
FTG Working Paper Series

Asset Dissemination through Dealer Markets

by

Jean-Edouard Colliard
Gabrielle Demange

Working Paper No. 00064-00

Finance Theory Group

www.financetheory.com

*FTG working papers are circulated for the purpose of stimulating discussions and generating 
comments. They have not been peer reviewed by the Finance Theory Group, its members, or its 

board. Any comments about these papers should be sent directly to the author(s).



Asset Dissemination through Dealer Markets

Jean-Edouard Colliard∗ and Gabrielle Demange†

September 17, 2020

Forthcoming in Management Science

Abstract

In over-the-counter markets for assets such as bonds or securitizations, large vol-

umes can be split into smaller pieces and gradually sold to several final investors with

the intermediation of multiple dealers. This paper proposes a model to study this

process, called “asset dissemination”. A dealer buys several units of an asset from

a customer, then sells some units to his customers and to a second dealer, who sells

to his customers and a third dealer, and so on. The extent of dissemination is mea-

sured by the number of dealers involved and the total customer demand served. We

show that asymmetric information on customer demand hinders both dimensions of

dissemination. We also study how the quantity to disseminate and the dealers’ fund-

ing costs impact dissemination and the prices and quantities in interdealer transactions.
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1 Introduction

Many important assets, for instance bonds, are traded on over-the-counter (OTC) markets

rather than on an exchange. A recent literature precisely documents the pattern of inter-

mediation on these markets. In particular, a significant fraction of trading volume is due

to interdealer transactions. Many such transactions belong to “intermediation chains”, in

which dealers pass a constant quantity to each other before it reaches a final investor. In

some other transactions, a large initial quantity is split into smaller pieces that are sold

to different ultimate buyers via several dealers, a phenomenon we call “asset dissemination

through dealer markets”.1

A growing literature has analyzed intermediation chains and their relation with trading

costs for customers, but asset dissemination has received less attention.2 We provide a

theoretical framework in which dissemination occurs because each dealer has convex holding

costs and may not face enough customer demand to absorb a large sale. We endogenize the

number of dealers disseminating an asset, the inventories they keep, and the purchases made

by their customers. We show that asymmetric information on the customer demand faced by

each dealer hinders dissemination. We then derive predictions about the joint distribution of

the number of dealers involved in disseminating an asset (which we call the “dissemination

length”), the transactions they conduct, and the volumes and prices of these transactions,

thus providing some theoretical guidance for empirical research on asset dissemination.

Our model starts with a customer who offers to sell a certain quantity of an asset (the

“supply”), which, if accepted, will be disseminated to several buyers (the “demand”) by a

sequence of dealers. The dissemination length is endogenous and depends on the supply

by the initial seller, the (stochastic) demand of other customers, and informational frictions

1The relative importance of both forms of intermediation varies across markets. For U.S. corporate bonds
Friewald and Nagler (2019) report that 43% of the trading volume they analyze takes place in sequences
involving at least two dealers selling to at least two clients. For registered securitizations Hollifield, Neklyudov,
and Spatt (2017) (Table 3) show that about 27% of sales by customers give rise to a sequence involving more
than one dealer, in which case on average 2.8 dealers disseminate the asset to 3.7 different clients. For
municipal bonds Li and Schürhoff (2019) find that intermediation chains account for 82% of the trades that
start with a customer selling to a dealer.

2Intermediation chains feature for instance in Glode and Opp (2016) and Hugonnier, Lester, and Weill
(2019). Viswanathan and Wang (2004) and Uslu (2019) are two papers that model dissemination. We review
these papers in detail at the end of this section.
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in interdealer trades. Dissemination length can correlate either positively or negatively with

other variables of interest such as transaction prices, depending on which type of shock drives

these variations. On the supply side, our model predicts that higher quantities to disseminate

lead to a higher dissemination length and larger trading volumes. The prices are not neces-

sarily lower, but the “intermediation revenues”, the discount offered by a dealer times the

quantity sold, are larger. On the demand side, we show that asymmetric information about

customer demand leads to both lower dissemination length and lower transaction prices.

More precisely, we consider a model in which a first dealer buys a certain quantity of an

asset from a client. This dealer can sell part or all of this quantity to his customers, who

are in limited number. In particular, selling to customers may not be enough to finance

the dealer’s purchase of the asset, in which case he can contact a second dealer, and make a

take-it-or-leave-it offer specifying a price and a number of units.3 If the second dealer accepts

the offer, she can in turn sell to her customers and/or contact another dealer. Transactions

continue until a dealer turns down the offer he receives, or does not make a new offer. At the

end of the process, dealers have disseminated part of the assets to their customers, and they

keep the rest as inventory. Importantly, all dealers can also finance a purchase by borrowing

cash but face a “funding spread”.

This game is a parsimonious way to model the trading and dissemination of a divisible

asset, assuming several frictions. First, trades can only occur between dealers with a preexist-

ing relationship, as is documented by the growing literature on OTC trading. Second, while

the asset’s value is commonly known, each dealer’s customer demand is private information.

Third, borrowing from external financiers is costly to dealers. This introduces a convexity

in dealers’ holding costs and gives each dealer an incentive to sell the units he bought to

someone else. Hence, the motive for interdealer trades is to reach the (unknown) customer

demand of other dealers to save on funding costs.4

3Thus, our model applies to markets in which interdealer transactions are mostly bilateral, which is still the
case in many markets. On the corporate bond market for instance, Bessembinder, Spatt, and Venkataraman
(2020) report that only 23% of trading volume in investment grade corporate bonds is facilitated electronically.
Our model in its current form also does not allow for pre-arranged trades. According to Harris (2015) (Tables
9 and 25), about 68% of trades in the retail segment of the corporate bond market are pre-arranged trades
in which the dealer does not take the risk of keeping the asset on inventory. This number falls to less than
8% for institutional-size trades.

4Neither risk-sharing nor information about the asset’s value play a role in the model.
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We build an equilibrium of this game in which a dealer’s offer depends only on the

difference between the amount he has to pay to the previous dealer and the amount he can

collect by selling assets to his customers. We call this quantity the dealer’s financing needs.

A dealer with higher financing needs is more eager to trade with another dealer to avoid

costly borrowing. As a result, he makes offers that are more “generous”, i.e., accepted by

dealers with a lower customer demand, which leads to the involvement of more dealers in the

chain of transactions. In order to increase the probability of acceptance, the dealer has to

offer higher rents to the next dealer, which is done by increasing intermediation revenues.5

This explains why the model generates a positive correlation between dissemination length

and intermediation revenues. Interestingly, because we have a multi-unit environment a

dealer can offer higher intermediation revenues through a combination of higher prices and

higher volumes, rather than lower prices.

If all dealers were perfectly informed about how much customer demand all the other

dealers face, each of them would make a take-it-or-leave-it offer leaving no surplus to the

next dealer. As a result all transactions would involve just as many dealers as is necessary

to entirely disseminate the asset to customers, and all interdealer prices would be equal to

the asset’s fundamental value. Instead, when each dealer makes an offer under asymmetric

information, he needs to leave some informational rent to his counterparty, so that the asset

trades at prices below the fundamental value. Moreover, in order to reduce this rent, each

dealer chooses an offer with a positive probability of rejection, so that the dissemination

process can stop inefficiently early. This explains why asymmetric information leads to lower

asset prices, lower dissemination length, and lower customer purchases.

Our framework allows us to derive a number of testable implications on the impact of the

funding spread. Higher funding spreads make it more valuable for dealers to find a buyer

for the asset rather than finance it via borrowing. As a result, a higher funding spread leads

to offers with lower prices and larger volumes. Moreover, the impact is not the same for

all dealers. The initial dealer keeps a smaller inventory of the asset and obtains a smaller

expected profit, while subsequent dealers keep larger inventories and obtain larger expected

5In our model, asset dissemination is thus determined by a classical trade-off between rent extraction and
efficiency. The problem is compounded at each level in the sequence of transactions, which is reminiscent of
the literature on double marginalization (going back to Spengler (1950)).

3

Electronic copy available at: https://ssrn.com/abstract=3244321



profits. To our knowledge, these are new testable predictions.

In addition to delivering new insights regarding the joint distribution of dissemination

length, prices, and volumes, our model contributes to the literature on OTC markets by

introducing and solving a tractable framework that combines: (i) intermediation by an a

priori unbounded number of dealers; (ii) a non-stationary environment, in which an asset

is gradually disseminated over time; (iii) a divisible asset and convex holding costs, so that

traded volumes are non-trivial; (iv) offers made under asymmetric information about dealers’

endowments (but symmetric information about the asset).

To solve the model we exploit the fact that, even though the environment is not stationary,

two dealers at different positions in a sequence of transactions who have the same endowments

and receive the same offers actually face the exact same strategic situation. We thus focus

on equilibria in which their behavior is also the same. We then build a particularly tractable

equilibrium in which a dealer’s offer is characterized by a “target”, the dealer type indifferent

between accepting and rejecting the offer, and his equilibrium payoff is characterized by a

function called the “collected demand”. Both the target and the collected demand depend

only on the dealer’s financing needs. The target of a given dealer has to be optimal given

the collected demand of the dealer who receives the offer. We deduce that the collected

demand has to satisfy a particular functional equation, the solution to which characterizes

the equilibrium behavior of all players in the model.

In Section 6 we illustrate the usefulness and flexibility of our framework by considering

several extensions. We first show variants of the model that account for more complicated

forms of intermediation that have been documented in the literature, such as one dealer

selling to multiple dealers, or dealers who do not have customers themselves. We also analyze

a case in which dealers face inventory costs instead of funding costs. Finally, we consider

an extension in which dealers obtain financing by using their assets as collateral in repo

transactions. In this setting the dissemination length can be interpreted as a measure of

collateral rehypothecation, the extent of which has attracted the attention of policymakers.

Related literature. The focus of our paper is on the dissemination of an asset when

trading is decentralized and constrained by pre-existing relationships and asymmetric infor-

mation. Two approaches have been followed to model decentralized trading in a tractable
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way, namely networks and random matching with search. In either case, a model aiming at

studying dissemination by dealers needs two ingredients: (i) an endogenous number of in-

termediaries between an initial seller and final buyers; (ii) a divisible asset and a non-trivial

quantity choice by each dealer. To our knowledge this combination has been studied by only

few papers in the literature, none of which studies dissemination.

Network models assume that transactions are only possible between pairs of linked agents,

so that there is some stability in who trades with whom, as is observed empirically. Most

papers in this literature consider the trading of a single indivisible object, so that dissemi-

nation is not a relevant question. Intermediation then means that a trader buys and resells

the object, and the main question is whether the object is ultimately owned by the buyer

with the highest valuation (see, e.g., Condorelli, Galeotti, and Renou (2016), Manea (2018),

and Gofman (2014)). An important exception is Malamud and Rostek (2017), who develop a

general model of decentralized trading with divisible assets but mainly study the implications

on liquidity, not on dissemination.

The closest paper using preexisting relationships is Viswanathan and Wang (2004), Sec-

tions IV and VI, which analyzes a sequential inter-dealer trading mechanism. The asset is

divisible and risky and dealers are risk-averse. The asset is then disseminated among dealers

to share the risk. The successive prices reflect risk premia, which decrease along the trans-

actions as the volume decreases along the sequence. Crucially, the number of traders who

can hold the asset is predetermined, so that dissemination is not endogenous. Rather, the

number of dealers involved is fixed, and the model studies the implications of risk-sharing

among dealers for asset prices.

Another very related paper is Glode and Opp (2016), which also studies a sequential

screening game between intermediaries. They show that efficiency is improved in a market

with adverse selection by introducing sufficiently many moderately informed intermediaries

between sellers and buyers.6 The offers made in equilibrium can be rejected with a positive

probability, so that who holds the asset is endogenous. However, the utility of each agent is

linear in the quantity held, so that it is suboptimal to split the initial quantity.7

6Glode, Opp, and Zhang (2019) study the informational conditions under which such chains implement
efficient trades.

7Back, Liu, and Teguia (2020) study an interesting environment in which the action of a dealer also has
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Models of random matching with search, initiated by Rubinstein and Wolinsky (1987), are

the foundation of recent models of OTC markets starting with Duffie, Garleanu, and Pedersen

(2005). Traders meet randomly in pairs, bargain and either reach an agreement, or fail to do

so and search for another partner. Several papers in this literature build models that generate

intermediation chains with an indivisible asset, thus without dissemination. In particular,

Hugonnier, Lester, and Weill (2019), Shen, Wei, and Yan (2020), and Sambalaibat (2018)

derive results on the correlation between chain length and mark-ups charged to customers. We

abstract from some important features of dealer markets studied in these papers,8 notably

the core-periphery structure analyzed in Sambalaibat (2018), in order to have a tractable

model with a divisible asset.

Existing search models with non-linear holding costs do not focus on asset dissemination.

Uslu (2019) introduces a convex holding cost in a generalized version of Duffie, Garleanu,

and Pedersen (2007),9 giving traders an incentive to share the asset in a non-trivial way. The

paper focuses on the relation between asset prices and centrality rather than on dissemina-

tion length. Cujean and Praz (2015) develop a search model with asymmetric information

on inventories and focus on the impact of making information more transparent. Afonso and

Lagos (2015) assume frictionless Nash bargaining so that the traders who meet choose quanti-

ties that equalize their inventories, there is thus no strategic component in the determination

of quantities.

A different approach is followed by Lyons (1997), who develops a model in which dealers

post quotes on a centralized platform. The model generates “hot-potato trading”, which is

quite different from dissemination as each dealers pass inventory imbalances to each other

“independently of whether they offset the imbalance of the receiving dealer”.

a signaling component. The asset is indivisible and the dealer only intermediates between two customers.
8As well as Wright and Wong (2014), Neklyudov (2019), and Farboodi, Jarosch, and Shimer (2020).
9See also Lagos and Rocheteau (2009) and Atkeson, Eisfeldt, and Weill (2015).
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2 The model

2.1 The game

Environment. We consider an asset for which there is no centralized market and trading

takes place bilaterally between two dealers or between a dealer and a customer. The asset

pays a sure return ρ > 0 per unit. There is an exogenous sequence {Dn}n≥1 of risk-neutral

dealers, whose customers have a certain demand for the asset: Dn’s customers are willing to

buy up to vCn units at price ρ. In case the dealer supplies the maximum quantity vCn , she

receives ωn = ρvCn . We call ωn the customer demand of Dn.

The customer demands of all dealers are identically and independently distributed accord-

ing to a distribution G over R+: G(ω) = Pr(ω̃ ≤ ω), with E(ω̃) finite.10 It is also convenient

to define H by H(ω) = Pr(ω̃ ≥ ω).

The game is a succession of take-it-or-leave-it offers along the sequence of dealers. The

game starts with dealer D1, who has received an exogenous take-it-or-leave-it offer (p0, v0)

(e.g., from a client selling the asset), which gives her the opportunity to buy v0 units of

the asset at a unit price p0 ≤ ρ. If D1 accepts (p0, v0), she can make a take-it-or-leave-it

offer (p1, v1) to D2, who can make an offer (p2, v2) to D3. At each further step, a dealer Dn

who accepts an offer from Dn−1 can then make a new offer (pn, vn) to Dn+1. Each dealer

is available to trade with a probability q ∈ (0, 1), and the customer demand ωn is privately

known by Dn. Thus, when making an offer, Dn does not know whether Dn+1 is available,

nor ωn+1. Importantly, Dn has to decide whether to accept an offer before making a new

offer to Dn+1.

Trading takes place until a dealer is inactive, turns down the received offer, or makes no

new offer. When this happens, interdealer transactions are settled. The sellers transfer the

units of the asset to their customers and, if applicable, to other dealers, in exchange for cash.

As we will detail below, the cash received may not be enough to pay for the units purchased.

We assume a dealer can always borrow cash at a net interest rate r > 0 from external

financiers. A surplus of cash does not yield any interest so the value r can be interpreted as

a funding spread paid by the dealer.

10We will introduce additional regularity assumptions for some results.
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The game is entirely parameterized by the initial offer (p0, v0), the value ρ of the asset, the

funding spread r, the probability q, and the distribution G. These parameters are common

knowledge to all players.

Payoffs. Let us describe the problem faced by a dealer Dn, who has received an offer

(pn−1, vn−1) and whose customer demand is ωn. We assume in this description that prices,

here pn−1 and pn, are not higher than ρ.11 If Dn is inactive, or if Dn rejects the offer, then

Dn’s payoff is null. If Dn accepts the offer, she receives vn−1 units and has to pay pn−1vn−1.

Dn can sell up to min(vCn , vn−1) units to her customers and receive ρmin(vCn , vn−1) units of

cash in exchange. If this amount is smaller than pn−1vn−1, Dn needs to find additional cash.

Since pn−1 ≤ ρ, this occurs only if vn−1 > vCn , in which case Dn needs to find the following

amount of cash yn, called Dn’s financing needs :

yn = max(pn−1vn−1 − ωn, 0). (1)

In order to cover her financing needs, Dn can sell some units to dealer Dn+1, by making a take-

it-or-leave-it offer (pn, vn). She cannot sell more units than she bought, so that vn ≤ vn−1.

We call feasible such an offer. Choosing vn = 0 is interpreted as making no offer.

If Dn+1 accepts the offer (pn, vn), Dn transfers vn units to Dn+1 against a payment of pnvn

in cash, sells min(vCn , vn−1 − vn) units to her customers and receives ρmin(vCn , vn−1 − vn) in

cash in exchange. If pnvn does not cover the financing needs yn, then Dn needs to borrow

yn−pnvn at rate r, otherwise she has a positive cash position earning a null return. If instead

Dn+1 is inactive or rejects Dn’s offer, then Dn needs to borrow yn at rate r. To summarize,

Dn’s payoffs are:

0 if Dn rejects (pn−1, vn−1) (2)

(ρ− pn−1)vn−1 − ryn if Dn accepts and Dn+1 rejects (pn, vn) (3)

(ρ− pn−1)vn−1 − (ρ− pn)vn − rmax(yn − pnvn, 0) if Dn accepts and Dn+1 accepts (pn, vn). (4)

11This is true in the equilibria we consider. The Online Appendix discusses bubble equilibria with prices
above ρ.

8

Electronic copy available at: https://ssrn.com/abstract=3244321



Dn

Financing needs yn
Offer (pn, vn)

Dn+1 inactive
Dn borrows yn

Dn+1

Type ωn+1

Financing needs yn+1
yn+1 = max(pnvn − ωn+1, 0)

Offer (pn+1, vn+1)

Dn borrows yn

q

1 − q

Accepts Rejects

Figure 1 – Trading process.

The expression in (3) is called the stand-alone profit, which is obtained if Dn accepts the

received offer and her offer is rejected, or she does not make an offer (vn = 0). It is made of

the intermediation revenues (ρ − pn−1)vn−1 minus the financing costs. The game continues

only if Dn+1 accepts Dn’s offer. In that case, Dn+1 faces the same problem as described for

Dn, and the payoffs are the same as above, with indices raised by one unit. The process thus

stops as soon as a dealer is inactive, turns down the received offer, or makes no new offer.

Fig. 1 summarizes the trading process.

Benchmark: complete information. As a benchmark, consider a variant of the

model with complete information. Each dealer Dn is informed about which other deal-

ers are available for trade, and about all customer demands. In particular, the number

M of successive dealers who are active starting from D1 is common knowledge (that is,

DM+1 is the first inactive dealer), as well as the sequence {ω1, ω2...ωM}. The model then

boils down to a succession of take-it-or-leave-it offers under complete information, which

can be solved by backward induction. In the Online Appendix, we show that the following

properties obtain in equilibrium: (i) the optimal profit for D1 accepting an offer (p0, v0) is

π∗ = (ρ−p0)v0−rp0v0 +rmin
(
p0v0,

∑M
j=1 ωj

)
; (ii) D1 accepts the offer if π∗ is non-negative,
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then all offers are made at price ρ; (iii) all dealers but D1 make zero profit and keep null

inventories. D1 thus extracts the entire surplus of the economy. It is as if D1 had access to

the customers of all further active dealers.

2.2 Rank-free equilibria

We consider perfect Bayesian Nash equilibria. A dealer’s expected profit, hence optimal

behavior, depends on the probability with which she expects her offer to be accepted. Let

us denote Φn+1(p, v) the probability that Dn+1, if active, accepts an offer (p, v) made by Dn.

Using (3) and (4), when accepting (pn−1, vn−1) and making a new feasible offer (pn, vn), Dn

expects the profit

πn(pn−1, vn−1, ωn, pn, vn) = (ρ− pn−1)vn−1 − ryn
+ qΦn+1(pn, vn)[rmin(pnvn, yn)− (ρ− pn)vn].

(5)

The profit is the sum of the stand-alone profit and the expected transaction payoff, which is

equal to Dn’s extra payoff if the offer is accepted, times the acceptance probability.

Dn’s decision whether to accept an offer, and which new offer to make, could a priori

depend on the offers received by dealers prior toDn and on n itself. However, such information

is not payoff-relevant since the asset value is commonly known and the customer demands are

independent. We thus focus on rank-free equilibria, in which a dealer’s strategy only depends

on the received offer (p, v) and his type ω but not on n. A dealer’s strategy is characterized by

an acceptance function A that takes values 1 (acceptance) and 0 (rejection), and a function

(P, V ) characterizing the dealer’s new offer in case of acceptance. An equilibrium is then

described by the following conditions:

Definition 1. The strategy (A,P, V ) defines a rank-free equilibrium if, for any n ≥ 1, any

(pn−1, vn−1, ωn) ∈ R+3, the following properties hold:

(i) The expected acceptance probability is correct: For any offer (pn, vn) ∈ R+2, with

vn ≤ vn−1, Φn+1(pn, vn) = Pr(A(pn, vn, ωn+1) = 1).

(ii) Dn’s decisions are optimal, i.e., Dn’s offer in case of acceptance (pn, vn) = (P, V )(pn−1, vn−1, ωn)

maximizes Dn’s profit (5) given Φn+1 and A(pn−1, vn−1, ωn) = 1 if and only if this profit is

10
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non-negative.

Note that, although all dealers’ equilibrium actions are characterized by the same func-

tions independently of n, as the game unfolds all dealers receive different offers and have

different customer demands, so that they behave differently. Moreover, while the equilibrium

strategies are rank free, (ii) allows for any deviation, even conditional on the rank.

The sequential nature of the process and the a priori unbounded number of involved

dealers allow for a multiplicity of equilibria, depending on the information on which players

can condition their strategies. In opaque OTC markets, a dealer typically cannot observe

previous offers nor observe at which level of the chain he is, so that strategies are necessarily

rank-free. With more information, there are other equilibria, as studied in the Online Ap-

pendix. In particular, we show that rank-free equilibria are not only simple but also very

natural as a proposer achieves the maximum payoff over all equilibria.

3 Solving the game

We first show some important properties that are satisfied in equilibrium.12 We then intro-

duce the “collected demand” function, which we use to build all rank-free equilibria.

3.1 Two properties

We first show that a given dealer Dn accepts an offer (p, v) if and only if her customer demand

ωn is larger than a threshold W (p, v). This follows from the fact that Dn can make the same

offers independently of her customer demand, and hence dealers with a larger customer

demand are necessarily better off. We then derive some properties of W (p, v).

Property 1. Consider Dn who receives offer (p, v). There exists a unique threshold W (p, v)

such that Dn accepts (p, v) if and only if ωn ≥ W (p, v). We thus have Φn(p, v) = H(W (p, v)).

If W (p, v) > 0 then Dn’s profit is null when ωn = W (p, v).

The threshold W (p, v) satisfies the following properties: (i) W (p, v) = 0 for p ≤ ρ
1+r

; (ii)

0 < W (p, v) < pv for ρ
1+r

< p < ρ; (iii) W (p, v) = ρv for p = ρ; (iv) W (p, v) =∞ for p > ρ.

12These properties are satisfied in any equilibrium in which all offers are made at prices below ρ, not only
in rank-free equilibria.
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Property 1 implies that equilibrium prices are necessarily between ρ
1+r

and ρ. These offers

are accepted by at least some types of dealers who will have positive (case (ii)) or null (case

(iii)) financing needs. Other offers are necessarily suboptimal:

- Case (i): when the price p is sufficiently low then even dealers with a null customer

demand accept the offer, Dn−1 could offer a lower price and keep the same acceptance prob-

ability.

- Case (iv): Offers with a price above ρ are never accepted, and are thus dominated by

offers below ρ. Intuitively, if Dn makes an offer at a price above ρ and it is accepted, then

Dn+1 has to sell at an even higher price to make a profit. In a rank-free equilibrium, Dn can

make the same offer as Dn+1 and obtain the same acceptance probability, yielding a higher

profit than his initial offer. A contradiction.

The next property pertains to the intermediation revenues (ρ − pn)vn. Observe that,

along an equilibrium path, if Dn makes an offer to Dn+1, it must be the case that Dn makes

a positive profit when this offer is accepted. Using (4) and the fact that pn and pn−1 are

lower than ρ, we deduce that intermediation revenues decrease along a sequence of dealers:

Property 2. Along an equilibrium path, for any n ≥ 1, if Dn receives an offer (pn−1, vn−1)

and makes a new offer (pn, vn), then Dn’s intermediation revenues are lower than Dn−1’s:

(ρ− pn)vn ≤ (ρ− pn−1)vn−1.

3.2 The collected demand

As the game unfolds, the dealers’ customer demands absorb part of the initial volume v0

bought by D1, and each dealer sells a lower quantity than the previous one. However, unless

there is a strictly positive lower bound on each ω, the maximal number of dealers is not

known, because the dealers’ demands are variable and unknown. An analysis by induction

starting with the last dealer is thus not possible. To find rank-free equilibria, we guess that

the optimal offer of a dealer with financing needs y brings an expected payoff equal to rΩ(y),

and we call Ω the collected demand function. We show that Ω satisfies a recursive equation

with a unique solution, and that it is indeed a function of y only. We then use Ω to solve for

the equilibrium offers and acceptance decisions.
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The heuristic for the function Ω is the following one. The expected transaction payoff is

a function of vn−1 − vCn and of the financing needs, y = pn−1vn−1 − ρvCn . Consider an upper

bound to this payoff that only depends on y. Let us denote this bound by rB(y). As the

transaction payoff is non-decreasing in y for a given offer (from the second line of (5)) the

function B can be assumed to be non-decreasing. Now consider dealer D who makes an offer

(p, v). The expected transaction payoff is bounded by:

qH(W (p, v))[rpv − (ρ− p)v]. (6)

Consider a receiver with customer demand ω = W (p, v). By definition, his profit is non-

negative, which, using (5), gives:

(ρ− p)v − r(pv − ω) + rB(pv − ω) ≥ 0. (7)

Combining (6) and (7), D’s expected transaction payoff is lower than qH(ω)r[ω+B(pv−ω)].

Assume that D’s offer (p, v) covers at most his financing needs, i.e., pv ≤ y (this will be the

case in the equilibrium we build below). Since ω ≤ pv (Property 1) and B is non-decreasing,

an upper-bound to D’s payoff is obtained:

rB(y) ≤ r sup
ω≤y

qH(ω)[ω +B(y − ω)]. (8)

This leads us to consider the functions B for which the above inequality is binding for any

y. Specifically, consider Ω that satisfies the following functional equation:

∀y > 0,Ω(y) = sup
ω≤y

qH(ω)(ω + Ω(y − ω)), and Ω(0) = 0. (9)

This equation has the following interpretation: A dealer D with financing needs y chooses a

target value ω, and extracts a fixed amount from all types of receivers with customer demand

at least equal to ω. This amount corresponds to the transaction payoff divided by r. It is

given by the sum of the targeted dealer’s customer demand ω plus Ω(y − ω), which is the

expected value of the customer demand that the targeted dealer, whose needs are equal to

13

Electronic copy available at: https://ssrn.com/abstract=3244321



y−ω, will extract from the next dealer. The functional equation (9) ensures thatD will indeed

collect Ω(y) if she chooses an optimal value for the target. Due to this interpretation, we call

Ω the collected demand. It is the counterpart under asymmetric information of
∑N

j=2 ωj in

the complete information benchmark.

We prove the following result on Ω:

Theorem 1. There is a unique function Ω that is bounded, continuous, and satisfies (9).

The supremum defined in (9) is reached, and we define the targeted values as:

T (y) = argmax
ω≤y

qH(ω)(ω + Ω(y − ω)). (10)

The values in T (y) have an upper bound independent of y. Moreover, the function Ω is

lipshitz with constant q and non-decreasing. The collected demand Ω converges to Ω∞ as

y → +∞ to the unique value Ω∞ such that

Ω∞ = max
ω

qH(ω)(ω + Ω∞). (11)

Ω cannot be solved in closed-form for a general H. As shown in the Appendix, Ω is

obtained as the limit when n→ +∞ of the following sequence of functions:

Ω1(y) = max
ω≤y

qH(y)y (12)

∀n > 1,Ωn(y) = max
ω≤y

qH(ω)[ω + Ωn−1(y − ω)]. (13)

Intuitively, Ω1(y) is the customer demand that a dealer with financing needs y can collect

from only one other dealer. Ω2(y) is the demand that can be collected from a dealer who

can also collect from another dealer, etc. The collected demand Ω is the limit of this process,

corresponding to the case in which the total number of dealers in a chain is a priori unbounded.

The function Ω is well-behaved as it is lipschitz and increasing. However, it is not neces-

sarily concave and the targeted policy T may be multi-valued and not increasing, even with

non pathological distributions, as we will show in the next section.13

13 This is in contrast with stochastic growth or stochastic consumer problems in which the value function
is also defined by a recursive formulation (see, e.g., Stokey and Lucas (1989)). In these problems, the current
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Finally, note that the assumption q < 1 is essential to guarantee the uniqueness of the

function Ω. When q = 1, Ω(y) = y is a solution for any G, but there are possibly others. For

example, the sequence Ωn converges to a function strictly less than y if g(0) > 0.

3.3 A rank-free equilibrium

We now use Ω to construct a rank-free equilibrium in which a dealer achieves an expected

transaction payoff exactly equal to the upper bound rΩ(y). As T may be multi-valued, we

define a selection of T as any function T such that T (y) ∈ T (y) for any y ≥ 0.

Theorem 2. Choose a selection T of T . The following strategies form a rank-free equilib-

rium. Consider any dealer D receiving an offer (p, v), with customer demand ω and financing

needs y = max(pv − ω, 0). Denote π∗(p, v, y) = (ρ− p)v − ry + rΩ(y).

If π∗(p, v, y) < 0, then D rejects the offer: A(p, v, ω) = 0. This case surely occurs for

p > ρ.

If π∗(p, v, y) ≥ 0, then D accepts the offer, A(p, v, ω) = 1. For y = 0, D makes no further

offer and D’s profit is π∗(p, v, 0) = (ρ − p)v. For y > 0, D makes a new offer (P (y), V (y))

characterized by

P (y)V (y) = y and (ρ− P (y))V (y)− ry + r(T (y) + Ω(y − T (y))) = 0. (14)

This offer satisfies P (y) ≤ ρ and 0 ≤ V (y) ≤ v − ω/ρ. D’s expected transaction payoff from

the offer is equal to rΩ(y) and D’s profit to π∗(p, v, y).

Theorem 2 describes an equilibrium in which D receiving an offer (p, v) with financing

needs y expects a transaction payoff equal to rΩ(y). Hence the profit is π∗(p, v, y) and offer

(p, v) is accepted only if the profit is non negative, which is the case when the price p is less

than ρ and y is low enough. If y is null, we assume to simplify that D makes no further

offer.14 If y is positive, D makes a new offer characterized by two equations (14): (i) the offer

value is related to the discounted expectation of the future value. Due to the linearity of the expectation
operator, the analysis of the stochastic case is close to that of the deterministic case; in particular, the value
function is concave and the policy is increasing. These properties are lost for our function, because the policy
corresponds to a threshold that cuts the distribution.

14Relaxing this assumption only introduces equilibria in which dealers with null financing needs make
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exactly covers D’s financing needs; as a result the financing needs of D’s target are equal to

y−T (y), a quantity that we denote Z(y); (ii) the target’s profit is null: The offer she receives

is adjusted such that the intermediation revenues, (ρ−P (y))V (y), are equal to her expected

cost, r(Z(y)− Ω(Z(y)), made of the cost without transaction minus the presumed expected

transaction payoff. As a result, it is weakly optimal for her to accept (P (y), V (y)) so that

T (y) is indeed the threshold associated to the offer (P (y), V (y)). The recursive equation (9)

satisfied by Ω then ensures that D’s behavior is optimal and that D achieves a transaction

payoff equal to rΩ(y). Finally, the inequalities 0 ≤ V (y) ≤ v − ω/ρ imply that if the offer is

accepted, D has enough units to serve the amount offered to the next dealer and his customer

demand. Hence, although our game only requires V (y) ≤ v, the customers are surely fully

served in this equilibrium when possible.

The trade-offs on the choice of the target are easy to describe when the objective of

the program (9) is differentiable at the target. Assume that the distribution G admits a

density and Ω is differentiable at y − T (y). The target ω = T (y) must satisfy the first order

conditions:

− g(ω)

H(ω)
+

1− Ω′(y − ω)

ω + Ω(y − ω)
≥ 0, with an equality if ω < y. (15)

The marginal impact of ω is decomposed into two effects: a decrease in the probability of

acceptance and an increase in D’s transaction benefit in case of acceptance, as the target has

more customer demand, i.e., 1− Ω′(y − ω) ≥ 0.

Properties of offers in rank-free equilibria. From (14), the equilibrium offer (P (y), V (y))

of a dealer with financing needs y is given by:

P (y) =
ρ

1 + rZ(y)−Ω(Z(y))
y

and V (y) =
y + r(Z(y)− Ω(Z(y)))

ρ
, (16)

where Z(y) = y−T (y) are the financing needs of the target. We analyze how these offers, the

offering dealer’s profit, and the receiving dealer’s inventory depend on the financing needs y

and the funding spread r. These properties will be useful to discuss the empirical implications

of the model in Section 5.

unnecessary offers that are only accepted by other dealers who have zero financing needs, etc., forming
artificially long sequences that do not change any player’s payoff.
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Proposition 1. 1. Consider a dealer offering (P (y), V (y)). The volume is increasing in

y and ρ and decreasing in r. The price is increasing in ρ and decreasing in r, but not

necessarily monotonous in y. In the limit for high financing needs:

lim
y→+∞

P (y) =
ρ

1 + r
, V (y) ∼

+∞

(1 + r)y

ρ
. (17)

The profit π∗(p, v, y) is decreasing in y and r, and increasing in ρ.

2. Consider the receiver of offer (P (y), V (y)) with customer demand ω ≥ T (y). Her profit

is decreasing in her financing needs z = max(y − ω, 0) and given by

π∗(P (y), V (y), z) = r[Z(y)− Ω(Z(y))− (z − Ω(z))]. (18)

Her inventory is decreasing in z and given by

vI = V (y)− ω

ρ
− V (z) if her offer is accepted and vI = V (y)− ω

ρ
otherwise. (19)

The results on the proposer follow straightforwardly from the expressions (14) and the

fact that z − Ω(z) is non-decreasing in z. The intuition for the effect of r is that a higher r

makes the receiver lose more on each unit she buys if her own offer is not accepted. Hence,

she requires a lower price to accept an offer. Conversely, the proposer loses more if his offer

is not accepted and is hence ready to concede larger intermediation revenues. Hence, the

proposer optimally chooses to sell more units at a lower price. The limit values follow from

the fact that Z and Ω are bounded so that Z(y)−Ω(Z(y))
y

tends to 1.

Consider now the receiver’s profit (18). From the second equation in (14), we know

that the intermediation revenues, (ρ− P (y))V (y), are exactly equal to the target’s expected

cost, r(Z(y)−Ω(Z(y)). Then, each unit of customer demand brings an additional profit, as

long as ω < y (i.e., z > 0). Due to asymmetric information, customer demand provides an

informational rent for those dealers who receive an offer and have more than the targeted level.

This rent is equal to the difference in expected costs with the target, which are proportional

to r. As for the receiver’s inventory, the receiver buys V (y) units, sells min(V (y), ω
ρ
) units to

her customers and V (z) units to the next dealer if z is positive. This gives (19).
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A surprising finding in Proposition 1 is that the price is not necessarily monotonous in

y. To understand why, it is useful to relate the intermediation revenues (ρ−P (y))V (y) with

the financing needs Z(y) of the target. Since the intermediation revenues are exactly equal

to the target’s expected cost r(Z(y) − Ω(Z(y)), they vary with y as Z(y). Since V (y) is

increasing in y, if in addition Z is decreasing then the price necessarily increases. However,

Z is likely to be increasing. In particular, this is true under a standard assumption on G:15

Lemma 1. Assume that G satisfies the following condition:

G admits a continuous density g, with an increasing hazard rate g/(1−G). (A1)

Then there exists y
1
> 0 such that the financing needs of a targeted dealer, Z(y) = y− T (y),

are null for y < y
1
. For y > y

1
, Z is increasing in y and the target has a positive lower

bound.

From the discussion above, we immediately deduce the following result.

Corollary 1. Under (A1), the intermediation revenues (ρ− P (y))V (y) increase in y.

Thus, under (A1), we obtain the intuitive result that a dealer with higher financing needs y

chooses a target with higher financing needs Z(y). As a result, the target has higher financing

costs, and must be compensated for these costs by higher intermediation revenues. To offer

higher intermediation revenues, a dealer can offer a lower price, a higher volume, or both.

With a divisible asset, the direction in which each variable is adjusted is not straightforward.

To better understand how the price and volume are affected by the financing needs, it is

useful to consider two examples.

Example: Degenerate distribution. Consider the case in which all dealers face a sure

demand ω from their customers16 (the distribution G is degenerate). In that case, the target

15Standard distributions (uniform, beta, or exponential) satisfy (A1). The assumption is standard in
auction theory.

16This special case is related to Viswanathan and Wang (2004), with an important difference: In their
paper, the total number of dealers is known, and the game can be solved by backward induction. In our
model, when there is no uncertainty the total number of dealers is endogenous and is a function of D1’s
financing needs. When there is uncertainty, the total number of dealers becomes stochastic.
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is always ω and the function Ω satisfies the following equation:

Ω(y) =

q[ω + Ω(y − ω)] for y > ω

qy for y ≤ ω.

(20)

We can explicitly solve for Ω, which is piece-wise linear and concave:

Ω(y) = q[1 + q + q2 + ...+ qn−1]ω + qn+1(y − nω) for nω < y ≤ (n+ 1)ω. (21)

Using (16), we see that P (y) varies with y like y
y−ω−Ω(y−ω)

, which is decreasing in y.17 There

is no asymmetric information in this example. However, the price is not constant because

the target faces higher expected financing costs when y is higher.

Example: Binary and Gamma distributions. When the distribution is not degen-

erate, the price can be increasing at points where Z(y) is increasing (Proposition 1). To

illustrate this point, Fig. 2 shows plots of T , Ω, and P (y) with two different distributions,

which we use for illustration throughout the paper.18

Both distributions have the same mean but give rise to different targets T . In particular,

in the binary case there is a value of ȳ such that both values of ω̃ are in the target T (y).

As y crosses the threshold ȳ, the target makes a jump upwards and the price increases

discontinuously. With the Gamma distribution instead prices are monotonously decreasing

in y, despite the target being non-monotonous (Z is monotonously increasing in this example).

In both cases, in the limit the price converges to a minimum when y becomes very large,

and is equal to ρ when financing needs are sufficiently small. Hence, the overall shape of P

is decreasing, but it can increase on a finite number of intervals (or at a finite number of

discontinuity points).

17The derivative of the ratio has the sign of Ω′(y − ω)y − ω + Ω(y − ω), which is negative: Because Ω is
concave, Ω(0)− Ω(y − ω) ≤ −Ω′(y − ω)(y − ω). Using Ω(0) = 0 and Ω′(y) ≤ 1 gives the result.

18Unless explicitly mentioned, the parameters used in all figures are equal to ρ = 100, r = 0.05, q = 0.9.
The distribution G is either “Gamma”, a Gamma distribution with parameters k = 4.65 and θ = 1, 000, or
“Binary”, a binary distribution with Pr(ω = 2, 385) = 0.05 and Pr(ω = 4, 770) = 0.95.
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Figure 2 – Equilibrium target T (y) (top left), collected demand Ω(y) (top right), and
offered price P (y) (bottom left), for two distributions G.

4 Asset Dissemination

This section derives some results on asset dissemination in our model. We distinguish two

notions of dissemination: the number of dealers involved in selling the asset (“dissemination

length”) and the distribution of inventories across dealers and customers.

Let us first illustrate these notions with an example, using the same parameters as in

Fig. 2. We start with an offer (p0, v0), with p0 = ρ
1+r

= 95.24 so that D1 surely accepts it

and v0 = 105. The dissemination process then depends on which dealers are active and on

the demand of their customers. Consider for example three active dealers and (ω1, ω2, ω3) =

(2384, 4769, 4769). The sequence of offers and their acceptance or rejection are determined

by repeatedly applying Theorem 2 to the sequence of dealers’ financing needs. Fig. 3 shows

the outcome: three dealers are involved in disseminating the asset, and the initial volume

105 is endogenously distributed across the first two dealers and the customers of all three.
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D1

vI1 = 4.62

D2

vI2 = 0.38

D3

vI3 = 0

(p1, v1) = (99.58, 90) (p2, v2) = (100, 40)

D1’s customers

buy vC1 = 10

D2’s customers

buy vC2 = 50

D3’s customers

buy 40 < vC3

Figure 3 – Dissemination with three dealers. The graph shows the offer (pn, vn) made by
each active dealer Dn, the inventory vIn he keeps, and the volume sold to his customers.

4.1 Dissemination length

Let us formally define dissemination length. Consider dealer D1 who accepts an offer and has

financing needs y > 0, so that he also makes a new offer (customer demand being independent

across dealers, any dealer with the same financing needs y can be relabeled as D1). If D1’s

offer is accepted, we denote M the last active dealer and σ the sequence (ω2, ..., ωM), which

we call “dealer shocks”. There exists N ≤ M such that the last dealer to accept an offer

is the N -th (either he does not make an offer himself, or his offer is rejected). We define

dissemination length as N and denote it NR(y, σ). In the special case in which D2 is inactive

we have σ = ∅ and we define NR(y, σ) = 1.

Dissemination length is a random variable. We analyze two statistics: (i) expected

length, E(NR(y, .)), is the expectation of dissemination length; (ii) maximum length, equal to

maxσNR(y, σ), is the maximum value of dissemination length across all dealer shocks.

Maximum length can be obtained by looking at dealer shocks such that each dealer after

D1 is active and has the exact customer demand targeted by the previous dealer. We call

such a sequence of dealers the targeted sequence. By construction, each dealer in the sequence

makes an offer, except if her financing needs are null. Formally, the financing needs of D2

(D1’s target) are Z(y) = y − T (y) and D2’s target is T (Z(y)). Recursively, as long as the

financing needs of the (k− 1) first dealers are positive, the financing needs of the k-th dealer

are Zk−1(y). If Zk−1(y) is positive, Dk makes an offer, which targets T (Zk−1(y)). Under (A1),

targets have a positive lower bound (Lemma 1). As Zk(y) is a decreasing sequence, there

exists a smallest integer n such that Zn−1(y) = 0. By definition, the n-th dealer has zero
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financing needs and hence makes no offer. Thus, the dissemination length of the targeted

sequence is equal to n. We call n the targeted length and denote it NT (y). The targeted

length increases with y since Z increases.

Realized and targeted sequences differ for two reasons. First, some offers are not accepted,

either because the receiver is inactive or because she lacks customer demand. Second, a

receiver accepting an offer has a larger customer demand than the target, and hence lower

financing needs. An implication is that the targeted length is equal to the maximum length.

Proposition 2. Under (A1), the maximum length is equal to the targeted length NT (y). It

is finite and non-decreasing in y.

Fig. 4 plots the targeted length NT (y), both for a Gamma distribution that satisfies (A1),

and for a discrete distribution that does not. In the former case, the length is monotonous in

y, as expected, whereas in the latter case it is not. As we see on Fig. 2, this is because T (y)

can increase very sharply. In particular, when y reaches 4770 it is optimal to have T (y) = y,

that is, to make an offer at price ρ, which gives a targeted length of 1.
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Figure 4 – Targeted length NT (y), for two distributions G.

We can derive further analytical results on the expected length and the maximum length

by considering the asymptotic case y → +∞.19

Lemma 2. Under (A1) the target T (y) converges to ω∞ as y → +∞.

19The proof uses a weaker assumption than (A1) that also admits discrete distributions.
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Since the target has an upper bound, when the financing needs of a dealer become in-

finitely large, the financing needs of his target are also infinitely large, as well as the financing

needs of the following target, etc. Hence, (9) reduces to (11) and the limit value ω∞ of the

target solves a simple fixed point problem. Moreover, at each step the game continues with

probability qH(ω∞), and stops otherwise. Hence, the expected length converges to `ω∞ , with:

`ω =
1

1− qH(ω)
. (22)

4.2 Distribution of inventories

We now consider our second notion of dissemination and define how many units of the

asset dealers keep on inventory and how much their customers buy at each step of the

process. Consider an offer (p0, v0) accepted by D1 with demand ω1 and the dealer shocks

σ = (ω2..., ωN). All dealers except possibly DN serve their customers in full. Since the

customers of Dn demand vCn = ωn

ρ
, dealers’ inventories write as:

vI1 = v0 − vC1 − V (y1),

vIn = V (yn−1)− vCn − V (yn), n ∈ [2, N − 1]

vIN = max(V (yN−1)− vCN , 0)

where V is given by (16). Summing these equations we have:

N−1∑
n=1

vCn + min(vCN , V (yN−1))︸ ︷︷ ︸
Customer purchases

+
N∑
n=1

vIn︸ ︷︷ ︸
Dealer inventories

= v0. (23)

For a given dealer D1 who accepts offer (p0, v0) and has financing needs y, we define the

customer purchases as CR(p0v0, ω1, σ) =
∑N−1

n=1 v
C
n +min(vCN , V (yN−1)). Equation (23) means

that dealer inventories are simply the initial volume minus the customer purchases.
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4.3 Effect of asymmetric information

We now study the effect of asymmetric information by comparing dissemination length in the

baseline game and in the complete information benchmark. Consider D1 who has accepted

offer (p0, v0), has financing needs y, and take σ as given. As we show in the Online Appendix

A, in the complete information benchmark the dealers who buy the asset are all the active

dealers necessary to finance p0v0 if p0v0 <
∑M

j=1 ωj, or all the M active dealers otherwise. This

defines the dissemination length in the complete information benchmark, denoted NF (y, σ).

In the baseline game, if the dealer of rank NF (y, σ) is reached then either he is the last

active dealer or he has null financing needs. In either case the game stops. Hence, we

have NR(y, σ) ≤ NF (y, σ), with a strict inequality when σ is such that an active dealer

rejects an offer that would have been accepted under complete information. Similarly, we

define CF (p0v0, ω1, σ) the customer purchases under complete information and obtain that

CR(p0v0, ω1, σ) ≤ CF (p0v0, ω1, σ). Thus, starting with a given dealer, asymmetric information

unambiguously reduces the extent of dissemination.

Proposition 3. For a given D1 accepting offer (p0, v0) and for any ω1 and σ, asymmetric

information reduces both the dissemination length and the customer purchases: NR(y, σ) ≤
NF (y, σ) and CR(p0v0, ω1, σ) ≤ CF (p0v0, ω1, σ).

In order to quantify the difference between NF (y, σ) and NR(y, σ), one can compute their

expected values recursively. In the baseline game, starting with D1 with financing needs y,

there is a probability qH(y) that the next dealer accepts D’s offer and has zero financing

needs, hence finishing the process. With probability q[H(T (y)) − H(y)], the next dealer

accepts D’s offer and we can compute the expected length from then onwards, conditional

on the financing needs y − ω of this dealer. We obtain the following recursive expression:

E(NR(y, .)) = 1 + qH(y) + q

∫ y

T (y)

E(NR(y − ω, .))dG(ω). (24)
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Similarly, NF (y, σ) satisfies the same formula, replacing T (y) with 0:20

E(NF (y, .)) = 1 + qH(y) + q

∫ y

0

E(NF (y − ω, .))dG(ω). (25)

The difference between E(NF (y, .)) and E(NR(y, .)) is thus driven by the level of the target

T (y), and its iterations along the possible sequences of dealers.

Finally, we can offer some closed-form quantification of the impact of asymmetric infor-

mation by studying a degenerate distribution benchmark. For a given distribution G with

mean ω̄, we consider the degenerate distribution Ĝ in which all dealers have the certain de-

mand ω̄. We denote E(N̂R(y, .)) and N̂T (y) the expected length and targeted length under

distribution Ĝ, respectively.

Proposition 4. Under (A1) we have the following limits:

lim
y→+∞

E(NR(y, .)) = `ω∞ lim
y→+∞

E(N̂R(y, .)) = `0 = 1
1−q (26)

NT (y) ∼
+∞

y

ω∞
N̂T (y) ∼

+∞
y
ω̄

(27)

(26) shows that uncertainty about customer demand leads to lower dissemination length

in expectation, at least for large enough financing needs. The reason is the same as in

Proposition 3: uncertainty introduces an incentive to make offers that are rejected, in which

case dissemination is interrupted. (27) instead implies that the impact of uncertainty on the

targeted length and hence on maximum length is ambiguous, and depends on whether the

asymptotic targeted type ω∞ is larger than the average type ω̄. Our simulations show that

both are possible: with the Gamma distribution we have ω∞ ≤ ω̄, whereas with the discrete

distribution we have the opposite.

5 Implications

In this section we derive several implications on dissemination, inventories, and the terms of

interdealer transactions. We then discuss how they relate to the empirical literature.

20(25) is close to what is known in renewal theory as a “renewal equation”. In contrast, (24) is more
complicated because one of the bounds of the integral is endogenous.
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5.1 Comparative statics

The funding spread. We derive some comparative statics on dissemination and dealers’

profits with respect to the funding spread r. We start with D1 with customer demand ω1

who accepts an offer (p0, v0) at a given spread r. Consider a decrease in r. Since D1’s profit is

decreasing in the spread (Proposition 1), D1 still accepts the offer when the spread is lowered.

Theorem 2 shows that T does not depend on r. Hence, the set of dealers who accept D1’s

offer is unchanged and consists in all types ω2 ≥ T (y). We can then repeat the argument:

D2’s target is not affected by r, etc. We obtain that for any dealer shocks σ = (ω2, ω2..., ωM)

up to the last active dealer M , the realized sequence is unaffected by r. The same holds for

the targeted sequence starting with D1, as it only depends on Z(y) = y − T (y), which does

not depend on r. We deduce the following implication:

Implication 1. Consider D1 who accepts an offer (p0, v0) for a given r. A decrease in r leaves

unchanged the realized and targeted sequences starting with D1, the acceptance probability of

the offers made, and the financing needs of all dealers following D1.

Thus a decrease in r does not affect dissemination length as long as D1 accepts the offer

(p0, v0). It has however an impact on the distribution of inventories. Consider first the total

dealer inventories and customer purchases. A decrease in r impacts them through the volume

V (yN−1) bought by the last dealer, as can be seen from (23). Since the financing needs are

unaffected by r, this volume decreases when r decreases (equation (16)). Hence, either the

total dealer inventories are higher and customer purchases lower, or both are unchanged.

Second, consider the distribution of inventories among dealers. A decrease in r leads D1 to

offer a lower volume, hence to increase his inventory. Any other dealer Dn receives fewer

units from Dn−1 and sells fewer units to Dn+1. Under (A1), it follows from Lemma 1 that

the combined effect is a decrease of Dn’s inventory. These findings are summarized in the

following implication.

Implication 2. Consider D1 who accepts an offer (p0, v0) for a given r. For any dealer

shocks σ, a decrease in r leads to higher prices and lower volumes offered by each Dn, higher

or unchanged total dealer inventories, and lower or unchanged customers purchases. D1’s

inventory increases and, under (A1), any subsequent dealer Dn’s inventory decreases.
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We conclude by considering how the funding spread affects dealers’ profits. From Proposi-

tion 1, we know that the funding spread provides a rent to intermediaries. When r decreases,

their rent is decreased, leaving larger profits to the first dealer. Specifically, (18) yields the

following implication.

Implication 3. Consider D1 who accepts an offer (p0, v0) for a given r. For any dealer

shocks σ, a decrease in the funding spread r leads to an increase in D1’s profit and a decrease

in the subsequent dealers’ profits.

The asset’s value. Consider assets with different values of ρ but identical distributions

G for ω. Since ω = ρvC , this means that the amount of cash that the customers are ready

to invest in these assets are identical. Then T , Z, and Ω are unaffected by ρ since they only

depend on G (Theorem 2). This implies that D1’s profit is increasing in ρ for a given (p0, v0)

(Proposition 1). The same reasoning as in Implication 1 shows the following result.

Implication 4. Consider D1 who accepts an offer (p0, v0) for a given ρ. Consider assets

with larger values for ρ and identical distributions G. The realized and targeted sequences

starting with D1, the acceptance probability of the offers made, and the financing needs of all

dealers following D1 are identical.

Using this result, the fact that Z and B only depend on G, and expression (16), we

straightforwardly obtain the following implication.

Implication 5. Consider assets with different values of ρ and identical distributions G. The

rebate offered by a dealer with financing needs y is equal to:

ρ− P (y)

ρ
= 1− 1

1 + rZ(y)−Ω(Z(y))
y

. (28)

This measure is independent of ρ and only depends on the financing needs of the proposer

and the expected costs of the target.

The quantity ρ−P (y)
ρ

measures the relative price concession made by a dealer D with

financing needs y. As it is independent of ρ, it can be compared across assets. Recall that

D’s offer necessarily satisfies P (y)V (y) = y. Expression (28) clarifies the determinants of
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D’s bargaining power. When the expected costs of the target r[Z(y) − Ω(Z(y))] are low

relative to D’s financing needs, D is able to make an offer at a high price and a low volume.

Conversely, when the target’s costs are high relative to y then D has to make an offer with

a low price and a high volume for the target to accept.

Other parameters. Unlike ρ and r, the other parameters of the model, q and G, do

not leave the functions T and Ω unchanged. As a result, without more assumptions the

comparative statics on these parameters are ambiguous. For instance, an increase in the

probability q that an intermediary is active makes it more likely that a dealer will find a

counterparty. For a given T this increases dissemination length. However, a higher q also

decreases the target’s expected costs, which can incentivize a dealer to choose a higher target

T , which decreases dissemination length.

5.2 Correlations between dissemination and terms of trade

In the model asset dissemination and the prices and quantities offered are jointly determined.

This section discusses the empirical correlations that this joint determination implies. To see

the mapping between our model and the data observed by empiricists, it is useful to consider

an example, using the same parameters as in Fig. 2 and the Gamma distribution. Starting

with offer (95.24, 105.0), we simulate the model 1,000,000 times and record the average price

and volume offered at each rank in a realized sequence, as well as the number of sequences of

each length (the last line). Table 1 reports the results for the sequences with length between

1 and 5 (there are also 100,020 sequences of length 0 and 14 sequences of length 6).

As Table 1 illustrates, empiricists who would observe the data generated by our model

could analyse (i) how offers evolve along a sequence, by comparing different lines for a given

column; and (ii) how dealers’ offers differ across sequences of different lengths, by comparing

different columns for a given row.

Analysis along a sequence. We first consider how prices and volumes evolve along a

realized sequence of dealers D1, D2, etc. We know from Property 2 that, along the sequence,

the financing needs yn, the volume vn, and the intermediation revenues (ρ− pn)vn decrease.

The prices pn may not be monotonic, although they tend to increase with n and become

closer to the fundamental value. This non-monotonicity occurs because dealers with larger
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Offer / Size 1 2 3 4 5
(p0, v0) (95.24,105.0) (95.24,105.0) (95.24,105.0) (95.24,105.0) (95.24,105.0)
(p1, v1) End (99.42,44.9) (99.14,71.7) (98.96,72.9) (98.84,81.0)
(p2, v2) End (99.81,21.0) (99.47,41.8) (99.23,55.7)
(p3, v3) End (99.94,11.5) (99.66,30.7)
(p4, v4) End (99.98,6.90)
(p5, v5) End

# Sequences 131,362 340,695 356,243 69,095 2,571

Table 1 – Simulation results - Average offers along sequences of different lengths.

The table reads as follows: the cell (99.14, 71.7), second row and third column, is based on the offers made
by D1 in the 356,243 realized sequences of length 3. Averaging over these sequences, the second dealer made
an offer with an average volume of 71.7, for an average price of 99.14.

financing needs may adjust their offer either by increasing the volume or decreasing the price

(see the discussion after Implication 5) and would not occur with an indivisible asset.

Analysis across sequences. Our model clarifies that chains of different lengths are associ-

ated with different prices and volumes. Starting with the same initial offer, different chains

obtain due to variations in the dealer shocks. As reported in Table 1, longer chains tend to

be associated with lower prices: dissemination length is longer when dealers have less cus-

tomer demand, which is also associated with higher financing needs, higher intermediation

revenues, and lower prices.

Effect of the initial offer. The previous discussion considers variations in chains due to

dealer shocks, keeping the same initial offer (p0, v0). Conversely, variations in the initial offer

will have an impact both on dissemination length and prices. Analytically, we can deduce

from Corollary 1 and Proposition 2 the following result.

Implication 6. Under (A1), for a given price p0, a lower initial volume v0 leads both to

lower intermediation revenues and lower targeted lengths.

For a given price p0, a lower initial quantity v0 to disseminate leads to lower financing

needs everywhere along any chain. It then takes fewer dealers to disseminate the asset. Since

their financing needs are lower they optimally choose tougher offers with lower intermediation

revenues. If this is done by increasing the price then we obtain a negative relation between

the dissemination length and the price of the asset, as illustrated on Fig. 5.
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Figure 5 – Relation between expected length and prices. The figure plots the expected
length (blue solid line, left axis) and the average price weighted by volume (red dotted line, right
axis) over 100,000 simulations, for different parameterizations. The baseline parameters are as in
Fig. 2 with the Gamma distribution and we vary the initial volume v0.

5.3 Links with the empirical literature

We now briefly review how our implications relate to facts documented in the empirical

literature, or are yet to be tested.

Proposition 1 predicts a negative relationship between the funding conditions of dealers

(parameterized by r) and prices. This has been documented for instance in Garleanu and

Pedersen (2011) and in Bao, O’Hara, and Zhou (2018). In addition, Implications 2 and 3

suggest to test the impact of r on interdealer trading volumes, dealers’ trading profits, and

inventories, controlling for whether a given dealer starts a sequence of interdealer trades.21

Our results on correlations between terms of trade and dissemination are connected to

several recent empirical papers. A difficulty is that, in order to identify transactions belonging

to the same sequence, these papers make different assumptions and thus identify different

types of “intermediation chains”, that have similarities with the dissemination process in our

model but also some important differences.

On the market for securitizations, Hollifield, Neklyudov, and Spatt (2017) identify chains

in which each dealer buys assets from an initial customer or from another dealer, and sells to

his customers and at most one other dealer. These chains closely resemble those obtained in

our model. However, in order to make sure that the transactions they observe belong to the

21A dealer profit on a given trade may be difficult to compute without information on inventory costs.
Inventories can be inferred from transaction data, as in, e.g., Choi, Shachar, and Shin (2019).
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same chain, they focus on series of transactions that leave each dealer with a null inventory.

On the U.S. corporate bond market, Friewald and Nagler (2019) identify more general chains

in which a dealer can sell to several customers and several other dealers at the same time.

They report that two thirds of the chains are incomplete, meaning that dealers do keep some

inventory. On the municipal bond market, Li and Schürhoff (2019) apply a more restrictive

criterion and focus on “no-split chains” in which a dealer sells the exact quantity he bought

to either a dealer or to another customer, but does not split between the two.

While Section 6 below considers variants of the model that can fit these different types

of chains, one has to keep these differences in mind when applying our results. Regarding

results “across sequences”, combining Proposition 3 with the fact that the price is equal to

the asset value ρ under complete information means that asymmetric information generates

both lower prices and lower dissemination length in our model, and can thus explain a

positive correlation between prices and length. Conversely, Implication 6 is more in line with

a negative correlation. Friewald and Nagler (2019) give evidence for a positive correlation

on the U.S. corporate bond market (aggregating prices in dealer-to-dealer and customer-to-

dealer transactions). Table 9 in Hollifield, Neklyudov, and Spatt (2017) focuses on interdealer

transactions and reports that interdealer spreads decrease in chain length, which goes in

the same direction. Table XII in Li and Schürhoff (2019) contains an analysis “along a

sequence” and shows that interdealer prices do not move monotonically with the rank of a

dealer. Property 2 suggests that when the volume can be split, as in Hollifield, Neklyudov,

and Spatt (2017), an analysis along a sequence should use intermediation revenues. The

property predicts that those should decrease monotonically along the sequence.

6 Extensions

In this section we show how our approach can be extended to study other forms of intermedia-

tion on OTC markets.22 We first show how to account for the different types of intermediation

chains that have been documented in the literature, and then consider a variant of the model

that can be applied to the repo market to study rehypothecation.

22For brevity we do not include the proofs for these different extensions. They are all simple variants on
the proof of Theorem 2.
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6.1 The structure of intermediation chains

We consider three variants of our model that can fit some special types of chains documented

in the literature: (i) dealers keeping a null inventory (as in Hollifield, Neklyudov, and Spatt

(2017)); (ii) dealers selling the entire volume to other dealers (as in Li and Schürhoff (2019));

(iii) dealers selling to several other dealers (as in Friewald and Nagler (2019)). We also show

how to endogenize the first customer-to-dealer transaction.

Inventory costs. In our model dealers have no inventory costs. As a result, they sell just

enough of the asset to cover their financing needs, and prefer keeping the rest in inventory

to selling it at a discount. We now show that if instead dealers face inventory costs but no

financing costs they optimally keep a null inventory.

Assume r is null, but a dealer Dn ending with an inventory vIn has to pay a cost cvIn, with

c > 0. The setup is otherwise identical to our initial model. Let Dn accept offer (pn−1, vn−1),

and denote yIn = max(vn−1 − vCn , 0) the “offloading needs” of Dn, that is, his inventory if he

doesn’t trade with Dn+1. If he makes an offer (pn, vn) with vn ≤ yIn, Dn’s payoff is:

(ρ− pn−1)vn−1 − cyIn if Dn+1 rejects (pn, vn) (29)

(ρ− pn−1)vn−1 − (ρ− pn)vn − c(vIn − vn) if Dn+1 accepts (pn, vn). (30)

We then obtain the same model as in the previous sections by replacing the value of the

demand ωn by the number of units vCn , the financing needs yn by the offloading needs yIn

and the financing costs ryn by the inventory costs cyIn. Transposing Theorem 2, a rank free

equilibrium is characterized by the collected demand ΩI defined by the following equation23:

∀yI > 0 : ΩI(yI) = sup
vC≤yI

qH(vC)(vC + ΩI(yI − vC)), and ΩI(0) = 0 (31)

and the associated targets T I . When a dealer makes an offer targeting T (yI), the offer

(P I(vI), V I(vI)) is characterized by

V I(yI) = yI and (ρ− P I(vI))V I(yI)− cyI + c(T I(vI) + ΩI(yI − T (yI))) = 0. (32)

23HI corresponds here to the distribution of vC instead of ρvC .
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In particular, the first condition says that it is optimal for the dealer to sell all his units of the

asset. This corresponds in the previous model to the property that the value of an optimal

offer is equal to the proposer’s financing needs. This implies that, on the equilibrium path,

all dealers keep a null inventory, except possibly at the last step if the last offer is rejected.

This variant of the model explains the existence of chains in which dealers keep no inven-

tory. The reason for this property is that, conditionally on a transaction occurring between

Dn and Dn+1, keeping an extra unit of inventory costs c to Dn, while taking an extra unit

costs only c[1 − Ω′(yIn+1)] to Dn+1, due to the option for Dn+1 to pass on the inventory to

another dealer. Hence, for a given target T I(yIn), it is always optimal for Dn to pass on as

much inventory as possible, and compensate his target by offering a lower price.

Pure intermediaries and no-split chains. In our model, a dealer who buys a given

quantity never sells the exact same quantity to another dealer. To generate no-split chains, we

consider the following extension: in addition to regular dealers, there are also (inter-dealer)

intermediaries, who do not have customers themselves but can contact one additional dealer.

We assume that a dealer Dn first makes an offer to a regular dealer. If this offer is rejected,

with probability qb the dealer finds an intermediary and makes a new offer. The intermediary

is then in the same situation and can make an offer to another dealer, or in case of rejection

to another intermediary. Importantly, there is no asymmetric information when making an

offer to an intermediary, so that the offer extracts the intermediary’s entire collected demand.

The collected demand function ΩB extends (9) as follows:

∀y > 0 : ΩB(y) = sup
ω≤y

qH(ω)(ω + ΩB(y − ω)) + (1− qH(ω))qbΩ
B(y), and ΩB(0) = 0. (33)

The first part of the equation is the same as in (9), and the second part reflects the additional

option of contacting an intermediary. Importantly, in this variant of the model, if q is low

and qb is large, we are likely to observe series of transactions with several intermediaries in a

row. Since they all face the same financing needs, they all make the same offers, generating

intermediation chains in which each dealer sells exactly the volume he bought from the

previous dealer.

This extension delivers a prediction regarding the markets in which we expect to observe

33

Electronic copy available at: https://ssrn.com/abstract=3244321



no-split chains. Indeed, such chains should be particularly prevalent when the distribution of

customer demand is such that dealers have either zero (or very little) customer demand for

the asset, or a demand large enough to absorb the entire initial volume. In such a situation,

the entire volume is intermediated by a series of intermediaries with zero customer demand

until a dealer with a large customer demand for the asset is located.

Offers to multiple dealers. We consider a variant of the model in which each dealer

can make an offer successively to two other dealers, and is allowed to sell to both.24 To

analyze this game, we define the collected demand Ω1 of a dealer with only one offer left, and

the collected demand Ω2 of a dealer with two offers left. One can show that these functions

are defined as:

∀y > 0 : Ω2(y) = sup
ω,m, ω≤m≤y

Ω1(y) + qH(ω)[ω + Ω2(m− ω) + Ω1(y −m)− Ω1(y)](34)

Ω1(y) = sup
ω≤y

qH(ω)[ω + Ω2(y − ω)] (35)

Ω1(0) = Ω2(0) = 0 (36)

The definition of Ω1 is similar to (9), but takes into account that the receiver of the offer

will be able to make two offers, so that her expected transaction payoff is given by Ω2. The

interpretation of Ω2 is that a dealer with financing needs y makes a first offer with pv = m < y

that does not exhaust his financing needs. Then, if the first offer is accepted, he behaves as

a dealer with only one offer left and financing needs y −m, whereas if the offer is rejected

his financing needs will still be y.

Instead of solving for a single function Ω as in the original model, in this extension one

needs to solve for a system of two functional equations. The solution then gives all the

equilibrium offers. The approach can be extended further to any number d of dealers that

can be contacted, in which case one needs to solve for a system of d functional equations.25

Customer-to-dealer transactions. Our model focuses on interdealer transactions and

24The analysis would be more complicated in a common value environment, see Zhu (2012) for such a
model of bargaining with multiple dealers.

25A simpler approach to analyze offers to multiple dealers is to assume that each dealer can contact d other
dealers but only simultaneously, and cannot split the volume between them. Then the analysis of our baseline
model goes through. The only difference is that the probability that an offer with target T is accepted is not
qH(ω̄) but 1− [(1− q) + q(1−H(ω̄))]d.
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does not include mark-ups charged to customers. However, we can introduce an endogenous

customer-to-dealer transaction by endogenizing the initial offer (p0, v0). Let D0 be a customer

with a large endowment in the asset and a need for cash, so that getting y0 is worth to him

U(y0), with U(0) = 0, U ′ ≥ 0, and U ′′ ≤ 0. D0 can either borrow y0 at rate r, or make

an offer (p0, v0) to dealer D1. D0 is exactly in the same position as any other Dn when

making an offer, so that his expected payoff is U(y0)−ry0 +rΩ(y0). If Ω is differentiable, the

optimal y0 satisfies U ′(y0) = r[1 − Ω′(y0)]. When U ′ is large enough the optimal y0 is such

that P (y0) < ρ and ρ−P (y0)
ρ

can be interpreted as the mark-up charged by dealer D1 when

buying from the client. In the model this markup is purely a compensation for the expected

financing costs of D1.

6.2 Repo transactions and rehypothecation

In this section we use our framework to build a model of intermediation in the repurchase

agreement (“repo”) market. This is a natural alternative source of financing for dealers, who

may choose to use the assets they bought as collateral to borrow cash from other dealers,

instead of directly selling the assets to them. The setup is as described in Section 2.1, only

with different endowments for dealers:

- Dealer D1 accepted an offer (p0, v0) and can sell any number of assets to customers at

price ρ. However, she cannot sell them until the “next day”, whereas the amount p0v0 has to

be paid immediately. Thus, D1 needs some bridge financing for one day. This can be done

either by borrowing at rate r, or by receiving cash from D2.

- Each dealer Dn for n ≥ 2 has a cash endowment ω̃n, which follows a distribution G, and

does not have customers herself. She can also borrow at rate r, or receive cash from Dn+1.

The dealers other thanD1 have no customers and hence no demand for the asset. However,

they can lend their cash endowment and keep the asset as collateral. We assume that each

dealer Dn can make a take-it-or-leave-it offer (mn, in, cn) to Dn+1. If the offer is accepted,

then: (i) Dn+1 immediately receives cn units as collateral and gives mn units of cash to Dn;

(ii) Dn reimburses mn(1 + in) to Dn+1 on the next day, and receives her collateral back. We

assume that, for reasons outside of the model, repo contracts need to satisfy the following
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collateral constraint:

mn ≤ (1− h)ρcn, (37)

which means that the maximal amount a dealer can borrow is lower than the fair value of the

assets used as collateral, by a factor 1 − h. The exogenous parameter h corresponds to the

haircut applied on the collateral. In addition, a dealer cannot pledge more units of collateral

than he has received from the previous dealer.

Consider a dealer Dn, with n ≥ 2, who receives an offer (mn−1, in−1, cn−1) satisfying (37).

Denote yn = max(mn−1 − ωn, 0). If he makes a new offer, Dn’s payoff is:

mn−1in−1 − ryn if Dn+1 rejects (mn, in, cn) (38)

mn−1in−1 −mnin − rmax(mn−1 − ωn −mn, 0). if Dn+1 accepts (mn, in, cn). (39)

These expressions are close to (3) and (4): the interest payment mn−1in−1 plays the same role

as intermediation revenues, and the amount mn−1 plays the same role as the value pn−1vn−1.

Accordingly, we can build a rank-free equilibrium exactly in the same way, using the same

function Ω defined by (9), where H corresponds here to the distribution of dealers’ cash

endowments. We obtain that Dn’s equilibrium payoff and strategies are:

π∗(mn−1, in−1, cn−1, yn) = mn−1in−1 − ryn + rΩ(yn) (40)

mn = yn (41)

in =
r[yn − T (yn)− Ω(yn − T (yn))]

yn
(42)

In particular, Dn can always make a new offer respecting the collateral constraint, so that

this constraint plays no role in Dn’s strategy for n ≥ 2.

Consider now D1. There are two cases. If p0v0 ≤ (1−h)ρv0, then D1 can choose m1 = p0v0

while respecting the collateral constraint and c1 ≤ v0. D1’s offer is then given by (42). If

instead p0v0 > (1− h)ρv0, the collateral constraint binds. D1 then borrows m1 = (1− h)ρv0

on the repo market by pledging the entire v0 as collateral, giving an expected benefit equal

to rΩ((1−h)ρv0), and borrows the remaining hρv0 on the unsecured market at a cost rhρv0.

The decision whether to accept (p0, v0) follows from computing the expected profit.
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All our results on chain lengths in our benchmark model (Section 4) hold in this model.

This is particularly interesting for this application as the number of dealers involved in a

chain corresponds to the number of times the same asset serves as collateral for multiple

dealers, a phenomenon known as rehypothecation.26 In particular, the model predicts that

the extent of rehypothecation is positively related to the financing needs of the first dealer

(Proposition 2), and is lower under asymmetric information about dealers’ endowments than

under symmetric information (Proposition 4).

Moreover, this model delivers some insight on the impact of the haircut h. As long

as p0 ≤ (1 − h)ρ, the collateral constraint is slack and has no impact on the equilibrium.

However, if the haircut increases enough to violate (37) then the collateral constraint binds.

Higher haircuts then lead to lower borrowing and lower total interests paid.

Finally, like in the original model, we can reverse the trades by considering a dealer D1

who sold the asset short and can buy it from new customers at a later date. The dealers Dn

are endowed with the asset. D1 can then borrow the units from D2 by making a reverse repo

offer, who can make an offer to D3, and so on. The offers are determined by a value function,

whose argument is not the financing needs but the quantity of assets a dealer needs to find.

7 Conclusion

Our paper proposes a framework to model the joint determination of prices and volumes in

interdealer transactions and the structure of intermediation among dealers. We show that

shocks to the customer demand for an asset, to the supply, and to intermediation frictions

change both the number of dealers involved in transactions and the prices and quantities

they trade, generating different correlations between prices and the number of dealers. Our

modeling approach can be used in different settings. In addition to the extensions mentioned

in Section 6, in future research it would be interesting to model the role of new forms of

transaction on OTC markets (e.g., riskless principal, access to electronic platforms), or the

dissemination of potentially toxic assets.27

26Other papers offer a more complete theoretical treatment of repo markets, see for instance Gottardi,
Maurin, and Monnet (2019). Financial Stability Board (2017) reviews the associated policy concerns.

27See Di Maggio and Tahbaz-Alehi (2015) for a related model of interbank chains with moral hazard.
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A Proofs

Proof of Property 1: Consider the first paragraph. Dn’s profit is continuous with respect

to ω and increasing. If the threshold is positive, it follows that the profit is null at the

threshold.

Inequality (i): The stand-alone profit for an offer at a price less than or equal to ρ
1+r

is

non-negative (from (5)), so Dn always accepts it even for ω = 0.

Inequality (ii): Similarly, the stand-alone profit for an offer at a price less than ρ is positive

for low enough financing needs.

Inequality (iii): Let Dn receive an offer at price ρ. Using (iv), which is proved below,

any offer at a price strictly above ρ is rejected, so that Dn’s expected transaction payoff is

bounded above by qryn (from the second line of (5)). Hence, if Dn receives an offer at price

ρ, Dn’s profit is bounded above by −r(1 − q)yn. As q < 1, this is negative unless yn = 0,

which shows W (ρ, v) = ρv.

Inequality (iv): Consider Dn with financing needs yn. Along the equilibrium, Dn ’s

expected transaction payoff divided by r, or adjusted payoff, is

En = Φ(pn, vn)[rmin(yn, pnvn)− (ρ− pn)vn], (43)

where (pn, vn) is an optimal’s offer for Dn. The proof relies on the following Lemma, which

is proved in the Online Appendix:

Lemma A.1. Consider a rank-free equilibrium. Dn+1 targeted by Dn has lower financing

needs and lower expected payoff than Dn: (i) yn+1 ≤ yn and (ii) En+1 ≤ En.

We now prove (iv). By contradiction, assume that a dealer Dm makes an offer (pm, vm)

with pm > ρ and that this offer has a positive probability of being accepted. From the

discussion of bubbles the Online Appendix, we know that the chain targeted by Dm has an

infinite length, and that all targeted dealers make offers at prices above ρ. We consider this

chain and index the dealers by n.

Lemma A.1 shows that the sequence of adjusted payoffs En is non-increasing. Since
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rEn ≤ q[ryn − (ρ− pn)vn] (from the proof of Lemma A.1) we infer

rEn+1 ≤ q[ryn − (ρ− pn)vn]. (44)

As Dn+1’s profit is non-negative, we have (ρ − pn)vn − ryn+1 + rEn+1 ≥ 0. Using (44), this

implies (ρ− pn)vn − ryn+1 + q[ryn − (ρ− pn)vn] ≥ 0, which is equivalent to

r(qyn − yn+1) ≥ (1− q)(pn − ρ)vn. (45)

The sequence of financing needs yn is non-increasing (Lemma A.1), hence it converges to a

non-negative limit y∞. The left-hand side of (45) thus converges to r(q − 1)y∞, which is

non-positive. On the right-hand side, the sequence (pn − ρ)vn increases in n, so stays above

(pm−ρ)vm > 0. Thus condition (45) cannot be met for all n, a contradiction. This concludes

the proof.

Proof of Property 2: See the text.

Proof of Theorem 1: Consider the set F of bounded continuous functions β that satisfy

β(0) = 0. Endow F with the sup-norm, denoted by ‖.‖∞. Define the mapping Ψ on F by

Ψ(β)(y) = max
0≤ω≤y

qH(ω)(ω + β(y − ω)). (46)

The definition of Ψ is such that its fixed points Ω satisfy Ω(y) = max
0≤ω≤y

qH(ω)(ω+ Ω(y−ω)),

hence coincide with the bounded and continuous solutions to (9). We show below that the

function is well-defined, i.e., that the max in (46) is reached for each β in F and each y, and

that Ψ maps F into F . We then show that a fixed point exists and is unique by showing

that Ψ satisfies Theorem 3.3 in Stokey and Lucas (1989), i.e., Ψ is a contraction.

Let us first prove that for each β in F and each y, the supremum in (46) is reached.

There is no difficulty except if H has mass points, hence is discontinuous at those points.

Consider a sequence ωn converging to a discontinuity point ω of H such that the value of

H(ωn)(ωn + β(y−ωn)) converges to the supremum. We show that this supremum is reached
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at ω. H jumps downward at ω. Thus for ω′ higher than and close enough to ω, the value of

H(ω′)(ω′+β(y−ω′)) is strictly lower than the value at ω. This implies that the sequence ωn

is lower than ω for n large enough. The supremum is thus reached at ω, by the left-continuity

of H.

Let us now check that Ψ maps F into F . Let β in F . Ψ(β)(0) = 0 because β(0) = 0. For

any y > 0, Ψ(β)(y) is well defined since 0 ≤ ω ≤ y is a compact set and β is continuous. Ψ(β)

is continuous on the set of positive y by the maximum principle, even if H is discontinuous

by using a similar argument as above. Also Ψ(β)(y) clearly tends to 0 with y, hence Ψ(β)(y)

is continuous at y = 0. Ψ(β) is bounded: Since H(ω)ω ≤ E(ω̃) (Markov’s inequality) and

E(ω̃) is finite, H(ω)ω is bounded. It follows that

‖Ψ(β)‖∞ ≤ max
0≤ω

qH(ω)ω + q‖β‖∞, (47)

This proves that Ψ(β) is in F .

We now check that Blackwell’s sufficient conditions - namely monotonicity and discount-

ing - are satisfied. Working on (46), it is clear that β1 ≥ β2 implies Ψ(β1) ≥ Ψ(β2) and

Ψ(β + a) ≤ Ψ(β) + qa for any a > 0. This proves that Ψ is a contraction, and concludes the

proof of the first part of Theorem 1.

We now prove the claimed properties on Ω.

Ω is non-decreasing in y: Due to the fact that Ψ is non-decreasing, Ω can be computed

by iterate applications of Ψ starting at the null function β = 0. The argument is standard:

Consider the sequence Ωn = Ψn(0). The sequence is increasing because Ω1 ≥ Ω0 = 0 and Ψ

is non-decreasing. The sequence is bounded: Iteration of (47) implies that for each n:

‖Ωn‖∞ ≤
q

1− q max
0≤ω≤y

H(ω)ω.

Thus, the sequence Ωn converges and the limit is a fixed point, which is necessarily equal to

Ω. By induction, each element of the sequence Ψn(0) is non-decreasing in y, hence the limit

Ω as well.

Ω is bounded: This follows directly from the proof of the previous point.

Ω is lipshitz with constant q: It suffices to note that Ψ(β) is q-lipshitz for any β in F .
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Since Ω(0) = 0, this implies in particular that Ω(z) ≤ qz , a property we will use repeatedly.

To show that the target is bounded, it suffices to show that a supremum for ωH(ω) is

reached for ω smaller than some finite ωmax: since B and H are decreasing, the supremum

of H(ω)(ω + B(y − ω)) is necessarily reached in [0, ωmax] whatever y. The existence of

ωmax is proved by showing limt→∞ tH(t) = 0. From Markov’ inequality again applied to the

truncated value of the distribution we have tH(t) ≤
∫∞
t
ωdG(ω). Since the expected value

of ω̃ is finite, we have limt→∞
∫∞
t
ωdG(ω) = 0. The result follows.

It remains to prove the last statement about the limit Ω∞ of Ω when y tends to∞. Since

Ω is increasing and bounded, it surely converges to its upper bound: Ω∞ = ‖Ω‖∞. We prove

that Ω∞ satisfies (11): Ω∞ = max
0≤ω

qH(ω)(ω+Ω∞). Bounding Ω(y−ω) by Ω∞ we immediately

obtain that for each y

Ω(y) ≤ max
0≤ω≤y

qH(ω)(ω + Ω∞)

which implies

Ω∞ ≤ max
0≤ω

qH(ω)(ω + Ω∞).

We now prove the converse inequality. For each ω and y ≥ ω we have

Ω∞ ≥ Ω(y) ≥ qH(ω)(ω + Ω(y − ω))

Letting y increase indefinitely, the term on the right hand side converges to qH(ω)(ω + Ω∞)

so we obtain that for each ω: Ω∞ ≥ qH(ω)(ω + Ω∞) Since this is true for each ω, we obtain

Ω∞ ≥ max
0≤ω

qH(ω)(ω + Ω∞).

This proves the desired reverse inequality, hence Ω∞ = max
0≤ω

qH(ω)(ω + Ω∞).

Proof of Theorem 2: The proof uses Lemma A.2 below, which is proved in the Online

Appendix:

Lemma A.2. Let f be a non decreasing q−lipshitz function defined over R+. Then, for ω

less than pv and y:

min(pv, y) + f(pv − ω) ≤ pv + f(y − ω).
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We now prove the Theorem. Let T be a selection of T .

1. We first check that the described strategies are feasible. Let D receive (p0, v0).28

Refusing the offer is always feasible so we only have to consider the situation in which D

accepts (p0, v0), which occurs if (ρ−p0)v0− ry+ rΩ(y) ≥ 0, and makes the offer (P (y), V (y))

described by (14). The offer is feasible if 0 ≤ V (y) ≤ v0. We prove the stronger property

that 0 ≤ V (y) ≤ v0 − vC1 . We have

ρV (y) = (1 + r)y − r[T (y) + Ω(y − T (y))].

V (y) ≥ 0 since y − T (y) − Ω(y − T (y)) ≥ 0. Let us check V (y) ≤ v0 − vC1 . For y = 0 the

target is null, hence V (y) = 0. For y > 0, V (y) ≤ v0 − vC1 is equivalent to

ρ(v0 − vC1 )− (1 + r)y + r[T (y) + Ω(y − T (y))] ≥ 0. (48)

Since y = (p0v0 − ρvC1 ), replacing the value ρvC1 by p0v0 − y we have ρ(v0 − vC1 )− (1 + r)y =

(ρ− p0)v0 − ry. Furthermore, since T (y) is in T (y), Ω(y) = qH(T (y))[T (y) + Ω(y − T (y))],

hence Ω(y) ≤ T (y) + Ω(y − T (y)). We thus obtain

ρ(v0 − vC1 )− (1 + r)y + r[T (y) + Ω(y − T (y))] ≥ (ρ− p0)v0 − ry + rΩ(y).

The right hand side of this inequality is non negative because the acceptance condition is

satisfied. Hence (48) is satisfied: this implies V (y) ≤ v0 − vC1 , the desired inequality.

2. Let us show that D’s expected transaction payoff derived from a feasible offer (p, v), is

not greater than Ω(y). Let us first characterize the acceptance probability of (p, v). According

to the acceptance strategy, the receiver with customer demand ω accepts (p, v) if

(ρ− p)v − rz + rΩ(z) ≥ 0, where z = max(pv − ω, 0). (49)

If p > ρ, the offer is rejected for sure since z − Ω(z) ≥ 0. If p ≤ ρ, a receiver with null

financing needs accepts. Since z −Ω(z) is increasing, those who accept have financing needs

28For convenience, in this proof we use (p0, v0) to denote the offer received by any dealer D, not necessarily
the offer received by D1.
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lower than the positive cut-off ξ that satisfies (ρ− p)v− rξ + rΩ(ξ) = 0. Equivalently, those

who accept have customer demand larger than τ = pv − ξ, where

(ρ− p)v − r(pv − τ) + rΩ(pv − τ) = 0. (50)

D’s expected transaction payoff E from making the offer (p, v) is qH(τ)[rmin(pv, y)−(ρ−p)v],

which, using (50), is also equal to

E = rqH(τ)[min(pv, y)− pv + τ + Ω(pv − τ)]. (51)

Consider two cases.

τ > y. Then H(τ) ≤ H(y). As z − Ω(z) ≥ 0 for each z, pv − τ − Ω(pv − τ) ≥ 0, which

implies [min(pv, y)− pv+ τ + Ω(pv− τ)] ≤ y. Using this inequality and H(τ) ≤ H(y) in (51)

gives E ≤ rqH(y)y; since qH(y)y ≤ Ω(y), we obtain E ≤ rΩ(y).

τ ≤ y. Since τ = pv − ξ, the inequality τ ≤ pv holds. We apply Lemma A.2 below to

the q-lipshitz function Ω to obtain: min(pv, y) + Ω(pv − τ) ≤ pv + Ω(y − τ). It follows that

[min(pv, y)− pv + τ + Ω(pv − τ)] ≤ τ + Ω(y − τ). Using this inequality in (51) gives

E ≤ rqH(τ)[τ + Ω(y − τ)]. (52)

Since τ ≤ y, the right hand side is lower than rΩ(y) by definition of Ω, so that E ≤ rΩ(y).

We thus conclude that in each case E ≤ rΩ(y): no offer (p, v) yields a benefit higher than

rΩ(y).

3. Optimality of the strategies. Point 2 implies that D accepting the offer (p0, v0) will

obtain a profit at most equal to (ρ− p0)v0 − ry + rΩ(y). Consider two cases.

a. Let (ρ − p0)v0 − ry + rΩ(y) < 0. The profit is surely negative by accepting (p0, v0),

hence it is optimal for D to refuse (p0, v0), i.e., A(p0, v0, ω) = 0 is optimal.

b. Let (ρ − p0)v0 − ry + rΩ(y) ≥ 0. We check that the offer (P (y), V (y)) achieves the

payoff rΩ(y). This will prove that such an offer is optimal and furthermore that D’s profit

is equal to (ρ − p0)v0 − ry + rΩ(y). As this quantity is non-negative by assumption, it is

optimal for D to accept (p0, v0) i.e. A(p0, v0, ω) = 1 is optimal.
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Let us show that the offer (P (y), V (y)) achieves rΩ(y). By point 1, we know that

(P (y), V (y)) is feasible. We prove τ = T (y) is a threshold associated to (P (y), V (y)). Such a

threshold τ is defined by (50), which using y = P (y)V (y) by the first equation in (14), writes

(ρ− P (y))V (y)− r(y − τ) + rΩ(y − τ) = 0. The second equation in (14) yields that T (y) is

a threshold.

At (P (y), V (y)), D’s payoff is given by (51) where τ = T (y) and min(pv, y)− pv is null.

This gives

E = rqH(T (y))(T (y) + Ω(y − T (y)),

E is thus equal to rΩ(y) since T (y) belongs to T (y). This ends the proof of the Theorem.

Proof of Proposition 1: 1. The results are straightforward from the analytical expressions

for P (y) and V (y), and the asymptotic results have been proved in the text.

2. The expression (18) for the receiver’s profit follows from the fact that π∗(P (y), V (y), z) =

(ρ− P (y))V (y)− rz + rΩ(z). Using that this profit is null at ω = T (y) (or equivalently the

second equation in (14) gives the expression. It is obviously decreasing in z. The inventory

is decreasing in z since the volume V (z) is increasing in z.

Proof of Lemma 1: 1. Z is non-decreasing. The maximization problem (9) can be stated

equivalently in terms of the target’s financing needs z = y − ω, as maximizing F (z, y) =

H(y − z)[y − z + Ω(z)] with respect to z, 0 ≤ z ≤ y. Denoting the maximizers by ζ, one has

ζ(y) = y − T (y). The monotonicity of ζ follows from the (ordinal) single-crossing property

satisfied by F :

F (z, y)− F (z′, y) ≥ 0 for y ≥ z > z′ ⇒ F (z, y′)− F (z′, y′) > 0 for y′ > y. (53)

Indeed, suppose (53). Let z ∈ ζ(y); then z ≤ y and F (z, y) − F (z′, y) ≥ 0 for any z′ ≤ y,

in particular for any z′ < z. Hence (53) implies F (z, y′) − F (z′, y′) > 0 for any y′ > y and

z′ < z: z′ is surely not in ζ(y′).
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It remains to prove that F satisfies (53). Observe that

F (z, y)− F (z′, y) ≥ 0⇔ y − z + Ω(z)

y − z′ + Ω(z′)
− H(y − z′)
H(y − z)

≥ 0.

Thus it suffices to show that the function on the right hand side is increasing in y. The first

term writes as
y − z + Ω(z)

y − z′ + Ω(z′)
= 1 +

z′ − Ω(z′)− z + Ω(z)

y − z′ + Ω(z′)
,

hence is increasing in y because z′ − Ω(z′) < z − Ω(z) for z′ < z (because Ω is q−lipshitz,

Theorem 1). The second term is nondecreasing in y by the log-concavity of H (Assumption

(A1)): The log derivative w.r.t. y of −H(y−z′)
H(y−z) is −H′

H
(y−z′)+ H′

H
(y−z), which is non-negative

since z′ < z. This proves (53).

2. There is a value y
1

such that T (y) = {y} and Z(y) = {0} for y < y
1

and positive

for y < y
1
. We show that, under Assumption (A1), there is a value y > 0 such that

Ω(y) = qH(y)y for y < y and that the target is unique given by ω = y, hence Z(y) = {0}.
Since Z is non-decreasing and targets have an upper-bound (by Theorem), Z(y) is strictly

positive for y larger than this upper-bound. Hence it suffices to define y
1

as the supremum

value such that 0 ∈ Z(y).

Consider the recursive equation (54):

∀y > 0,Ω(y) = sup
ω≤y

qH(ω)(ω + Ω(y − ω)), and Ω(0) = 0. (54)

Choosing ω = y implies Ω(y) ≥ qH(y)y. We show that, under Assumption (A1), there is a

value y > 0 such that Ω(y) = qH(y)y for y < y and that the target is unique given by ω = y.

First note that since Ω(z) ≤ qz for any z, we infer from the recursive equation (9) that

Ω(y) ≤ max
ω≤y

qH(ω)(ω + q(y − ω)). Denoting by δ(ω, y) the difference between H(y)y and

H(ω)(ω+ q(y−ω)), it thus suffices to show that there is a value y > 0 such that δ(ω, y) > 0

for any ω and y that satisfies ω < y and y < y. δ(ω, y) writes

δ(ω, y) = [H(y)−H(ω)]y + (1− q)H(ω)(y − ω).
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Since G admits a continuous density, H is liphchitz on any bounded interval. Thus, there is

k such that for ω ≤ y ≤ 1: H(y)−H(ω) ≥ −k(y − ω), which implies

ω ≤ y ≤ 1 : δ(ω, y) ≥ [−ky + (1− q)H(y)](y − ω).

For y small enough the term inside the square brackets is strictly positive because the dis-

tribution is not concentrated on zero. We thus obtain the desired result.29

3. There is a positive lower bound ωmin to any target of a dealer D who have financing needs

y > y
1
. Let ω ∈ T (y). Ω(y) = qH(ω)(ω + Ω(y − ω)). This equation implies Ω(y) ≤ q

1−qω

since Ω(y) ≥ Ω(y − ω) and H is less than 1. Hence, using Ω(y) ≥ Ω(y
1
) = qH(y

1
)y

1
(since

Ω is increasing) we obtain

for y > y
1

and ω ∈ T (y) : ω ≥ ωmin = (1− q)H(y
1
)y

1
,

which concludes the proof.

Proof of Corollary 1: See the text.

Proof of Proposition 2: Lemma 1 directly implies that the targeted length NT (y) is finite

and non-decreasing in y. The fact that dissemination length is always lower than targeted

lengths can be shown by induction on the targeted length. If NT (y) = 2, then the offer is

at price ρ and the receiver does not make a new offer. Hence, the dissemination length 2 (if

the offer is accepted) or 1 (if it is rejected). Assume that dissemination lengths are lower

than targeted lengths for targeted lengths up to N . Consider a targeted length of size N + 1,

starting with a dealer D1 with financing needs y1. If ω2 < T (y1), D1’s offer is rejected and the

dissemination length is 1 < N + 1. Otherwise, D2 has financing needs y1 − ω2 ≤ y1 − T (y1).

Hence, NT (y2) ≤ NT (y1 − T (y1)) = NT (y1) − 1 = N . Using the induction assumption, the

dissemination length starting with D2 is lower than N , hence the length starting with D1 is

less than N + 1.

29Note that we can infer that there are two targets at y
1
: y

1
and a strictly lower value.
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Proof of Lemma 2: We will work with a weaker assumption than (A2):

G is such that (11) : Ω∞ = max
ω

qH(ω)(ω + Ω∞), has a unique maximizer ω∞. (A2)

If G admits a density and satisfies (A1) then (A2) is satisfied. If G is discrete with support

(ωk)1≤k≤K , where ωk < ωk+1, then if the sequence ωkH(ωk) increases up to a unique value k∗

and then decreases, (A2) is satisfied.

Define the function F : x 7→ max
ω

H(ω)(ω + x) and let denote t(x) the set of maximizers.

The fact that the maximum is reached even if H is discontinuous (on the right) follows the

same argument as in Theorem 1. We know from Theorem 1 that Ω∞ satisfies qF (Ω∞) = Ω∞.

We show in step 1 that Ω∞ is the unique solution to that equation and in step 2 that T (y)

converges to those in t(Ω∞). Since (A2) implies that t(Ω∞) is unique, denoted ω∞), this

implies the convergence of T (y) to ω∞) when y increases.

Step 1. Let two values x and x′. By definition, we have for τ ∈ t(x) and τ ′ ∈ t(x′)

F (x) = H(τ)(τ + x) ≥ H(τ ′)(τ ′ + x) and F (x′) = H(τ ′)(τ ′ + x′) ≥ H(τ)(τ + x′).

We derive:

H(τ)(x− x′) ≥ F (x)− F (x′) ≥ H(τ ′)(x− x′).

Let x > x′. These inequalities imply H(τ)(x − x′) ≥ F (x) − F (x′) > 0 and H(τ) > H(τ ′).

Hence τ < τ ′ and the function F is 1-lipshitz. This implies that the solution Ω∞ to the

equation qF (x) = x is the unique one. Furthermore for any τ ∈ t(x), τ ≤ t(0), where t(0) is

a maximizer of H(ω)ω.

Step 2. When y increases, the elements in T (y) converge to those in t(Ω∞). Consider

two elements τ and t. We have

H(t)(t+ Ω(y − t))−H(τ)(τ + Ω(y − τ) = H(t)(t+ Ω∞)−H(τ)(τ + Ω∞) (55)

−H(t)(Ω∞ − Ω(y − t)) + H(τ)[Ω∞ − Ω(y − τ)] (56)
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Take τ /∈ t(Ω∞) and t ∈ t(Ω∞). By definition, the expression on the RHS of (55) is strictly

positive. Consider (56). Since τ ≤ t(0) and limz→∞Ω(z) = Ω∞, the expression in (56) con-

verges to zero when y goes to infinity. This implies thatH(t)(t+Ω(y−t))−H(τ)(τ+Ω(y−τ) >

0 for y large enough: τ /∈ T (y) for y large enough.

Proof of Proposition 3: The result on dissemination length is proved in the text. For the

customer purchases, from the Online Appendix we have CF (p0v0, ω1, σ) = 1
ρ

min
(
p0v0,

∑M
j=1 ωj

)
when D1 accepts the offer. We will show that CR(p0v0, ω1, σ) is lower than this quantity.

Note that we have the financing needs equations yn = yn−1 − ωn as long as n < m =

NR(p0v0 − ω1, σ). At the last step m, two cases can occur.

Case 1: The chain stops with ym = 0, hence m sells to her customers x such that

ρx = ym−1. Adding all the financing needs equations, we obtain ρ
∑m−1

j=1 vCj + ρx = p0v0,

with p0v0 ≤
∑M

j=1 ωj. We obtain CR(p0v0, ω1, σ) = CF (p0v0, ω1, σ).

Case 2: The chain stops with ym > 0: Dm’s offer is rejected and m ≤ NF (p0v0 − ω1, σ).

Adding all the financing needs equations, we obtain
∑m

j=1 ωj = p0v0 − ym. As m ≤ M

the customer purchases are lower than both p0v0 and
∑M

j=1 ωj, hence CR(p0v0, ω1, σ) ≤
CF (p0v0, ω1, σ).

Proof of Proposition 4: Let us prove that lim
y→+∞

E(NR(y, .)) = `ω∞ . Using (24), E(NR(y, .))

is bounded below by 1, and bounded above by `0 = 1
1−q (the expected length of a sequence

that continues until one dealer is inactive). Hence, E(NR(y, .)) admits a finite superior limit

`, and a finite inferior limit `.

First, we show that ` ≥ `ω∞ . Let ` < `. By definition of `, there is z such that

E(NR(z, σ)) ≥ `. Consider y > z + ω∗. As T (y) ≤ ω∗, this implies that y − z > T (y), and

we can write:

∫ y

T (y)

E(NR(y − ω, σ))dG(ω) ≥
∫ y−z

T (y)

`dG(ω) ≥ [G(y − z)−G(T (y))]`.

Plugging this inequality into (24), we obtain: For any y > z, E(NR(y, .)) ≥ 1 + qH(y) +

q[G(y − z)−G(T (y))]`. Taking the limit in y yields ` ≥ 1 + q`H(ω∞). Since this is true for
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any ` < `, we obtain ` ≥ 1 + q`H(ω∞), which is equivalent to ` ≥ `ω∞ .

Second, we show that ` ≥ `ω∞ . By definition E(NR(z, σ)) ≤ ` for any z. Using this

inequality to bound the integral in (24), we obtain E(NR(y, .)) ≤ 1 + qH(y) + q`[G(y) −
G(T (y))]. Taking the limit in y yields ` ≤ 1 + q`H(ω∞), which is equivalent to ` ≤ `ω∞ .

We thus have `ω∞ ≥ ` ≥ ` ≥ `ω∞ , which implies that E(NR(y, .)) converges to `ω∞ .

Since E(N̂R(y, .)) is given by a similar expression as E(NR(y, .)) with a degenerate dis-

tribution, the same argument shows that lim
y→+∞

E(NF (y, .)) = `ω̄. Since the distribution is

degenerate, H(ω̄) = 1 and hence `ω̄ = `0.

Finally, the asymptotic behavior of NT (y) follows from the fact that T (y) converges to

ω∞ when y is large, so that the targeted length increases by one unit for every increment of

y of length ω∞. As a result, NT (y) goes to infinity and is asymptotically equivalent to y
ω∞ .

The same reasoning applies to N̂T (y), as T (y) = ω̄ for any y. Note that the proposition also

holds under (A2).

Proofs of Implications: All the implications are immediately deduced from previous results

or are proved in the main text. The only exception is Implication 2: we need to prive

that vIn decreases after a fall in r for n > 1. Using (19), Dn’s inventory varies with r as

V (yn−1) − V (yn), i.e., using (16), as r[(Z(yn−1) − Ω(Z(yn−1)) − (Z(yn) − Ω(Z(yn))]. The

term within the square brackets is positive under Assumption (A1): (i) Z(.) is an increasing

function under (A1) and yn−1 ≥ yn, so that Z(yn−1) ≥ Z(yn); (ii) z − Ω(z) is an increasing

function. Hence, Dn’s inventory is increasing in r.
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