS
(2−αA)(2−αS) (φDA )

1
2−αA (1− φDA )

αS
(2−αA)(2−αS) (bD)

2
(2−αA)(2−αS) ,

eDS = αS
1

2−αS (eA
D)

αA
2−αS ((1− φDA )bD)

1
2−αS .

Solving the system of equations in (eDA , e
D
S ), we obtain the equilibrium effort levels of the two agents:

eDA = αA
2−αS

2(2−αA−αS)αS
αS

2(2−αA−αS) (φDA )
2−αS

2(2−αA−αS) (1− φDA )
αS

2(2−αA−αS) (bD)
1

2−αA−αS , (A.16)

eDS = αA
αA

2(2−αA−αS)αS
2−αA

2(2−αA−αS) (φDA )
αA

2(2−αA−αS) (1− φDA )
2−αA

2(2−αA−αS) (bD)
1

2−αA−αS . (A.17)

Since bD, φDA , αA, and αS are all bounded in (0, 1), eDA and eDS ∈ (0, 1). Substituting (A.16) and (A.17) into
(2), we obtain the equilibrium probability of success under delegated contracting

πD = α
αA

2−αA−αS
A αS

αS
2−αA−αS (φDA )

αA
2−αA−αS (1− φDA )

αS
2−αA−αS (bD)

αA+αS
2−αA−αS ,

The principal’s expected payoff, vD = (1− bD)πD, is equal to

vD =

[
(1− bD)αA

αA
2−αA−αS αS

αS
2−αA−αS (bD)

αA+αS
2−αA−αS

] [
(φDA )αA(1− φDA )αS

] 1
2−αA−αS > 0, (A.18)
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since bD ∈ (0, 1). So, implementing the risky project under the centralized contracting scheme is profitable
(in expectation) for the principal. The expected payoffs of the Agent and the Subagent are equal to

uDA =
(

1− αA
2

)
φDAb

DπD,

uDS =
(

1− αS
2

)
(1− φDA )bDπD,

respectively. Since αA, αS , φDA , bD, and πD are ∈ (0, 1), the agent’s expected payoffs are strictly positive.
So, both agents’ participation constraints are satisfied.

The optimal compensation budget, the budget allocation, as well as the agents’ total compensations,
have the following properties:

∂bD

∂αA
=

2− αS
4

> 0,
∂bD

∂αS
=

2− αA
4

> 0,

∂φDA
∂αA

= 0,
∂φDA
∂αS

= −1

2
< 0,

∂φDAb
D

∂αA
=

(2− αS)2

8
> 0,

∂φDAb
D

∂αS
=
αAαS − 2αA − 2αS + 2

4
T 0,

∂
(
1− φDA

)
bD

∂αA
=
αS(2− αS)

8
> 0,

∂
(
1− φDA

)
bD

∂αS
=
αA(1− αS) + 2αS

4
> 0.

Proof of Corollary 2. Without loss of generality, we assume that

0 < αj ≤ αi < 1.

Given the optimal contracts in Proposition 1 and Proposition 2, we compare the two contracting schemes
with respect to the following equilibrium quantities:

(i) Compensation budget, b: bC < bD since αi, αj ∈ (0, 1).

(ii) Budget allocation to the Agent (i.e., agent i), φi: φ
C
i < φDA=i since αi, αj ∈ (0, 1).

(iii) The Agent’s compensation, φib:

φCi b
C =

2αi − αiαj
4− αiαj

, φDA=ib
D =

(2− αj)(2αi + 2αj − αiαj)
8

.

Define f(x, y) ≡ x2y − 2xy − 2x2 − 4x + 8 where 0 ≤ y ≤ x ≤ 1. Taking the first order partial
derivative with respect to y, we get fy(x, y) = x2 − 2x = (1 − x)2 − 1 < 0, for any 0 < x ≤ 1.
Therefore, f(x, y) is decreasing in y ∈ (0, x]. Hence, f(x, y) > f(x, x) = x3 − 4x2 − 4x + 8 for
0 ≤ y < x ≤ 1. Define g(x) ≡ x3 − 4x2 − 4x + 8 for x ∈ [0, 1]. Taking the first order derivative, we
get gx(x) = 3x2 − 8x − 4 = 3(x − 4

3)2 − 28
3 < 0, for any x ∈ [0, 1]. Therefore, g(x) is decreasing in

[0, 1] and g(x) > g(1) = 1 for any x ∈ (0, 1). g(x) > 0 implies that f(x, y) > 0 for any 0 < y < x < 1.

Rearranging f(αi, αj) > 0, we obtain that
2αi−αiαj
4−αiαj <

(2−αj)(2αi+2αj−αiαj)
8 . Hence,

φCi b
C < φDA=ib

D.
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(iv) The Subagent’s compensation, φjb:

φCj b
C = (1− φCi )bC =

2αj − αiαj
4− αiαj

, φDS=jb
D = (1− φDA=i)bD =

αj(2αi + 2αj − αiαj)
8

.

Define f(x, y) ≡ x2y2−2x2y−2xy2−4xy+ 16x+ 8y−16 where 0 ≤ y ≤ x ≤ 1. Taking the first order
partial derivative with respect to y, we obtain fy(x, y) = 2x2y−2x2−4xy−4x+8. Taking the second
order partial derivative with respect to y, we obtain fyy(x, y) = 2x2 − 4x = 2(x − 1)2 − 2 < 0 for
any 0 < x ≤ 1. Therefore, fy(x, y) is decreasing in y ∈ [0, x] and fy(x, y) > fy(x, x) where y ∈ [0, x).
Define g(x) ≡ fy(x, x) = 2x3 − 6x2 − 4x + 8 where 0 ≤ x ≤ 1. Taking the first order derivate, we
obtain gx(x) = 6x2 − 12x− 4 = 6(x− 1)2 − 10 < 0 for any x ∈ [0, 1]. Therefore, g(x) is decreasing in
x ∈ [0, 1]. Hence, g(x) > g(1) = 0 where 0 ≤ x < 1. This implies that fy(x, y) > 0 for any y ∈ [0, x).
Therefore, f(x, y) is increasing in y ∈ [0, x). Hence, f(x, 0) < f(x, y) < f(x, x) for any y ∈ (0, x),
where f(x, 0) = 16(x − 1) < 0 for any x ∈ (0, 1). Define h(x) ≡ f(x, x) = x4 − 4x3 − 4x2 + 24x − 16
where x ∈ [0, 1]. Taking the first order derivative, we obtain hx(x) = 4x3 − 12x2 − 8x + 24. Taking
the second order derivative, we obtain hxx(x) = 12x2 − 24x − 8 = 12(x − 1)2 − 20 < 0 ∀x ∈ [0, 1].
Therefore, hx(x) is decreasing in x ∈ [0, 1], and hx(x) > hx(1) = 8 > 0. Hence, h(x) is increasing in
x ∈ [0, 1]. Since, f(1, 1) = h(1) = 1 > 0, combined with f(x, 0) < 0 for any x ∈ (0, 1], it follows that
f(x, y) > 0 for any 0 < y ≤ x < 1 as long as x is close enough to 1. As a result, there exists a unique
ᾱci (αj) ∈ (0, 1) such that {

(1− φCi )bC ≥ (1− φDi )bD for αi ≤ ᾱci (αj)
(1− φCi )bC < (1− φDi )bD for αi > ᾱci (αj).

Next, consider the implicit function f(x, y) = 0 where 0 ≤ y ≤ x ≤ 1. From the above derivation,
fy(x, y) > 0 for any 0 < y ≤ x < 1. Taking the first order partial derivative with respect to x, we
obtain fx(x, y) = 2xy2 − 4xy− 2y2 − 4y+ 16. Taking the second order partial derivative with respect
to x, we get fxx(x, y) = 2y2 − 4y = 2(y − 1)2 − 2 < 0 for any 0 < y < 1. Hence, fx(x, y) is decreasing
in x ∈ (y, 1), and fx(x, y) > fx(1, y) = −8y + 16 > 0 for any 0 < y < 1. Therefore, fx(x, y) > 0 for

any 0 < y ≤ x < 1. Using the Implicit Function Theorem, dx
dy = − fy(x,y)

fx(x,y)
< 0, for any 0 < y < x < 1.

As a result,

∂ᾱci (αj)

∂αj
< 0.

(v) The Agent’s effort level, ei:

eCi
eDi

=
(φC)

2−αj
2(2−αi−αj) (1− φC)

αj
2(2−αi−αj) (bC)

1
2−αi−αj

(φD)
2−αj

2(2−αi−αj) (1− φD)
αj

2(2−αi−αj) (bD)
1

2−αi−αj

,

implying that

(
eCi
eDi

)2−αi−αj
=

(
αi
2

)1−αj
2
(
1− αi

2

)αj
2(

1− αi
2
αj
2

) (
αi
2 +

αj
2 −

αi
2
αj
2

) . (A.19)
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Define f(x, y) ≡ x1−y(1 − x)y/[(1 − xy)(x + y − xy)] where 0 < y ≤ x < 1
2 . Taking the first order

partial derivative with respect to x, we obtain

fx(x, y) =
(1− y)y(−x3 + x2(y + 1)− x(y + 2) + 1)

(1− x)1−yxy(1− xy)2(x+ y − xy)2
.

Define g(x, y) ≡ −x3 + x2(y + 1) − x(y + 2) + 1 where 0 ≤ y ≤ x ≤ 1
2 . Taking the first order partial

derivative with respect to x, we obtain gx(x, y) = −3x2+2x(y+1)−y−2 = −3(x− 1
3)2−(1−2x)y− 5

3 < 0
for any 0 ≤ y ≤ x ≤ 1

2 . Therefore, g(x, y) is decreasing in x ∈ [y, 12 ] and g(x, y) > g(12 , y) = 1
8(1−2y) >

0 for any 0 < y ≤ x < 1
2 . Hence,

fx(x, y) =

[
(1− y)y

(1− x)1−yxy(1− xy)2(x+ y − xy)2

]
g(x, y) > 0

for any 0 < y ≤ x < 1
2 . It follows that f(x, y) is increasing in x ∈ [y, 12) and f(x, y) < f(12 , y) =

2
−(y− 1

2
)2+ 9

4

< 2
−(y− 1

2
)2+ 9

4

∣∣
y=0

= 1 for any 0 < y ≤ x < 1
2 . As a result,

eCi < eDi .

(vi) The Subagent’s effort level, ej :

eCj

eDj
=

(φC)
αi

2(2−αi−αj) (1− φC)
2−αi

2(2−αi−αj) (bC)
1

2−αi−αj

(φD)
αi

2(2−αi−αj) (1− φD)
2−αi

2(2−αi−αj) (bD)
1

2−αi−αj

, (A.20)

implying that (
eCj

eDj

)2−αi−αj

=

(
αi
2

)αi
2
(
1− αi

2

)1−αi
2(

1− αi
2
αj
2

) (
αi
2 +

αj
2 −

αi
2
αj
2

) . (A.21)

Define f(x, y) ≡ xx(1 − x)1−x/[(1 − xy)(x + y − xy)] where 0 < y ≤ x ≤ 1
2 . Taking the first order

partial derivative with respect to x, we obtain

fx(x, y) =
xx(1− x)1−x

(1− xy)(x+ y − xy)

(
y

1− xy
− 1− y
x+ y − xy

+ log
x

1− x

)
.

Define g(x, y) ≡ y
1−xy−

1−y
x+y−xy +log x

1−x where 0 < y ≤ x ≤ 1
2 . Taking the first order partial derivative

with respect to x, we obtain gx(x, y) = 1
x(1−x) + y2

(1−xy)2 + (1−y)2
(x+y−xy)2 > 0 for any 0 < y ≤ x ≤ 1

2 .

Therefore, g(x, y) is increasing in x ∈ [y, 12 ], and g(x, y) < g(12 , y) = 4(1−2y)
(y− 1

2
)2− 9

4

< 0 for any y ∈ (0, 12).

Hence,

fx(x, y) =

[
xx(1− x)1−x

(1− xy)(x+ y − xy)

]
g(x, y) < 0

for any 0 < y ≤ x < 1
2 . It follows that f(x, y) is decreasing in x ∈ [y, 12 ], and f(x, y) > f(12 , y) for any

0 < y ≤ x < 1
2 , since f(12 , y) = 2

(2−y)(1+y) < 1 for any 0 < y ≤ x < 1
2 . Continuity of f(x, y) implies
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that lim
x→ 1

2

− f(x, y) = f(12 , y) < 1 for any y ∈ (0, x]. Therefore, f(x, y) < 1 for any 0 < y ≤ x < 1
2 as

long as x is close enough to 1
2 . As a result, there exists a unique ᾱei (αj) ∈ (0, 1) such that{

eCj ≥ eDj for αi ≤ ᾱei (αj)
eCj < eDj for αi > ᾱei (αj).

Next, consider an implicit function f(x, y) = 1 where 0 < y ≤ x ≤ 1
2 . From the above derivation,

fx(x, y) < 0 for any 0 < y ≤ x < 1
2 . Taking the first order partial derivative with respect to y, we

obtain

fy(x, y) = − xx(1− x)1−x

(1− xy)2(x+ y − xy)2
[
x2(2y − 1)− x(2y + 1) + 1

]
.

Define h(x, y) ≡ x2(2y − 1) − x(2y + 1) + 1 where 0 < y ≤ x ≤ 1
2 . Taking the first order partial

derivative with respect to x, we obtain hx(x, y) = 2x(2y − 1) − 2y − 1. Taking the second order
derivative with respect to x, we obtain hxx(x, y) = 2(2y − 1) < 0 for any 0 < y ≤ x < 1

2 . Therefore,
hx(x, y) is decreasing in x ∈ [y, 12), and hx(x, y) ≤ hx(y, y) = (1− 2y)2 − 2 < 0 for any 0 < y ≤ x ≤ 1

2 .
Hence, h(x, y) is decreasing in x ∈ [y, 12 ] and h(x, y) > h(12 , y) = 1

4(1− 2y) > 0 for any 0 < y ≤ x < 1
2 .

It follows that,

fy(x, y) = − xx(1− x)1−x

(1− xy)2(x+ y − xy)2
h(x, y) < 0

for any 0 < y ≤ x < 1
2 . Using the Implicit Function Theorem, dx

dy = − fy(x,y)
fx(x,y)

< 0 for any ∀0 < y ≤
x < 1. As a result,

∂ᾱei (αj)

∂αj
< 0.

(vii) The probability of success, π:

πC

πD
=

(φC)
αi

2−αi−αj (1− φC)
αj

2−αi−αj (bC)
αi+αj

2−αi−αj

(φD)
αi

2−αi−αj (1− φD)
αj

2−αi−αj (bD)
αi+αj

2−αi−αj

,

implying that

(
πC

πD

)1−αi
2
−
αj
2

=

(
αi
2

)αi
2
(
1− αi

2

)αj
2(

1− αi
2
αj
2

)αi
2
+
αj
2
(
αi
2 +

αj
2 −

αi
2
αj
2

)αi
2
+
αj
2

.

Define f(x, y) ≡ xx(1− x)y/[(1− xy)x+y(x+ y− xy)x+y] where 0 < y ≤ x ≤ 1
2 . Taking the first order

partial derivative with respect to x, we obtain

fx(x, y) =
xx(1− x)y

(1− xy)x+y(x+ y − xy)x+y

(
− y

1−x+
y(x+y)
1−xy −

(1−y)(x+y)
x+y−xy +log x

(1−xy)(x+y−xy)+1

)
.

Define g(x, y) ≡ − y
1−x + y(x+y)

1−xy −
(1−y)(x+y)
x+y−xy + log x

(1−xy)(x+y−xy) + 1 where 0 < y ≤ x ≤ 1
2 , and define

h(x, y) ≡ 1 − x − x(x + y − xy) where 0 < y ≤ x ≤ 1
2 . Taking the first order partial derivative with

respect to x, we obtain hx(x, y) = −1− y − 2x(1− y) < 0 for any 0 < y ≤ x ≤ 1
2 . Therefore, h(x, y)
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is decreasing in x ∈ [y, 12 ], and h(x, y) ≥ h(12 , y) = 1
4(1 − y) > 0 for any 0 < y ≤ x ≤ 1

2 . The fact
that h(x, y) = 1 − x − x(x + y − xy) > 0 implies that x

(1−xy)(x+y−xy) < 1, which further implies that

log x
(1−xy)(x+y−xy) < 0 for any 0 < y ≤ x ≤ 1

2 . Hence,

g(x, y) < − y

1− x
+
y(x+ y)

1− xy
− (1− y)(x+ y)

x+ y − xy
+ 1 =

y(x3y−x3+x2y2−2x2y+x2−2xy2+2xy−x+y2)

(1− x)(1− xy)(x+ y − xy)
.

Define k(x, y) ≡ x3y−x3+x2y2−2x2y+x2−2xy2+2xy−x+y2 where 0 ≤ y ≤ x ≤ 1
2 . Taking the first

order partial derivative with respect to x, we obtain kx(x, y) = −1
3(1− y)(3x+ y− 1)2− 1

3(y3 + 3y2 +
2−3y) < 0 where 0 ≤ y ≤ x ≤ 1

2 . Therefore, k(x, y) is decreasing in x ∈ [y, 12 ], and k(x, y) ≤ k(y, y) =
−(1− y)2y(1− 2y) < 0 for any 0 < y ≤ x ≤ 1

2 . Hence, g(x, y) < y
(1−x)(1−xy)(x+y−xy)k(x, y) < 0 for any

0 < y ≤ x ≤ 1
2 . It follows that

fx(x, y) =

[
xx(1− x)y

(1− xy)x+y(x+ y − xy)x+y

]
g(x, y) < 0

for any 0 < y ≤ x ≤ 1
2 . Thus, f(x, y) is decreasing in x ∈ [y, 12 ], and f(x, y) > f(12 , y) for any

0 < y ≤ x < 1
2 , since f(12 , y) = 1/

(
9
8 −

1
8(1− 2y)2

)y+ 1
2 < 1 for any 0 < y ≤ x < 1

2 . Continuity of
f(x, y) implies that lim

x→ 1
2

− f(x, y) = f(12 , y) < 1 for any y ∈ (0, x]. Therefore, f(x, y) < 1 for any

0 < y ≤ x < 1
2 as long as x is close enough to 1

2 . As a result, there exists a unique ᾱπi (αj) ∈ (0, 1)
such that {

πC ≥ πD for αi ≤ ᾱπi (αj)
πC < πD for αi > ᾱπi (αj).

Next, consider the implicit function f(x, y) = 1 where 0 < y ≤ x ≤ 1
2 . When y = x, the solution to

f(x, y) = 1 is {x = y = 0.2892}. When, instead, y is close to zero, say y = ȳ = 10−6, the solution
to f(x, y) = 1 is {x = x̄ ≡ 0.3856, y = ȳ}. Since, given the above derivation, fx(x, y) < 0 for any
0 < y ≤ x ≤ 1

2 , we consider 0 < x ≤ x̄. Taking the first order partial derivative of f(x, y) with respect
to y, we obtain

fy(x, y) = −(1− x)(x+ y)

x+ y − xy
+
x(x+ y)

1− xy
+ log

1− x
(1− xy)(x+ y − xy)

.

Taking the second order partial derivative with respect to y, we obtain

fyy(x, y) =
x

1− xy
− (1− x)x2

(x+ y − xy)2
− 1− x
x+ y − xy

+
x(1 + x2)

(1− xy)2
.

Taking the third order partial derivative with respect to y, we obtain

fyyy(x, y) =
2x2(x2 + 1)

(1− xy)3
+

x2

(1− xy)2
+

2(1− x)2x2

(x+ y − xy)3
+

(1− x)2

(x+ y − xy)2
> 0

for any 0 < y ≤ x ≤ x̄. Therefore, fyy(x, y) is increasing in y ∈ [0, x] and fyy(x, y) < fyy(x, x) =
2(x5−6x3+6x2+x−1)

(2−x)2x(1−x2)2 . Define g(x) ≡ x5 − 6x3 + 6x2 + x − 1 where 0 < x ≤ x̄. Taking the first order

derivative, we obtain gx(x) = 5x4 − 18x2 + 12x + 1 = −(1 − x)(5x3 + 5x2 − 13x − 1). Define
h(x) ≡ 5x3 + 5x2 − 13x − 1 where 0 ≤ x ≤ x̄. Taking the first order derivative, we get hx(x) =
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15x2 + 10x− 13 = 15(x+ 1
3)2 − 44

3 < 0 for any 0 ≤ x ≤ x̄. Therefore, h(x) is decreasing in x ∈ [0, x̄]
and h(x) < h(0) = −1 < 0 for any 0 < x ≤ x̄. It follows that gx(x) > 0 for any 0 < x ≤ x̄, and hence
g(x) is increasing in x ∈ (0, x̄], and g(x) ≤ g(x̄) = −0.0578 < 0 for any 0 < x ≤ x̄. As a consequence,
fyy(x, y) < fyy(x, x) = 2

(2−x)2x(1−x2)2 g(x) < 0 for any 0 < y ≤ x ≤ x̄. Hence, fy(x, y) is decreasing in

y ∈ (0, x], and fy(x, y) < fy(x̄, ȳ) = −4.9187 × 10−6 < 0. Since fx(x, y) < 0 for any 0 < y ≤ x ≤ x̄,

using the Implicit Function Theorem, dx
dy = − fy(x,y)

fx(x,y)
< 0 for any 0 < y ≤ x ≤ x̄. As a result, for

0 < αj ≤ ᾱei (αj) ≤ 2× x̄ = 0.7712,

∂ᾱπi (αj)

∂αj
< 0.

(viii) The Agent’s expected payoff, ui:

uCi
uDi

=
(1− αi/2)φCbCπC

(1− αi/2)φDbDπD
,

implying that

(
uCi
uDi

)2−αi−αj
=

(
αi
2

)1−αj
2
(
1− αi

2

)αj
2(

1− αi
2
αj
2

) (
αi
2 +

αj
2 −

αi
2
αj
2

) . (A.22)

Since the RHS in (A.22) is the same as the RHS in (A.19), it follows that

ui
C < ui

D. (A.23)

(ix) The Subagent’s expected payoff, uj :

uCj

uDj
=

(1− αj/2)(1− φC)bCπC

(1− αj/2)(1− φD)bDπD
,

implying that (
uCj

uDj

)2−αi−αj

=

(
αi
2

)αi
2
(
1− αi

2

)1−αi
2(

1− αi
2
αj
2

) (
αi
2 +

αj
2 −

αi
2
αj
2

) (A.24)

Since the RHS in (A.24) is the same as the RHS in (A.21), it follows that{
uCj ≥ uDj for αi ≤ ᾱei (αj)
uCj < uDj for αi > ᾱei (αj).

(A.25)

We finally prove that

1

2
< ᾱπi (αj) < ᾱi(αj) < ᾱei (αj) < ᾱci (αj) < 1.

We proceed in five steps, by showing sequentially that, for any αj ∈ (0, 1): (1) 1
2 < ᾱπi (αj); (2) ᾱπi (αj) <

ᾱi(αj); (3) ᾱi(αj) < ᾱei (αj); (4) ᾱei (αj) < ᾱci (αj); and (5) ᾱci (αj) < 1.
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(1) Since in part (vii) of this proof we show that ᾱπi (αj) is decreasing in αj , the lowest value of ᾱπi (αj) is
ᾱπi (αi) = 0.5784 > 1

2 .

(2) Since (1− bC) > (1− bD) for any αi and αj ∈ (0, 1), and since πC < πD for any αi > ᾱπ(αj), it follows
that vC = (1− bC)πC < vD = (1− bD)πD for any αi > ᾱi(αj) > απi (αj) and αj < αi.

(3) In part (ix) of this proof we show that the unique threshold of αi above which uCj < uDj is the same

threshold above which eCj < eDj . Since uj = (1− αj/2)(1− φ)bπ and v = (1− b)π, we express v as a
function of uj :

v =
(1− b)uj(

1− αj
2

)
(1− φ)b

.

Assume by contradiction that ᾱi > ᾱei , and consider ᾱei ≤ αi < ᾱi, implying that uCj ≤ uDj and

vC > vD. Since

vC

vD
=

( αi
2 +

αj
2 −

αi
2
αj
2

1− αi
2

)
uCj

uDj
,

uCj ≤ uDj and vC > vD imply that

αi
2 +

αj
2 −

αi
2
αj
2

1− αi
2

> 1. (A.26)

Given (A.29), (A.26) implies that

(
vC

vD

)1−αi
2
−
αj
2

<

(
1

1− αi
2

1−αi
1−αi

2

)( αi
2

1− αi
2

)αi
2

,

Define f(x) ≡ 1
1−x 1−2x

1−x
( x
1−x)x where x ∈ [0, 12 ]. Taking the first order derivative, we obtain

fx(x) =
(1− x)

(
x

1−x

)x
(2(x− 1)x+ 1)2

(
2− 4x+ (2(x− 1)x+ 1) log

x

1− x

)
.

Define g(x) ≡ 2 − 4x +
(
2(x − 1)x + 1

)
log x

1−x where x ∈ (0, 12 ]. Taking the first order derivative,

we obtain gx(x) = 1
x(1−x) − 2(1 − 2x) log x

1−x − 6. Taking the second order derivative, we obtain

gxx(x) = −4x3+6x2−1
(1−x)2x2 + 4 log x

1−x < 0 for any x ∈ (0, 12). Therefore, gx(x) is decreasing in x ∈ (0, 12).

Since limx→0+ gx(x) > 0 and gx(12) = −2 < 0, using the Mean Value Theorem, it follows that there
exist a unique x? ∈ (0, 12) such that gx(x) ≥ 0 for any x ∈ (0, x?] and gx(x) < 0 for any x ∈ (x?, 12),
where x? = 0.2694. Hence, g(x) is increasing in x ∈ (0, x?] and decreasing in x ∈ (x?, 12). Since
lim x→ 0+g(x) < 0, g(x?) = 0.3175 > 0, and g(12) = 0, using again the Mean Value Theorem, it
follows that there exist a unique x?? ∈ (0, x?) such that g(x) ≤ 0 for any x ∈ (0, x??] and g(x) > 0 for

any x ∈ (x??, 12), where x?? = 0.1284. Since fx(x) = g(x)(1 − x)
(

x
1−x

)x
/[2(x − 1)x + 1]2, it follows

that fx(x) ≤ 0 for any x ∈ (0, x??] and fx(x) > 0 for any x ∈ (x??, 12). Therefore, f(x) is decreasing
in x ∈ (0, x??] and increasing in x ∈ (x??, 12). Since f(0) = 1, f(x??) = 0.8781 < 1, and f(12) = 1, it
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follows that f(x) < 1 for any x ∈ (0, 12). This implies that vC < vD, which is a contradiction. As a
result, we can conclude that ᾱi(αj) < ᾱei (αj).

(4) Given the ratio eCj /e
D
j in (A.20), it follows that

(1− φC)bC

(1− φD)bD
=

(
eCj

eDj

) 2(2−αi−αj)
αj

(
φDbD

φCbC

) 2−αj
αj

. (A.27)

Since in part (iii) of this proof we show that φCbC < φDbD, it follows that the second term on the
RHS of (A.27) id always larger than 1. Therefore, there must exists a value of αi > ᾱei (αj) but close
enough to ᾱei (αj) such that eDj > eCj , but (1 − φD)bD < (1 − φC)bC . When, instead, αi > ᾱci (αj),

implying that (1 − φD)bD > (1 − φC)bC , it must be that eDj > eCj , implying that αi > ᾱei (αj). As a
result, we can conclude that ᾱei (αj) < ᾱci (αj).

(5) Part (vi) of this proof implies that ᾱci (αj) < 1.

Proof of Lemma 1. Without loss of generality, we assume that

0 < α2 < α1 < 1.

We denote by vDA=i the principal’s expected payoff in the delegated contracting scheme where she delegates
contracting to agent i (i.e., agent i is the Agent). Given the optimal contracts in Proposition 2, we take the
ratio of the principal’s expected payoff vDA=i for the two cases A = 1 and A = 2:

vDA=1

vDA=2

=

(
1− 2α1+2α2−α1α2

4

)
α

α1
2−α1−α2
1 α

α2
2−α1−α2
2

(
1− α2

2

) α1
2−α1−α2

(
α2
2

) α2
2−α1−α2 (2α1+2α2−α1α2

4 )
α1+α2

2−α1−α2(
1− 2α1+2α2−α1α2

4

)
α

α1
2−α1−α2
1 α

α2
2−α1−α2
2

(
1− α1

2

) α2
2−α1−α2

(
α1
2

) α1
2−α1−α2 (2α1+2α2−α1α2

4 )
α1+α2

2−α1−α2

,

=

(
1− α2

2

) α1
2−α1−α2

(
α2
2

) α2
2−α1−α2(

1− α1
2

) α2
2−α1−α2

(
α1
2

) α1
2−α1−α2

=

(
1− α2

2
α1
2

) α1
2

1−α1
2 −α2

2

( α2
2

1− α1
2

) α2
2

1−α1
2 −α2

2 ,

implying that (
vDA=1

vDA=2

)1−α1
2
−α2

2

=

(
1− α2

2
α1
2

)α1
2
( α2

2

1− α1
2

)α2
2

. (A.28)

The following steps allows us to prove that the RHS of (A.28) is always higher than 1 for α1 > α2.

(i) Define f(x, y) ≡
(1−y

x

)x( y
1−x
)y

where 0 < y < x < 1
2 . Hence, limx→y+ f(x, y) = 1. Taking the first

order derivative with respect to x, we obtain

fx(x, y) =
∂f(x, y)

∂x
=

(
1− y
x

)x( y

1− x

)y [
log

(
1− y
x

)
− 1 +

y

1− x

]
.
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Define g(y) ≡ fx(y, y) = log
(1−y

y

)
− 1 + y

1−y where y ∈ (0, 12 ]. Taking the first order derivative,

we obtain gy(y) = − 1−2y
y(1−y)2 < 0, for any y ∈ (0, 12). Therefore, g(y) is decreasing in (0, 12 ]. Hence,

g(y) > g(12) = 0, for any y ∈ (0, 12). This implies that limx→y+ fx(x, y) > 0.

(ii) Define h(y) ≡ f(12 , y) =
(
1−y
1
2

) 1
2
(

y

1− 1
2

)y
=
√

2
√

1− y(2y)y where y ∈ (0, 12 ]. Taking the first order

derivative, we obtain

hy(y) =

√
2yy2y−1√

1− y
[2(1− y) (log(2y) + 1)− 1] .

Define k(y) ≡ 2(1 − y) (log(2y) + 1) − 1. Taking the first order derivative, we obtain ky(y) = 2
y −

2 log(2y) − 4 > 0 for any y ∈ (0, 12). Therefore, k(y) is increasing in (0, 12 ]. Hence, k(y) < k(12) = 0.
This implies that hy(y) < 0 ∀y ∈ (0, 12). Therefore, h(y) is decreasing in (0, 12 ]. Hence, h(y) > h(12) = 1
∀y ∈ (0, 12). This implies that lim

x→ 1
2

− f(x, y) > 1.

(iii) Let us consider the second order derivative of f(x, y) with respect to x:

fxx(x, y) =

(
1− y
x

)x( y

1− x

)y [ 2y

1− x

(
log

(
1− y
x

)
− 1

)
+

(y + 1)y

(1− x)2
+

(
log

(
1− y
x

)
− 1

)2

− 1

x

]
.

Define g(x, y) ≡ 2y
1−x

(
log
(
1−y
x

)
− 1
)

+ (y+1)y
(1−x)2 +

(
log
(
1−y
x

)
− 1
)2
− 1

x where 0 ≤ y < x ≤ 1
2 . Taking

the first order derivative with respect to y, we obtain

gy(x, y) =
2x2 + 2(1− x)(x− y) log(1−yx ) + 1− 2x+ y(1− 2y)

(1− x)2(1− y)
> 0

for any 0 ≤ y < x ≤ 1
2 . Taking the first order derivative with respect to x, we obtain

gx(x, y) =
−2x4 + 5x3 + x2(2y2 + 4y − 3)− x(2y + 1) + 1− 2(1− x)x(x2 − x(y + 2) + 1) log(1−yx )

(1− x)3x2
.

Define q(x) ≡ gx(x, 0) = (2x + 1 − 2x log(1/x))/x2 where x ∈ (0, 12 ]. Define m(x) ≡ x log( 1x) where
x ∈ (0, 12 ]. Taking the second order derivative, we obtain mxx(x) = − 1

x < 0 for any x ∈ (0, 12 ].
Therefore, there must exist a unique maximal value of m(x), which is equal to 0.3679. Hence, q(x) >
(2x + 1 − 2 × 0.3679)/x2 > 0 for any x ∈ (0, 12 ]. Since we have proved that gy(x, y) > 0, this implies
that gx(x, y) > gx(x, 0) = g(x) > 0 for any 0 < y < x < 1

2 . As a result, g(x, y) < g(12 ,
1
2) = 0, which

further implies that fxx(x, y) < 0. So, f(x, y) is concave.

(iv) Since limx→y+ f(x, y) = 1, limx→y+ fx(x, y) > 0, lim
x→ 1

2

− f(x, y) > 1, and f(x, y) is concave for any

0 < y < x < 1
2 , it follows that f(x, y) > 1 for all 0 < y < x < 1

2 . Hence,

vDA=1 > vDA=2, ∀ 0 < α2 < α1 < 1.

We next show that vDA=2 > vDA=1 when φDA=i = φ∗i + ∆, for any rent extraction ∆ where 0 < ∆ <
αj

αi+αj
.

The allocation φ∗i is the second-best allocation obtained in the centralized contracting scheme with public
contract, as derived in the Online Appendix B, and is equal to αi/(α1 + α2).
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Taking the ratio of the principal’s expected payoff vDA=i(∆) for the two cases A = 1 and A = 2, we obtain

vDA=1(∆)

vDA=2(∆)
=

(
φ∗ + ∆

) α1
2−α1−α2

(
1− φ∗ −∆

) α2
2−α1−α2(

φ∗ −∆
) α1

2−α1−α2
(
1− φ∗ + ∆

) α2
2−α1−α2

=

(
α1 + ∆(α1 + α2)

α1 −∆(α1 + α2)

) α1
2−α1−α2

(
α2 −∆(α1 + α2)

α2 + ∆(α1 + α2)

) α2
2−α1−α2

,

implying that (
vDA=1(∆)

vDA=2(∆)

)2−α1−α2

=

(
α1 + ∆(α1 + α2)

α1 −∆(α1 + α2)

)α1
(
α2 −∆(α1 + α2)

α2 + ∆(α1 + α2)

)α2

.

Let us define f(x, y, z) ≡
(
x+z(x+y)
x−z(x+y)

)x(
y−z(x+y)
y+z(x+y)

)y
where 0 < y < x < 1 and 0 ≤ z < y

x+y . Taking the

first order partial derivative with respect to z, we obtrain

∂f(x, y, z)

∂z
= −

2z2(x− y)(x+ y)4
(x+z(x+y)
x−z(x+y)

)x(y−z(x+y)
y+z(x+y)

)y(
x+ z(x+ y)

)(
x− z(x+ y)

)(
y + z(x+ y)

)(
y − z(x+ y)

) < 0

for any 0 < y < x < 1 and 0 < z < y
x+y . Therefore, f(x, y, z) is decreasing in z ∈ [0, y

x+y ), and f(x, y, z) <

f(x, y, 0) = 1 ∀z ∈ (0, y
x+y ). As a result,

vDA=2(∆) > vDA=1(∆)

for any 0 < α2 < α1 < 1 and 0 < ∆ < α2/(α1 + α2).

Proof of Proposition 3. Without loss of generality, we assume that

0 < αj ≤ αi < 1.

Taking the ratio of the principal’s expected payoff in the two contracting schemes,

vC

vD
=

(1− bC)(φC)
αi

2−αi−αj (1− φC)
αj

2−αi−αj (bC)
αi+αj

2−αi−αj

(1− bD)(φD)
αi

2−αi−αj (1− φD)
αj

2−αi−αj (bD)
αi+αj

2−αi−αj

,

=

(
1

1− αi
2
αj
2

) 1

1−αi
2 −

αj
2

( αi
2

αi
2 +

αj
2 −

αi
2
αj
2

) αi
2

1−αi
2 −

αj
2

(
1− αi

2
αi
2 +

αj
2 −

αi
2
αj
2

) αj
2

1−αi
2 −

αj
2 ,

implies that (
vC

vD

)1−αi
2
−α2

2

=

(
1

1− αi
2
αj
2

)( αi
2

αi
2 +

αj
2 −

αi
2
αj
2

)αi
2
(

1− αi
2

αi
2 +

αj
2 −

αi
2
αj
2

)αj
2

. (A.29)
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Define f(x, y) ≡
(

1
1−xy

)(
x

x+y−xy

)x (
1−x

x+y−xy

)y
where 0 < y < x ≤ 1

2 . Taking the first order derivative with

respect to x, we obtain

fx(x, y) = −

(
x

x+y−xy

)x (
1−x

x+y−xy

)y
(1− x)(x+ y − xy)(1− xy)2

[
y(x2(1−2y)−y(1−2x))+(1−x)(1−xy)(x+y−xy) log(x+y−xyx )

]
,

where the ratio
( x
x+y−xy )

x( 1−x
x+y−xy )

y

(1−x)(x+y−xy)(1−xy)2 > 0, since 0 < y < x < 1
2 . Define g(x, y) ≡ y

(
x2(1− 2y)− y(1− 2x)

)
+

(1− x)(1− xy)(x+ y − xy) log
(x+y−xy

x

)
where 0 < y < x < 1

2 . The domain 0 < y < x < 1
2 implies that

g(x, y) > y
(
x2(1− 2y)− x(1− 2y)

)
+ (1− x)(1− 2y)(x+ y − xy) log

(
x+ y − xy

x

)
> (1− x)(1− 2y)

[
−xy + (x+ y − xy) log

(
x+ y − xy

x

)]
Define h(x, y) ≡ −xy + (x + y − xy) log(x+y−xyx ) where 0 ≤ y < x ≤ 1

2 . Taking the first order derivative
with respect to x, we obtain hx(x, y) = [x(1 − y) log(x+y−xyx ) − (x + 1)y]/x. Taking the second order

derivative with respect to x, we obtain hxx(x, y) = y2

x2(x+y−xy) > 0 for any 0 ≤ y < x ≤ 1
2 . Therefore,

hx(x, y) is increasing in x ∈ (y, 12 ]. It follows that hx(x, y) < hx(12 , y) = (1 − y) log(1 + y) − 3y for any
0 ≤ y < x < 1

2 . Define k(y) ≡ (1− y) log(1 + y)− 3y where y ∈ [0, 12). Taking the first order derivative, we

get ky(y) = −2(2y+1)
y+1 − log(1 + y) < 0 for any y ∈ [0, 12). Therefore, k(y) is decreasing in y ∈ [0, 12). Hence,

k(y) < k(0) = 0 for any y ∈ (0, 12). This implies that hx(x, y) < g(y) < 0 for any 0 < y < x ≤ 1
2 . Therefore,

h(x, y) is decreasing in x ∈ (y, 12 ]. As a consequence, f(x, y) > f(12 , y) = 1
2 (−y + (1 + y) log(1 + y)) for

any x ∈ (y, 12). Define q(y) ≡ −y + (1 + y) log(1 + y) where y ∈ [0, 12). Taking the first order derivative,
we obtain qy(y) = log(1 + y) > 0 for any y ∈ [0, 12). Therefore, q(y) is increasing in [0, 12). Hence,
h(x, y) = 1

2g(y) > 1
2g(0) = 0 for any y ∈ (0, 12). This implies that g(x, y) > (1 − x)(1 − 2y)h(x, y) > 0 for

any 0 < y < x < 1
2 , which further implies that

fx(x, y) = −
( x
x+y−xy )x( 1−x

x+y−xy )y

(1− x)(x+ y − xy)(1− xy)2
g(x, y) < 0

for any 0 < y < x ≤ 1
2 . Therefore, f(x, y) is decreasing in x ∈ (y, 12 ]. Hence, f(x, y) > f(12 , y) = 2

2−y ( 1
1+y )y+

1
2

for any x ∈ (y, 12). Define w(y) ≡ 2
2−y ( 1

1+y )y+
1
2 where y ∈ [0, x). Taking the first order derivative, we

obtain wy(y) = −
[
2
(
9
4 − (y − 1

2)2
)

log(y + 1) + y(1− 2y)
]
/
[
(2− y)2(1 + y)y+1.5

]
< 0 for any y ∈ [0, x).

Therefore, w(y) is decreasing in [0, x). Hence, w(y) < w(0) = 1 for any y ∈ (0, 12). This implies that
f(12 , y) < 1 for any y ∈ (0, 12). Continuity of f(x, y) implies that lim

x→ 1
2

− f(x, y) = f(12 , y) < 1 for any

y ∈ (0, x). Therefore, f(x, y) < 1 for any 0 < y < x < 1
2 as long as x is close enough to 1

2 . As a result, there
exists a unique ᾱi ∈ (0, 1) such that {

vC ≥ vD for αi ≤ ᾱi
vC < vD for αi > ᾱi.

Next, consider the implicit function f(x, y) = 1 where 0 ≤ y ≤ x ≤ 1
2 . Take the logarithm on both sides

of the implicit function, we get that F (x, y) ≡ log(f(x, y)) = 0, where

F (x, y) = − log(1− xy) + x log(x)− x log(x+ y − xy) + y log(1− x)− y log(x+ y − xy).
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Taking the first order derivative of F (x, y) with respect to x, we obtain

Fx(x, y) = − 1

(1− x)(1− xy)(x+ y − xy)

[
y
(
x2(1−2y)−y(1−2x)

)
+(1−x)(1−xy)(x+y−xy) log(x+y−xyx )

]
= − 1

(1− x)(1− xy)(x+ y − xy)
g(x, y).

Since in the previous step we have shown that g(x, y) > 0 for any 0 < y < x < 1
2 , it follows that Fx(x, y) < 0

for any 0 < y < x < 1
2 . Taking the first, the second and the third order derivatives of F (x, y) with respect

to y, we obtain

Fy(x, y) =
x

1− xy
− (1− x)(x+ y)

x+ y − xy
+ log(

1− x
x+ y − xy

),

Fyy(x, y) =
x2

(1− xy)2
− (1− x)(x+ y − xy + x2)

(x+ y − xy)2
,

Fyyy(x, y) =
2x3

(1− xy)3
+

(1− x)2[(1− x)y + x(2x+ 1)]

(x+ y − xy)3
> 0,

respectively, for any 0 < y < x < 1
2 . Therefore, Fyy(x, y) is increasing in y ∈ [0, x]. Hence, Fyy(x, y) <

Fyy(x, x) = 3x5−6x4+4x2+2x−2
(2−x)2x(1−x2)2 for any x ∈ (0, 12 ]. Define G(x) ≡ 3x5 − 6x4 + 4x2 + 2x − 2 where x ∈ [0, 12 ].

Taking the first, the second and the third order derivatives of G(x) with respect to x, we obtain

Gx(x) = 15x4 − 24x3 + 8x+ 2,

Gxx(x) = 60x3 − 72x2 + 8,

Gxxx(x) = 36x(5x− 4) < 0,

respectively, for any x ∈ [0, 12 ]. Therefore, Gxx(x) is decreasing in [0, 12 ], and Gxx(x) > Gxx(0) = 8 > 0
for any x ∈ (0, 12 ]. This implies that Gx(x) is increasing in [0, 12 ], and that Gx(x) > Gx(0) = 2 > 0
for any x ∈ (0, 12 ]. As a consequence, G(x) is increasing in [0, 12 ], and G(x) < G(12) = −0.28125 < 0.
Therefore, it follows that Fyy(x, y) < 0 for any 0 < y < x < 1

2 , which implies that Fy(x, y) is decreasing
in y ∈ [0, x]. Since {x = y = 0.3454} and {x = 1

2 , y = 0} are both solutions to F (x, y) = 0, and since
Fy(0.3454, 0.3454) = −0.2633 and Fy(

1
2 , 0) = 0, it must be that Fy(x, y) < 0 for any 0 < y < x < 1

2 . Using

the Implicit Function Theorem, dx
dy = −Fy(x,y)

Fx(x,y)
< 0, for any 0 < y < x < 1

2 , where F (x, y) = 0. As a result,

∂ᾱi(αj)

∂αj
< 0.

Corollary 2 shows that the Agent always benefits from delegation (equation (A.23)), while the Subagent
benefits from it if and only if αA > ᾱei (αS) (equation (A.25)). Since ᾱei (αS) > ᾱi(αS), it follows that
delegation is Pareto improving if and only if αA > ᾱei (αS).

Proof of Proposition 4. Without loss of generality, we assume that

0 < αj ≤ αi < 1.

The optimal contracts in the delegated contracting scheme and the optimal contracts in the centralized
contracting scheme when agent j’s contract is public (i.e., when agent i observes agent j’s contract but not
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vice versa) are given in Proposition 2 and in Proposition C.1 (Online Appendix C), respectively, and are
equal to

bD = b′ =
2αi + 2αj − αiαj

4
, φDA=i = 1− αj

2
, φ′i =

2αi − αiαj
2αi + 2αj − αiαj

,

Taking the ratio of the principal’s expected payoff in the two contracting schemes, we obtain

v′

vD
=

(1− b′)(φ′i)
αi

2−αi−αj (1− φ′i)
αj

2−αi−αj (b′)
αi+αj

2−αi−αj

(1− bD)(φDa=i)
αi

2−αi−αj (1− φDa=i)
αj

2−αi−αj (bD)
αi+αj

2−αi−αj

,

=

( αi
2

αi
2 +

αj
2 −

αi
2
αj
2

) αi
2

1−αi
2 −

αj
2

(
1

αi
2 +

αj
2 −

αi
2
αj
2

) αj
2

1−αi
2 −

αj
2 ,

implying that (
v′

vD

)1−αi
2
−α2

2

=

( αi
2

αi
2 +

αj
2 −

αi
2
αj
2

)αi
2
(

1
αi
2 +

αj
2 −

αi
2
αj
2

)αj
2

.

Define f(x, y) ≡ ( x
x+y−xy )x( 1

x+y−xy )y where 0 < y ≤ x ≤ 1
2 . Taking the first order partial derivative with

respect to x, we obtain

fx(x, y) =

(
x

x+ y − xy

)x( 1

x+ y − xy

)y 1

x+ y − xy

(
y2 + (x+ y − xy) log

(
x

x+ y − xy

))
.

Define g(x, y) = y2 + (x + y − xy) log(x/(x + y − xy)) where 0 < y ≤ x ≤ 1
2 . Taking the first order partial

derivative with respect to x, we obtain gx(x, y) = (1− y) log(x/(x+ y − xy)) + y
x . Taking the second order

partial derivative with respect to x, we obtain gxx(x, y) = −y2/[x2(x + y − xy)] < 0 for any 0 < y ≤
x ≤ 1

2 . Therefore, gx(x, y) is decreasing in x ∈ [y, 12 ], and gx(x, y) > gx(12 , y) = 2y + (1 − y) log(1 + y)−1.
Define k(y) ≡ y + (1 − y) log(1 + y)−1 where y ∈ (0, 12 ]. Taking the first order derivative, we obtain

ky(y) = 1+3y
1+y − log(1 + y)−1 > 0 for any y ∈ (0, 12 ], and k(y) > limy→0+ k(y) = 0 for any y ∈ (0, 12 ].

Hence, gx(x, y) > k(y) > 0 for any 0 < y ≤ x ≤ 1
2 . Therefore, g(x, y) is increasing in x ∈ [y, 12 ], and

g(x, y) ≤ g(12 , y) = y2 + 1
2(1 + y) log(1 + y)−1 for any y ∈ (0, 12 ]. Define w(y) ≡ y2 + 1

2(1 + y) log(1 + y)−1

where 0 < y ≤ 1
2 . Taking the first order derivative, we obtain wy(y) = 1

2(4y−log(y+1)−1). Taking the second
order derivative, we get wyy(y) = 2− 1

2(1+y) > 0 for any y ∈ (0, 12 ]. Therefore, wy(y) is increasing in y ∈ (0, 12 ].

Since limy→0+ wy(y) = −0.5 < 0 and wy(
1
2) = 0.2973 > 0, there exists a unique y? = 0.3193 ∈ (0, 12 ] such

that wy(y) ≤ 0 whenever y ∈ (0, y?] and wy(y) > 0 whenever y ∈ (y?, 12). Hence, w(y) is decreasing in
y ∈ (0, y?] and increasing in y ∈ (y?, 12 ]. Since limy→0+ w(y) = 0 and w(12) = −0.0541 < 0, it follows that
w(y) < 0 for any y ∈ (0, 12 ]. Hence, g(x, y) ≤ w(y) < 0 for any y ∈ (0, 12 ]. As a consequenc, fx(x, y) < 0 for
any 0 < y ≤ x ≤ 1

2 .

Since f(x, y) > f(12 , y) = 2y
(

1
1+y

)y+ 1
2

for any 0 < y ≤ x ≤ 1
2 , define h(y) ≡ 2y

(
1
y+1

)y+ 1
2 where

0 ≤ y ≤ 1
2 . Take the first order derivative, we obtain

hy(y) = 2y
(

1

y + 1

)y+ 3
2
(
−y − 1

2
+ (y + 1) log

2

y + 1

)
.
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Define m(y) ≡ −y − 1
2 + (y + 1) log 2

y+1 where 0 ≤ y ≤ 1
2 . Taking the first order derivative, we obtain

my(y) = log 2
1+y − 2 < 0 for any y ∈ [0, 12 ]. Therefore, m(y) is decreasing in y ∈ [0, 12 ]. Since m(0) =

0.1931 > 0 and m(12) = −0.5685 < 0, there exists a unique y?? = 0.1406 ∈ (0, 12 ] such that m(y) ≥ 0 for
y ∈ [0, y??] and m(y) < 0 for y ∈ (y??, 12 ]. This implies that hy(y) ≥ 0 for y ∈ [0, y??] and hy(y) < 0
for y ∈ (y??, 12 ]. Hence, h(y) is increasing in y ∈ [0, y??] and decreasing in y ∈ (y??, 12 ]. Since h(0) = 1,
h(y??) = 1.0133 > 1, and h(12) = 0.9429 < 1, it follows that there exists a unique y??? = 0.2891 ∈ (y??, 12 ]
such that h(y) ≥ 1 for y ∈ [y??, y???] and h(y) < 1 for y ∈ (y???, 12 ]. This implies that f(x, y) > 1 for
0 < y ≤ y???. So, for any y ∈ (0, y???] there does not exist a value of x ∈ [y, 12) such that f(x, y) ≤ 1.
However, f(12 , y) < 1 for any y ∈ (y???, 12). Since fx(x, y) < 0 for any 0 < y ≤ x ≤ 1

2 , continuity of f(x, y)
implies that lim

x→ 1
2

− f(x, y) = f(12 , y) < 1 for any y ∈ (y???, x]. Therefore,

(
x

x+ y − xy

)x( 1

x+ y − xy

)y
< 1

for any y??? < y ≤ x < 1
2 as long as x is close enough to 1

2 . As a result, given ¯̄αj ≡ 2× y??? = 0.5638, there
exists a unique ¯̄αi(αj) ∈ ( ¯̄αj , 1) such that{

v′ ≤ vD for αj > ¯̄αj ∧ αi > ¯̄αi(αj)
v′ > vD otherwise.

Next, consider the implicit function f(x, y) = 1 where y??? ≤ y ≤ x ≤ 1
2 . Taking the first order partial

derivative with respect to y, we obtain

fy(x, y) =
−(1− x)(x+ y) + (x+ y − xy) log

(
1

x+y−xy

)
x+ y − xy

.

Define n(x, y) ≡ −(1 − x)(x + y) + (x + y − xy) log 1
x+y−xy where y??? ≤ y ≤ x ≤ 1

2 . Taking the first

order partial derivative with respect to y, we obtain ny(x, y) = −(1 − x)(2 − log(x + y − xy)−1). Since
y??? ≤ y ≤ x ≤ 1

2 , it follows that x+ y−xy ≥ x+ y−xy
∣∣
x=y=y???

= 0.4843, and log(x+ y−xy)−1 ≤ 0.7251.

This implies that ny(x, y) < 0 for any y ∈ [0.2819, x]. Therefore, n(x, y) is decreasing in y ∈ [y???, x]
and n(x, y) ≤ n(x, y???) = −(1 − x)(x + y???) + (x + (1 − x)y???) log(x + (1 − x)y???)−1. Define q(x) ≡
−(1−x)(x+y???)+(x+(1−x)y???) log(x+(1−x)y???)−1 where y??? ≤ x ≤ 1

2 . Taking the first order derivative,
we obtain qx(x) = −2((1− y???)−x) + (1− y???) log(x+ (1−x)y???)−1. Taking the second order derivative,
we obtain qxx(x) = 2 − (1 − y???)2/(x + (1 − x)y???) = 2 − 0.7181/(x + 0.3926) > 0 for any x ∈ [y???, 12 ].
Therefore, qx(x) is increasing in x ∈ [y???, 12 ] and qx(x) ≤ qx(12) = −0.1168 < 0 for any x ∈ [y???, 12 ]. It
follows that q(x) is decreasing in x ∈ [y???, 12 ] and that q(x) ≤ q(y???) = −0.0537 < 0. This implies that
n(x, y) < 0 for any y??? ≤ y ≤ x ≤ 1

2 , which further implies that fy(x, y) = n(x, y)/(x + y − xy) < 0 for
any y??? ≤ y ≤ x ≤ 1

2 . Since fx(x, y) < 0 for any 0 < y ≤ x < 1
2 , using the Implicit Function Theorem,

dx
dy = − fy(x,y)

fx(x,y)
< 0 for any y??? < y ≤ x < 1. As a result, for any αj > ¯̄αj ,

∂ ¯̄αi(αj)

∂αj
< 0.

We next compare the threshold ¯̄αi(αj) with the threshold ᾱi(αj), for any αj ∈ ( ¯̄αj , 1). To this purpose, we
first compare the principal’s expected payoff in the centralized contracting scheme with one public contract
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with that in the centralized contracting scheme with two private contracts. Taking the ratio of v′ and vC ,
we obtain

v′

vC
=

(1− b′)αi
αi

2−αi−αj αj

αj
2−αi−αj

(
φ′i
) αi

2−αi−αj
(
1− φ′i

) αj
2−αi−αj

(
b′
) αi+αj

2−αi−αj

(1− bC)αi
αi

2−αi−αj αj

αj
2−αi−αj

(
φCi
) αi

2−αi−αj
(
1− φCi

) αj
2−αi−αj

(
bC
) αi+αj

2−αi−αj

,

=

(
1− αi

2
αj
2

1

) 1−
αj
2

1−αi
2 −

αj
2

(
1− αi

2
αj
2

1− αi
2

) αj
2

1−αi
2 −

αj
2 ,

implying that (
v′

vC

)1−αi
2
−
αj
2

=
1− αi

2
αj
2(

1− αi
2

)αj
2

.

Define F (x, y) ≡ (1−xy)/(1−x)y where 0 ≤ y ≤ x < 1
2 . Taking the first order partial derivative with respect

to x, we obtain Fx(x, y) = xy(1 − y)/(1 − x)y+1 > 0 for any x ∈ [y, 12). Therefore, F (x, y) is increasing in
x ∈ [y, 12) and F (x, y) ≥ F (y, y) = (1+y)(1−y)1−y for any x ∈ [y, 12). DefineG(y) ≡ F (y, y) where 0 ≤ y < 1

2 .
Taking the first order derivative with respect to y, we obtain Gy(y) = −(1 − y)1−y (y + (1 + y) log(1− y)).
Define H(y) ≡ y + (1 + y) log(1− y) where 0 ≤ y < 1

2 . Taking the first order derivative, we obtain Hy(y) =

log(1− y)− 2y
1−y < 0 for any y ∈ [0, 12). Therefore, H(y) is decreasing in y ∈ [0, 12) and H(y) < H(0) = 0 for

any y ∈ (0, 12). Hence, Gy(y) > 0 for any y ∈ (0, 12), implying that G(y) is increasing in y ∈ [0, 12), and that
G(y) > G(0) = 1 for any y ∈ (0, 12). It follows that F (x, y) ≥ F (y, y) > G(0) = 1 for any 0 < y ≤ x < 1

2 .
As a result, v′ > vC . Consequently, the lowest value of αi that makes vD ≥ v′ need to be larger than the
lowest value that makes vD ≥ vC , that is ¯̄αi(αj) > ᾱi(αj), for any αj > ¯̄αj .
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Online Appendix

“Providing Incentives with Private Contracts”

by Andrea M. Buffa, Qing Liu and Lucy White

In this online appendix, we derive the optimal contracts in a centralized contracting scheme when both
contracts (Section B) or only one of the two contracts (Section C) are public. As for the case with private
contracts, we look for an equilibrium with strictly positive effort choices. Table I summarizes the optimal
contracts for the different contracting schemes considered and discussed in this paper.

B Centralized Contracting with Two Public Contracts

We consider a centralized contracting scheme where contracts are public. We refer to the optimal contracts
in this scheme as second-best, and we denote the corresponding compensation budget and allocation by
(b∗, φ∗).

Proposition B.1. When contracts are public, the optimal compensation budget and allocation with central-
ized contracting are respectively equal to

b∗ =
αi + αj

2
, (B.1)

φ∗i =
αi

αi + αj
. (B.2)

Proof. Agent i’s and agent j’s maximization problems in stage two are{
ei(b, φ) = arg max

ei
φb ei

αiej(b, φ)αj − e2i
2 ,

ej(b, φ) = arg max
ej

(1− φ)b ei(b, φ)αiej
αj − e2j

2 .

The first order conditions are {
φb αiei

αi−1ej(b, φ)αj − ei = 0,

(1− φ)b ei(b, φ)αiαjej
αj−1 − ej = 0,

and the second order conditions are{
φb αi(αi − 1)ei

αi−2ej(b, φ)αj − 1 < 0,

(1− φ)b ei(b, φ)αiαj(αj − 1)ej
αj−2 − 1 < 0,

since αi and αj ∈ (0, 1). The first order conditions imply that{
φb αiei(b, φ)αi−1ej(b, φ)αj = ei(b, φ),

(1− φ)b ei(b, φ)αiαjej(b, φ)αj−1 = ej(b, φ).

1



Solving the above system of equation in (ei, ej), we obtainei(b, φ) = αi

2−αj
2(2−αi−αj)αj

αj
2(2−αi−αj)φ

2−αj
2(2−αi−αj) (1− φ)

αj
2(2−αi−αj) b

1
2−αi−αj ,

ej(b, φ) = αi
αi

2(2−αi−αj)αj
2−αi

2(2−αi−αj)φ
αi

2(2−αi−αj) (1− φ)
2−αi

2(2−αi−αj) b
1

2−αi−αj .

In order to induce a strictly positive probability of success of the risky project, both agents need to exert
effort in equilibrium, which requires b > 0 and φ ∈ (0, 1).

The principal’s maximization problem in stage one becomes

(b∗, φ∗) = arg max
b, φ

(1− b) ei(b, φ)αiej(b, φ)αj ,

= arg max
b, φ

(1− b) αi
αi

2−αi−αj αj

αj
2−αi−αj φ

αi
2−αi−αj (1− φ)

αj
2−αi−αj b

αi+αj
2−αi−αj .

The first order conditions are
αi

αi
2−αi−αj αj

αj
2−αi−αj φ

αi
2−αi−αj (1− φ)

αj
2−αi−αj

(
− b

αi+αj
2−αi−αj + (1− b) αi+αj

2−αi−αj b
αi+αj

2−αi−αj
−1
)

= 0,

(1− b) αi
αi

2−αi−αj αj

αj
2−αi−αj b

αi+αj
2−αi−αj

(
αi

2−αi−αj φ
αi

2−αi−αj
−1

(1− φ)
αj

2−αi−αj − φ
αi

2−αi−αj αj
2−αi−αj (1− φ)

αj
2−αi−αj

−1
)

= 0.

b = 1 is not a solution to the first equation as φ ∈ (0, 1). Therefore, b, φ, αi, and αj are all bounded in
(0, 1). The first order conditions can be reduced to−b

αi+αj
2−αi−αj + (1− b) αi+αj

2−αi−αj b
αi+αj

2−αi−αj
−1

= 0,

αi
2−αi−αj φ

αi
2−αi−αj

−1
(1− φ)

αj
2−αi−αj − φ

αi
2−αi−αj αj

2−αi−αj (1− φ)
αj

2−αi−αj
−1

= 0.

Solving the above system of equation in (b, φ), we obtain

b∗ =
αi + αj

2
, φ∗ =

αi
αi + αj

.

The second order conditions are
αi

αi
2−αi−αj αj

αj
2−αi−αj φ

αi
2−αi−αj (1− φ)

αj
2−αi−αj αi+αj

2−αi−αj b
αi+αj

2−αi−αj
−2
(
− 2b+ (1− b)

(
αi+αj

2−αi−αj − 1
))

< 0,

(1− b) αi
αi

2−αi−αj αj

αj
2−αi−αj b

αi+αj
2−αi−αj φ

αi
2−αi−αj (1− φ)

αj
2−αi−αj

×
(

αi
2−αi−αj

(
αi

2−αi−αj − 1
)

(1− φ)2 − 2 αi
2−αi−αj φ

αj
2−αi−αj (1− φ) + φ2

αj
2−αi−αj

(
αj

2−αi−αj − 1
))

< 0,

since −2b + (1 − b)
( αi+αj
2−αi−αj − 1

)
= −1 for b = b∗, αi

2−αi−αj

(
αi

2−αi−αj − 1
)
(1 − φ)2 − 2 αi

2−αi−αj φ
αj

2−αi−αj (1 −
φ) + φ2

αj
2−αi−αj

( αj
2−αi−αj − 1

)
= − αiαj

(αi+αj)(2−αi−αj) < 0 for φ = φ∗, and αi and αj ∈ (0, 1). Hence, b∗ and φ∗

maximize the principal’s objective function.
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Since b∗, φ∗, αi, and αj are all bounded in (0, 1), e∗i and e∗j ∈ (0, 1). The equilibrium probability of
success of the risky project is equal to

π∗ = αi
αi

2−αi−αj αj

αj
2−αi−αj

(
φ∗
) αi

2−αi−αj
(
1− φ∗

) αj
2−αi−αj

(
b∗
) αi+αj

2−αi−αj ,

which is also ∈ (0, 1). As a consequence, the expected payoff for the principal, v∗ = (1 − b∗)π∗, is strictly
positive. The same holds for the expected payoff of the two agents,

u∗i =
(

1− αi
2

)
φ∗b∗π∗ > 0,

u∗j =
(

1− αj
2

)
(1− φ∗) b∗π∗ > 0.

C Centralized Contracting with One Public Contract

We consider a centralized contracting scheme where only one contract is public. In particular, we assume
that the contract offered to agent i is private, while the contract offered to agent j is public. Therefore,
agent i can observe agent j’s contract but not vice versa. We denote the compensation budget and allocation
characterizing the optimal contracts in this scheme by (b′, φ′).

Proposition C.1. When only the contract of agent j is public, the optimal compensation budget and allo-
cation with centralized contracting are respectively equal to

b′ =
2αi + 2αj − αiαj

4
, (C.1)

φ′i =
2αi − αiαj

2αi + 2αj − αiαj
. (C.2)

Proof. Since the contract observability in this scheme is the same as that characterizing the delegated
contracting scheme (one agent observes the contract of the other agent, but not vice versa), agent j’s and
agent i’s optimal effort levels are equal to the effort level of the Subagent in (A.10) and of the Agent in
(A.12), respectively:

ej((1− φ)b, êi) = αj
1

2−αj ê

αi
2−αj
i ((1− φ)b)

1
2−αj , (C.3)

ei(b, φ, êi) = αi
1

2−αi αj

αj
(2−αi)(2−αj) ê

αiαj
(2−αi)(2−αj)
i φ

1
2−αi (1− φ)

αj
(2−αi)(2−αj) b

2
(2−αi)(2−αj) . (C.4)

In order to induce positive effort from each agent, we consider (and later verify that) b > 0 and φ ∈ (0, 1).
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The principal’s maximization problem is

(b′, φ′) = arg max
b, φ

(1− b) ei(b, φ, êi)αiej((1− φ)b, êi)
αj ,

= arg max
b, φ

(1− b) αi
αi

2−αi αj

2αj
(2−αi)(2−αj) ê

2αiαj
(2−αi)(2−αj)
i φ

αi
2−αi (1− φ)

2αj
(2−αi)(2−αj) b

2αi+2αj−αiαj
(2−αi)(2−αj) .

The first order conditions are

αi
αi

2−αi αj

2αj
(2−αi)(2−αj) ê

2αiαj
(2−αi)(2−αj)
i φ

αi
2−αi (1− φ)

2αj
(2−αi)(2−αj)

×
(
−b

2αi+2αj−αiαj
(2−αi)(2−αj) + (1− b)2αi+2αj−αiαj

(2−αi)(2−αj) b
2αi+2αj−αiαj
(2−αi)(2−αj)

−1
)

= 0,

(1− b) αi
αi

2−αi αj

2αj
(2−αi)(2−αj) ê

2αiαj
(2−αi)(2−αj)
i b

2αi+2αj−αiαj
(2−αi)(2−αj)

×
(

αi
2−αiφ

αi
2−αi

−1
(1− φ)

2αj
(2−αi)(2−αj) − φ

αi
2−αi

2αj
(2−αi)(2−αj)(1− φ)

2αj
(2−αi)(2−αj)

−1
)

= 0.

b = 1 is not a solution to the first equation as φ ∈ (0, 1). Therefore, b, φ, αi, and αj are all bounded in
(0, 1). The first order conditions can be reduced to−b

2αi+2αj−αiαj
(2−αi)(2−αj) + (1− b)2αi+2αj−αiαj

(2−αi)(2−αj) b
2αi+2αj−αiαj
(2−αi)(2−αj)

−1
= 0,

αi
2−αiφ

αi
2−αi

−1
(1− φ)

2αj
(2−αi)(2−αj) − φ

αi
2−αi

2αj
(2−αi)(2−αj)(1− φ)

2αj
(2−αi)(2−αj)

−1
= 0.

Solving the above system of equation in (b, φ), we obtain

b′ =
2αi + 2αj − αiαj

4
, φ′ =

2αi − αiαj
2αi + 2αj − αiαj

.

The second order conditions are

αi
αi

2−αi αj

2αj
(2−αi)(2−αj) ê

2αiαj
(2−αi)(2−αj)
i φ

αi
2−αi (1− φ)

2αj
(2−αi)(2−αj) 2αi+2αj−αiαj

(2−αi)(2−αj) b
2αi+2αj−αiαj
(2−αi)(2−αj)

−2

×
(
−2b+ (1− b)

(
2αi+2αj−αiαj
(2−αi)(2−αj) − 1

))
< 0,

(1− b) αi
αi

2−αi αj

2αj
(2−αi)(2−αj) ê

2αiαj
(2−αi)(2−αj)
i b

2αi+2αj−αiαj
(2−αi)(2−αj) φ

αi
2−αi

−2
(1− φ)

2αj
(2−αi)(2−αj)

−2

×
(

αi
2−αi

(
αi

2−αi − 1
)

(1− φ)2 − 2 αi
2−αiφ

2αj
(2−αi)(2−αj)(1− φ) + φ2

2αj
(2−αi)(2−αj)

(
2αj

(2−αi)(2−αj) − 1
))

< 0,

since −2b+ (1− b)
(
2αi+2αj−αiαj
(2−αi)(2−αj) − 1

)
= −1 for b = b′ and αi

2−αi

(
αi

2−αi − 1
)

(1−φ)2− 2 αi
2−αiφ

2αj
(2−αi)(2−αj)(1−

φ) +φ2
2αj

(2−αi)(2−αj)

(
2αj

(2−αi)(2−αj) − 1
)

= − 2αiαj
(2−αi)(2αi+2αj−αiαj) < 0 for φ = φ′. Hence, b′ and φ′ maximize the

principal’s objective function.

Agent i’s equilibrium compensation is φ′b′ = αi(2− αj)/4 ∈ (0, 1), while agent j’s equilibrium compen-
sation is (1− φ′)b′ = αj

2 ∈ (0, 1). The equilibrium condition requires that

êi = e′i. (C.5)
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Substituting (C.5) into the first order condition of agent j’s effort (C.3) and the first order condition of the
agent i’s effort (C.4), we obtain e′i = αi

1
2−αi αj

αj
(2−αi)(2−αj) (ei

′)
αiαj

(2−αi)(2−αj) (φ′)
1

2−αi (1− φ′)
αj

(2−αi)(2−αj) (b′)
2

(2−αi)(2−αj) ,

e′j = αj
1

2−αj (ei
′)

αi
2−αj ((1− φ′)b′)

1
2−αj .

Solving the above system of equations in (e′i, e
′
j), we obtain

e′i = αi

2−αj
2(2−αi−αj)αj

αj
2(2−αi−αj)

(
φ′
) 2−αj

2(2−αi−αj)
(
1− φ′

) αj
2(2−αi−αj)

(
b′
) 1

2−αi−αj ,

e′j = αi
αi

2(2−αi−αj)αj
2−αi

2(2−αi−αj)
(
φ′
) αi

2(2−αi−αj)
(
1− φ′

) 2−αi
2(2−αi−αj)

(
b′
) 1

2−αi−αj .

Since b′, φ′, αi, and αj are all bounded in (0, 1), e′i and e′j ∈ (0, 1). The equilibrium probability of success
of the risky project is equal to

π′ = αi
αi

2−αi−αj αj

αj
2−αi−αj

(
φ′
) αi

2−αi−αj
(
1− φ′

) αj
2−αi−αj

(
b′
) αi+αj

2−αi−αj ,

which is also ∈ (0, 1). As a consequence, the expected payoff for the principal, v′ = (1 − b′)π′, is strictly
positive. The same holds for the expected payoff of the two agents,

u′i =
(

1− αi
2

)
φ′b′π′ > 0,

u′j =
(

1− αj
2

) (
1− φ′

)
b′π′ > 0.
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