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Abstract

We study a dynamic market for durable assets, in which asset owners are privately

informed about the quality of their assets and experience occasional productivity shocks

that generate gains from trade. An important feature of our environment is that buyers

worry not only about asset quality, but also about the prices at which they can re-sell the

assets in the future. We show that this interaction between adverse selection and re-sale

concerns generates an inter-temporal coordination problem and gives rise to multiple self-

fulfilling equilibria. We construct sentiment equilibria, in which sunspots generate large

fluctuations in asset prices, market liquidity, output and welfare. Furthermore, we show

that the strategic nature of trade in our setting disciplines the set of possible sentiments

as a function of the parameters of the model. The theory has implications for empirical

work in asset pricing and macroeconomics.
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1 Introduction

In a frictionless market, all gains from trade are realized and durable assets or securities always

end up being held by parties that value them the most. As a result, asset prices reflect not only

the current but also all expected future gains from trade. Instead, in the presence of frictions,

some gains from trade may remain unrealized and, thus, asset prices may be depressed. In

such an environment, there is a close connection between liquidity – the ease with which assets

are re-allocated – and asset prices. In this paper, we show that if the frictions result from

information asymmetries, there can be multiple self-fulfilling equilibria. Even though all agents

are fully rational and asset prices always reflect fundamentals, the mix of assets that is traded

can depend on sentiments – the agents’ expectations about future market conditions. We show

that there is a set of sentiment-driven equilibria, in which sunspots generate large fluctuations

in asset prices, market liquidity, output and welfare.

We consider a dynamic market for assets (Lucas trees), in which asset owners are privately

informed about the quality of their assets (the fruit to be harvested). Gains from trade arise

stochastically over time because the current asset owners experience “productivity” or “liquid-

ity” shocks that change their value of holding or employing assets relative to other agents in

the economy. Buyers compete for assets, but they may face a lemons problem as in Akerlof

(1970), since they do not observe the quality of the owners’ assets nor the motive for their sale.

The buyers who purchase assets in any given period become asset owners in the next period.

The important feature of our environment is that the buyers must worry not only about the

quality of the assets for which they currently bid, but also about market prices were they to

resell the assets in the future.

When information is symmetric, all asset owners with (productivity) shocks immediately sell

their assets and, in the unique equilibrium, asset prices are equal the expected discounted value

of asset cash-flows at their most efficient allocation (Proposition 1). Furthermore, this economy

features no aggregate fluctuations in asset prices, output or welfare.

Instead, when information is asymmetric, the owners of low quality assets want to mimick the

owners of high quality assets, and their presence in the market depresses the buyers’ willingness

to pay. Absent resale considerations (or in a static setting), the buyers only care about the flow

payoff that they expect to receive from holding the asset in the current period. As a result, when

the proportion of high quality assets is sufficiently low, the buyers’ willingness to pay drops

below the reservation value of shocked owners of high quality assets. In this case, only low

quality assets trade in equilibrium, asset allocation is inefficient, and asset prices are depressed

to reflect this. On the other hand, when the proportion of high quality assets is sufficiently
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high, the buyers’ willingness to pay remains above the reservation value of the shocked owners

of high quality assets. In this case, all shocked asset owners trade, asset allocation is efficient

and asset prices are high to reflect this. Therefore, depending on parameters, there can be two

possible equilibria but, more importantly, the equilibrium is unique.1

Our first main result is that the interaction between information frictions and resale concerns

generates an inter-temporal coordination problem, which can give rise to multiple equilibria

(Theorem 1). The reason is that, when buyers anticipate the need to sell assets in the future,

their willingness to pay for them today depends on their beliefs about future market conditions.

If buyers believe that the market will be liquid and asset prices will be high tomorrow, they

will bid more aggressively for assets today, and thus be able to attract a better pool of assets

today, and vice versa. To show how these concerns about future market conditions can generate

multiplicity of equilibria, we first construct two types of what we term constant price equilibria.

A defining property of these equilibria is that both asset prices and asset allocations among

different owner types are fixed over time.

This class includes an efficient trade equilibrium, in which all shocked asset owners trade

their assets immediately and, as a result, the asset prices, output and welfare are permanently

high. We show that there exists a lower bound π̄ET on the proportion π of high quality assets,

such that the efficient trade equilibrium exists when π is greater than π̄ET . Then, we construct

an inefficient trade equilibrium, in which only low quality asset owners trade and, as a result,

the asset prices, output and welfare are permanently low. We show that there exists an upper

bound π̄IT on the proportion of high quality assets, such that the inefficient trade equilibrium

exists when π is smaller than π̄IT . Importantly, we show that π̄ET < π̄IT and, therefore, the

two equilibria coexist for intermediate π.

We then capture the notion of sentiments as coordinated beliefs about future market condi-

tions. To do so, we introduce a sunspot process zt and we look for equilibria in which agents

coordinate on efficient or inefficient trade depending on zt. We demonstrate that the coexistence

of multiple constant price equilibria and sufficient persistence of the process zt is necessary and

sufficient for the existence of sentiment equilibria (Proposition 4 and Theorem 2). Moreover,

the amount of persistence needed to support sentiment-driven equilibria depends critically on

the underlying primitives. That is, unlike static coordination problems, sentiment equilibria

cannot be driven by an arbitrary stochastic process, but rather the necessary properties of its

evolution are disciplined by the parameters of the model.

Our model shows that sentiments can actually affect the fundamental value of assets by

1When buyers are strategic, as in our setting, the static Akerlof (1970) model also has a unique equilibrium,
as was first noted by Wilson (1980).
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changing the mix of assets that are traded and, therefore, the extent to which gains from

trade are realized. Thus, market sentiments cannot be separated from fundamentals, and

both are essential in determining asset valuations. In particular, even when there is no intrinsic

information about changes in the characteristics of the assets, sentiments can lead to large price

swings. Thus, our model can provide a fully rational explanation for the documented excess

volatility in asset prices.2 Our theory also illustrates that sentiments can be an important

source of macroeconomic volatility. Although measured total factor productivity (TFP) may

fluctuate, it may not be the driver of output volatiltiy, as both can instead be driven by shocks

to expectations. Thus, an econometrician, who cannot directly observe sentiments, must be

cautious when estimating and interpreting measures of TFP, so as to avoid over-estimating the

role of technology shocks.

1.1 Related Literature

Our paper naturally relates to the recent and growing literature that embeds adverse selection

in a macro-finance context.3 Daley and Green (2016) and Fuchs et al. (2016) explicitly model

re-trade considerations.4 Unlike us, these papers focus on the role of time-on-the-market as a

signal of quality; furthermore, the equilibria in their settings are essentially unique. Although

both papers can generate time varying liquidity, a fact that is particularly stressed in Daley

and Green (2016), this variation is not driven by inter-temporal coordination and expectations

of future market liquidity. Instead, it is driven by whether the current beliefs about the asset

quality are above or below the critical threshold at which pooling is an equilibrium.

Janssen and Karamychev (2002) and Janssen and Roy (2002) have used a competitive frame-

work to highlight another source of time-varying liquidity (even in the absence re-trade).

Namely, that when the gains from trade are persistent (something we purposefuly abstract

away from in our core analysis), past liquidity has a negative effect on current liquidity. In-

tuitively, if more of the gains from trade were realized yesterday, there will be more adverse

selection in the market today. This can lead to deterministic liquidity cycles, as recently has

also been pointed out by Maurin (2016) in a search-theoretic environment.

Some other recent work in the area considers markets with search frictions rather than a

2See, for example, LeRoy (2004) and Shiller (2005).
3See, for example, Eisfeldt (2004), Martin (2005), Kurlat (2013), Guerrieri and Shimer (2014), Bigio (2015),

Chari et al. (2010), Gorton and Ordoñez (2014, 2016), Benhabib et al. (2014), Daley and Green (2016) and
Fuchs et al. (2016).

4The importance of re-trade considerations in asset markets goes back to Harrison and Kreps (1978). See
also Lagos and Zhang (2015, 2016) for recent related work within search-theoretic environment.
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competitive environment like ours. The closest within this literature are the papers by Chiu

and Koeppl (2011), Maurin (2016) and Mäkinen and Palazzo (2017). In addition to differences

in market structure, these papers have a very different focus from ours. The main consideration

in Chiu and Koeppl (2011) is the interaction between adverse selection and search frictions, and

it is largely motivated by the recent financial crisis: they mainly discuss policy interventions

when the fraction of low quality assets in the market is so large that there would be no trade

absent an intervention. Although Maurin (2016) notes that there is a possibility for multiple

equilibria, as previously noted, his main contribution is the construction of equilibria with

cycles. Unlike our sentiment equilibria, these equilibria are deterministic and are not driven

by inter-temporal coordination. Finally, Mäkinen and Palazzo (2017) have a more general

search and matching technolodgy that allows for congestion externalities. Their focus is on the

additional negative effect (and policies to overcome it) from the fact that unshocked traders

stay in the market trying to trade away their lemons and creating congestion externalities for

shocked sellers.

The papers by Plantin (2009) and Malherbe (2014) are also related to our work, although the

strategic considerations in their papers are contemporaneous rather than dynamic. In Malherbe

(2014), firms must make a portfolio choice decision between holding cash versus assets with

privately known quality. He shows that multiple equilibria are possible due to complementarities

in firms’ cash-holding decisions. If a firm decides to increase its cash-holdings in the first period,

then if that firm trades in the second period, it is less likely that the trade is the result of a

liquidity shock. As a result, there are less gains from trade in the second period and there is

more adverse selection in the market. This in turn makes it more attractive for other firms to

also hoard cash. Thus, there can be two equilibria, one in which firms expect other firms not to

hoard cash and the second period market to work well, and another in which firms expect other

firms to hoard cash and, as a result, the second period market dries-up. A similar mechanism is

present in Plantin (2009). Although there is no cash-hoarding by firms in his setting, the number

of investors who decide to buy the bond in the first period affects the potential market size for

the bonds and hence their price in the future. As in Malherbe (2014), this contemporaneous

complementarity can lead to self-fulfilling market failures. It is important to highlight that

equilibrium multiplicity in these papers arises due to static coordination failures. Indeed, as

in the global games literature, Plantin (2009) is able to obtain uniqueness of equilibrium by

introducing a noisy private signal about the probabilities of default of the bonds.

The inter-temporal aspect of the coordination leading to multiplicity of equilibria relates our
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work with the broad literature on fiat money and rational bubbles.5 There is an important

difference between our work and most of that literature. In our setting, the value of assets

is always pinned down by fundamentals and we do not rely on a violation of the “No-Ponzi

games” condition for assets to have positive prices. Somewhat closer to our model is the con-

temporaneous work of Donaldson and Piacentino (2017), who motivate potential runs on banks

as arising from failures of coordination in the re-trading of“money-like” bank obligations. In

their setting, trading frictions are exogenous, there is no adverse selection and trade completely

breaks down, whereas adverse selection is the source of the endogenous frictions in our model.

Furthermore, there is always some trade in our model.

Finally, there has been an increased interest among macroeconomists to understand how

sentiments – in the form of correlated shocks to agents’ information sets,– can be drivers

of aggregate fluctuations. Some recent papers include Lorenzoni (2009), Hassan and Mertens

(2011), Angeletos and La’O (2013), and Benhabib et al. (2015). In this literature, the dispersion

of information among agents about aggregate economic conditions is an essential ingredient.

We contribute to this literature by showing that, in the presence of adverse selection, sentiments

which coordinate agents’ expectations about future market conditions can generate aggregate

fluctuations even when the information about aggregate variables is common to all economic

agents at all times.

The rest of the paper is organized as follows. In Section 2, we present our baseline model.

In Section 3, we conduct our main analysis. In Section 4, we consider some extensions, and we

conclude in Section 5. All proofs are relegated to the Appendix.

2 The Model

Time is infinite and discrete, indexed by t ∈ {0, 1, ...}. There is a mass of indivisible assets

or Lucas trees, indexed by i ∈ [0, 1], which are identical in every respect except their quality.

These trees are long-lived and each tree can either be of high or low quality, which we denote by

θi ∈ {L,H}. A tree of quality θi can potentially produce xθi units of output per period, where

xH > xL > 0. The probability that a given tree is of high quality is P (θi = H) = π ∈ (0, 1),

which is also assumed to be the fraction of high quality trees in the economy. For expositional

simplicity, we suppose that asset qualities are fixed; we extend our analysis to incorporate asset

quality shocks in the Appendix.

There is a a large mass M of ex-ante identical risk-neutral agents, indexed by j ∈ [0,M ],

5See, for example, the early papers by Samuelson (1958), Tirole (1985), Weil (1987), Santos and Woodford
(1997), and the more recent work by Martin and Ventura (2012) and Dong et al. (2017).
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who discount payoffs with a factor δ ∈ (0, 1). Each of these agents can operate only one unit

of the Lucas tree, and we refer to those who currently operate assets as owners and to the rest

as potential buyers. We introduce gains from asset trade by supposing that owners experience

occasional productivity shocks that depress their asset valuation relative to the potential buyers.

In particular, each period owner j can have two possible productivities, denoted by ωj ∈ {χ, 1},
which implies that she can produce ωjxθi units of output by operating a tree of quality θi, where

χ ∈ (0, 1) and χxH ≥ xL.6 When ωj = χ, we say that “owner j is shocked,” and we assume that

each period an owner is shocked with probability P (ωj = χ) = λ ∈ (0, 1). All potential buyers

are assumed to be unshocked.7 An owner’s productivity status is assumed to be independent

of the quality of the tree she operates and of her productivity status in the past; we extend our

analysis to persistent productivity shocks in Section 4.

Remark 1 Although throughout we will think of ω as a productivity shock, one could interpret

the differences in ω’s as arising from the heterogeneity in agents’ valuations of the cashflow,

which can be due to liquidity constraints or hedging demands. Of course, these different inter-

pretations will have important implications about how to take the model to the data.

The market for assets is competitive - in each period, at least two buyers are randomly

matched with an owner, and they compete for the owner’s tree a la Bertrand.8 When an owner

receives offers from the buyers, she decides which if any offer to accept. If the owner rejects all

offers, then she continues to be an owner in the next period and is rematched with a new set

of buyers. If the owner accepts an offer, then she sells her tree and enters the pool of potential

buyers.9 A buyer whose offer is rejected continues to be a buyer in the next period, whereas a

buyer whose offer is accepted, gets the tree and becomes an owner in the next period.10

Trade in our economy may be hindered by the presence of asymmetric information. In

particular, we assume that the quality of an owner’s tree θ and her productivity status ω are

both that owner’s private information.

We suppose that the time-t information set of a buyer includes aggregate histories (e.g.,

aggregate output, aggregate trading volume), but not the trading history of the individual

6This condition states that the adverse selection problem is sufficiently severe. Although inessential for our
results, it reduces the number of cases that we need to consider.

7As long as there are at least two unshocked buyers competing for each owner’s tree, these buyers will be
setting the asset prices, and therefore it is without loss of generality to simply assume that the buyers are
unshocked.

8Perfect competition among buyers is not needed for our results, but it simplifies the analysis.
9Since there is a continuum of trees and matching is random, the probability that an owner who sells her

tree is rematched to bid for that same tree is zero.
10We implicitly assume that all agents have sufficiently large endowments in each period.
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asset for which he bids.11 The strategy of each buyer is a mapping from his information set to

a probability distribution over offers. An owner’s information set includes the quality θ of her

asset, her productivity status ω, and the buyers’ information set. The strategy of each owner

is a mapping from her information set to a probability of acceptance.

We use Perfect Bayesian Equilibrium (PBE) as our equilibrium concept. This has the fol-

lowing implications. First, each owner’s acceptance rule must maximize her expected payoff

taking as given the buyers’ strategies (Owner Optimality). Second, any offer in the support

of a buyer’s strategy must maximize his expected payoff given his beliefs, the owner’s and the

other buyers’ strategies (Buyer Optimality). Third, given their information set, buyers’ beliefs

are updated using Bayes’ rule whenever possible (Belief Consistency).

3 Equilibrium

In this section, we characterize the set of equilibria of our model. We start by analyzing

a benchmark economy in which asset qualities are observable (Section 3.1). In the unique

equilibrium of this economy, there are no aggregate fluctuations and all assets are allocated

efficiently (Proposition 1). Next, we analyze the model with asymmetric information about

asset quality. We start by focusing on equilibria that do not feature aggregate fluctuations

(Section 3.2), and we show that multiple equilibria can arise and be ranked in terms of asset

prices, output and welfare (Theorem 1). We then consider sentiment equilibria (Section 3.3),

and we provide necessary and sufficient conditions under which these equilibria exist and feature

belief-driven fluctuations in asset prices, output and welfare (Proposition 4 and Theorem 2).

3.1 Benchmark without information frictions

Here, we consider a useful benchmark economy in which the qualities of the Lucas trees are

public information. It turns out that observability of asset qualities suffices to ensure that the

asset allocations are efficient. The following proposition characterizes the unique equilibrium

of this benchmark. Let E{·} denote the expectations operator, then:

Proposition 1 (Observable Quality) If asset qualities are publicly observable, then the equi-

librium is unique, in it all assets are efficiently allocated and, for all t, the price of θ-quality

11The primary role of this assumption is to eliminate signaling considerations which would complicate our
analysis considerably. If trading history of individual trees were observable, owners may reject certain offers
and engage in costly delay in order to signal their types. We conjecture that our qualitative results extend to a
setting where such signaling is possible as long as trading history provides an imperfect signal of asset quality.
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assets is pFBθ = (1 − δ)−1xθ, and the output and welfare are Y FB = E{xθ} and W FB =

(1− δ)−1 · Y FB respectively.

For any given (observable) quality, buyers value the trees weakly more than the owners

(strictly so if owners are shocked). Thus, in equilibrium, all trees must be reallocated from

shocked owners to the buyers, i.e., asset allocation is efficient. As a result, the aggregate

output is the output of all trees at their most efficient allocation, and welfare is simply the

present discounted value of this output. Finally, because markets are competitive, all trees are

priced at the present discounted value of their ouput.

We next study how these results change in the presence of information frictions.

3.2 Constant price equilibrium

We begin our analysis by considering a simple class of stationary equilibria which allow us to

clearly illustrate the link between asset prices and market liquidity.

From now on, we will refer to an owner with productivity status ω and an asset of quality θ

as a (θ, ω)-type owner. Let pt denote the (common) asset price that prevails in equilibrium at

time t.12 Then,

Definition 1 We say that a PBE is a constant price equilibrium if the equilibrium asset

price is the same in every period.

In what follows, we drop time subscripts and use x (x′) to denote a variable in the current

(next) period. Consider the problem of a (θ, ω)-type owner, who must decide whether to trade

her tree or to hold on to it. Let p∗ denote the (constant price) equilibrium price, and let

V (θ, ω; p∗) denote the equilibrium value of (θ, ω)-type asset owner, which will depend on the

equilibrium price. In particular, it must be that:

V (θ, ω; p∗) = max {p∗, E{ωxθ + δV (θ′, ω′; p∗)|θ, ω}} (1)

If the owner sells her tree today, then she gets the price p∗. If she does not, then she produces the

output ωxθ today plus she gets the expected discounted value from owning the tree tomorrow,

where expectations are conditional on the holder knowing her type today.13 Optimality requires

12The price of an asset is defined to be the maximal bid of the buyers for that asset, and it is common to all
assets since all assets appear identical to the buyers at any time t.

13Although in our baseline model current productivity status is uninformative about the future, we include
it in the agents’ information sets as we will use this formulation in Section 4.
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that the owner’s equilibrium value be the maximum of the expected payoffs from either trading

the asset or holding on to it.

Adverse selection can arise when the quality mix of traded assets depends on the asset price

itself. Suppose that the highest offer made to an owner is p, which may or may not equal

the equilibrium price p∗. The owner would accept such an offer if and only if it exceeded her

equilibrium value V . In particular, the set of owner types who accept an offer p is:

Γ(p; p∗) = {(θ, ω) : V (θ, ω; p∗) ≤ p}, (2)

where we assume that the owner trades whenever she is indifferent.14 Because V is different

for owners of different quality assets, the set Γ(p; p∗) depends on p. Note that, because today’s

offers for an asset are unobserved by the buyers of that asset in the future, the equilibrium

value V depends on the equilibrium price p∗ and not on offers made off-equilibrium.

Consider the problem of the buyers who are bidding for an owner’s tree. Because at least

two buyers compete for the owner’s tree, in any equilibrium the buyers’ expected profits must

be zero. Therefore, in equilibrium, the asset price must satisfy:

p∗ = E{xθ + δV (θ′, ω̃′; p∗)|(θ, ω) ∈ Γ(p∗; p∗), ω̃ = 1}, (3)

where tilde on ω̃ indicates that it is the productivity status of the buyer and not the owner.

Rationality and belief consistency require that buyers understand the potential adverse selection

problem and condition their expectations of asset quality on the set of owner types who accept

their offers.15 Since a buyer who gets the tree in the current period becomes an owner in the

next, the equilibrium asset price depends on the expected value from being an asset owner.

Finally, buyer optimality requires that in equilibrium no buyer can profitably deviate by

making an offer to the owner that strictly exceeds the equilibrium price, i.e., it must be that:

p̂ ≥ E{xθ + δV (θ′, ω̃′; p∗)|(θ, ω) ∈ Γ(p̂; p∗), ω̃ = 1} (4)

for all offers p̂ strictly greater than the equilibrium price p∗.

The following lemma puts further structure on the possible constant price equilibria by

showing that in any such equilibria the owners with low quality assets always trade whereas

14This assumption is innocuous. Generically, the only type who can be indifferent to trade in equilibrium is
the (L, 1)-type. In such a case, however, whether this type trades has no effect on asset prices or the efficiency
of asset allocation.

15If Γ(p) = ∅, we set without loss of generality p∗ = E{xθ + δV (θ′, ω̃′; p∗)|ω̃ = 1}.
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the owners with high quality assets who are unshocked never do.

Lemma 1 Any constant price equilibrium is characterized by a value function V and asset

price p∗ satisfying (1)-(4). In any such equilibrium,

V (L, χ; p∗) = V (L, 1; p∗) = p∗ ≤ V (H,χ; p∗) < V (H, 1; p∗).

Thus, the low quality assets always trade, whereas the high quality assets held by unshocked

owners never trade.

First, because the flow payoff to a shocked owner is lower than to an unshocked owner,

the values can be ranked according to the productivity status, V (θ, 1; p∗) ≥ V (θ, χ; p∗) for

θ ∈ {L,H}. Second, because buyers are unshocked and can guarantee themselves at least a

low quality tree, their asset valuation is higher than that of low quality asset owners. Hence,

it must be that all owners with low quality trees trade and V (L, 1; p∗) = p∗. Finally, since all

low quality trees trade, the unconditional expected value E{V (θ, 1; p∗)} is an upper bound on

the payoff that any buyer can attain by purchasing a tree. Thus, the buyers will never be able

to attract the (H, 1)-type owner to trade without making losses in expectation.

From Lemma 1, it follows that there can be two types of constant price equilibria, depending

on whether the (H,χ)-type owner trades in equilibrium. We adopt the following definition in

order to distinguish among them.

Definition 2 We say that a constant price equilibrium features efficient trade if in it both

high and low quality assets trade. Otherwise, if only low quality assets trade, we say that it

features inefficient trade.

In the efficient trade equilibrium, all shocked owners trade and the trees are efficiently allocated.

Instead, in the inefficient trade equilibrium, the allocation is inefficient because the high types

who are shocked stay out of the market.

Since we have narrowed down the set of constant price equilibria to two types, it will be

convenient to index the equilibrium prices and allocations by the equilibrium type: e.g. we

will denote asset the price in the efficient trade (ET ) equilibrium by p∗ET and in the inefficient

trade (IT ) equilibrium by p∗IT .

The following theorem states our first main result by providing the conditions under which

each type of equilibrium exists and under which they coexist. It also shows that when the two

equilibria coexist, they can be ranked according to the level of asset prices, output and welfare.
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Theorem 1 (Constant Price Equilibrium) A constant price equilibrium exists. There ex-

ist thresholds 0 < π̄ET < π̄IT < 1 on the proportion of high quality assets such that:

1. Efficient trade. There is at most one efficient trade equilibrium, which exists if and only

if π ≥ π̄ET ,

2. Inefficient trade. There is at most one inefficient trade equilibrium, which exists if and

only if π ≤ π̄IT .

Thus, the two equilibria coexist when π ∈ [π̄ET , π̄IT ]. Furthermore, the asset prices, output and

welfare (in a Pareto sense) are higher in the efficient than in the inefficient trade equilibrium.

In what follows, we show explicitly how to construct the constant price equilibria (and the

corresponding prices, output and welfare), and we provide the intuition for when each type

of equilibrium exists and why multiple equilibria arise in our setting. We begin with the

construction of the efficient trade equilibrium.

3.2.1 Efficient trade equilibrium

In the efficient trade equilibrium, all owners except for the (H, 1)-type trade at price p∗ET .

Therefore, their values are:

V (L, χ; p∗ET ) = V (L, 1; p∗ET ) = V (H,χ; p∗ET ) = p∗ET , (5)

whereas the value of the (H, 1)-type owner is:

V (H, 1; p∗ET ) = xH + δ
(
λp∗ET + (1− λ)V (H, 1; p∗ET )

)
, (6)

i.e., this owner consumes the output this period, and in the next period she is either shocked

(w.p. λ) in which case she sells her tree, or she remains unshocked (w.p. 1− λ) and holds on

to it. The equilibrium price is:

p∗ET = π̂V (H, 1; p∗ET ) + (1− π̂)
(
xL + δp∗ET

)
. (7)

where π̂ ≡ λπ
λπ+1−π is the probability that the tree is of high quality, conditional on being sold.16

A buyer who gets the tree today gets the same value as the (H, 1)-type if the tree turns out to

16In the stationary distribution of owner types, the probability that an owner is an (H,χ)-type is λπ and
the probability that she is a low type is 1− π.
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be of high quality (w.p. π̂), and he expects to consume its flow payoff and then resell the tree

tomorrow if it turns out to be of low quality (w.p. 1− π̂). Importantly, the buyer understands

that due to adverse selection the tree is of high quality with probability strictly smaller than

π. We can combine (6) and (7) to get an analytical expression for the asset price:

p∗ET = (1− δ)−1

(
π̂xH + (1− π̂)xL + δ(1− π̂)(1− λ)

π̂(xH − xL)

1− δ(1− π̂)(1− λ)

)
. (8)

In this equilibrium, all owners except the (H, 1)-type trade their trees. As a result, the asset

allocation is efficient and the output and weflare, as in our benchmark economy of Section 3.1,

are respectively given by:

Y ET = E{xθ} and WET = (1− δ)−1 · Y ET .

For existence of such an equilibrium, we must rule out profitable deviations for the owners

and the buyers. It is clear that there are no deviations for the buyers, since any such deviation

would need to attract the (H, 1)-type, which is impossible without the buyers making losses in

expectation. For the owners, it is sufficient to check that the (H,χ)-type gets a lower payoff if

she were to keep the asset for one period rather than sell it:

χxH + δ
(
λp∗ET + (1− λ)V (H, 1; p∗ET )

)
≤ p∗ET . (9)

Using the equations (5)-(7), we can re-express this condition as:

π̂xH + (1− π̂)xL − χxH ≥ δ (1− π̂)× (1− π̂) (1− λ) (xH − xL)

1− δ (1− π̂) (1− λ)︸ ︷︷ ︸
λV (H,χ,p∗ET )+(1−λ)V (H,1,p∗ET )−p∗ET

(10)

Thus, the efficient trade equilibrium exists when the (H,χ)-type’s static gain from trading today,

as given by π̂xH + (1− π̂)xL − χxH , exceeds the dynamic loss that she suffers by giving up

her asset, as given by δ(1− π̂)
(
λV (H,χ; p∗ET ) + (1− λ)V (H, 1; p∗ET )− p∗ET

)
. This dynamic

loss arises because, whereas the owner knows that her asset will be of high quality tomorrow,

the buyers believe that the asset will be of low quality with probability 1 − π̂, in which case

they value the asset at the resale price p∗ET that is strictly lower than the high type’s expected

value λV (H,χ; p∗ET ) + (1 − λ)V (H, 1; p∗ET ). The threshold π̄ET in Theorem 1 is the value of

π at which condition (10) holds with equality, which can be shown to be interior and unique.

Next, we construct the inefficient trade equilibrium.
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3.2.2 Inefficient trade equilibrium

In the inefficient trade equilibrium, only owners of low quality assets trade. Therefore, their

values are given by:

V (L, χ; p∗IT ) = V (L, 1; p∗IT ) = p∗IT , (11)

whereas the values of the owners of the high quality assets are:

V (H,ω; p∗IT ) = ωxH + δ
(
λV (H,χ; p∗IT ) + (1− λ)V (H, 1; p∗IT )

)
, (12)

for ω ∈ {χ, 1}, as these owners both consume the output of their trees today and expect to do

so in the future. The equilibrium price is:

p∗IT = (1− δ)−1xL, (13)

since buyers understand that due to adverse selection only low quality trees trade. It is clear

then that p∗IT is lower than its counterpart in the efficient trade equilibrium.

In this equilibrium, not all gains from trade are realized. Since all (H,χ)-types (mass πλ of

owners) keep their trees and produce with productivity χ rather than 1, the output and welfare

are respectively given by:

Y IT = E{xθ} − πλ(1− χ)xH and W IT = (1− δ)−1 · Y IT ,

which are strictly lower than their counterparts in the efficient trade equilibrium.

For existence of such an equilibrium, we must rule out profitable deviations for the owners

and the buyers. It is clear that there are no deviations for the owners, since the high types

strictly prefer to keep their trees (recall that χxH ≥ xL), whereas the low types prefer to trade.

To rule out deviations for the buyers, it suffices to check that the buyers’ profits are non-positive

at any offer that attracts the (H,χ)-type:

π̂V (H, 1; p∗IT ) + (1− π̂)
(
xL + δp∗IT

)
≤ V (H,χ; p∗IT ), (14)

where as before π̂ ≡ λπ
λπ+1−π is the probability that the tree is of high quality, conditional on

being sold. Using the equations (11)-(13), we can re-express this condition as:

π̂xH + (1− π̂)xL − χxH ≤ δ (1− π̂)× (1− λ+ λχ)xH − xL
1− δ︸ ︷︷ ︸

λV (H,χ,p∗IT )+(1−λ)V (H,1,p∗IT )−p∗IT

. (15)
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In contrast, the inefficient trade equilibrium exists whenever the (H,χ)-type’s static gain from

trading today is lower than the dynamic loss that she suffers by giving up her asset. The

threshold π̄IT in Theorem 1 is the value of π at which condition (15) holds with equality, which

can also be shown to be interior and unique.

We have characterized the conditions for the existence of each type of equilibrium. But why

do multiple equilibria arise in our setting? We turn to this question next.

3.2.3 Source of multiplicity

From the conditions (10) and (15) for the existence of each type of equilibrium, we can see

that what is crucial for the existence of multiple equilibria is that the difference between the

expected future value of the asset to the high type and the expected asset price is endogenous

to the equilibrium itself:

λV (H,χ; p∗) + (1− λ)V (H, 1; p∗)− p∗ =


(1−π̂)(1−λ)(xH−xL)

1−δ(1−π̂)(1−λ)
if p∗ = p∗ET

(1−λ+λχ)xH−xL
1−δ if p∗ = p∗IT .

Importantly, this difference is strictly smaller when the equilibrium features efficient than inef-

ficient trade: when assets are allocated more efficiently, the asset pries are higher and therefore

the gap between the high types’ and the market’s asset valuation is reduced.

To illustrate that dynamics are essential for our result, the next proposition shows that the

parameter region where multiple equilibria arise expands when agents care more about the

future, but vanishes as they become arbitrarily impatient.

Proposition 2 The gap π̄IT − π̄ET is increasing in δ, and it goes to zero as δ → 0. Thus, the

equilibrium becomes generically unique as re-sale considerations vanish.

Figure 1 illustrates this result graphically by plotting the thresholds π̄ET and π̄IT against

the discount factor δ. As we can see, the region of multiplicity disappears as δ goes zero. The

reason is that, in contrast to Akerlof (1970), our buyers are strategic which suffices to eliminate

the possibility of multiple equilibria in a static setting (i.e. when δ = 0).17 Thus, the possibility

of multiple equilibria in our setting hinges on dynamic strategic complementarities that arise

because, when trading today, the agents care about the future market conditions.

17When δ = 0, agents only care about the current flow payoffs of their assets. Thus, whether the equilibrium
features efficient or inefficient trade depends only on how the flow payoff of the pool π̂xH+(1−π̂)xL compares to
the flow payoff χxH of the (H,χ)-type if the latter were to hold on to the asset, and therefore the two equilibria
generically cannot coexist.
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Figure 1: Equilibrium Set and Role of Dynamics. Unless stated otherwise, the parameters used are:
δ = 0.9, λ = 0.6, χ = 0.5, xH = 1 and xL = 0.45.

Finally, although Proposition 2 emphasizes that dynamics, as captured by the agents’ dis-

count factor, are essential for our multiplicity result, we show in the Appendix that it is also

crucial that there be some persistence in asset quality (which we have assumed to be perfect

so far). Intuitively, if quality were independent over time, then the asset owner and the buyers

would only disagree about the flow payoff of the asset today, which is independent of expected

future market conditions. Indeed, we show that allowing for less than perfect quality persistence

is essentially equivalent to lowering the discount factor δ.

Are there other types of equilibria?

Thus far, we considered constant price equilibria, in which asset prices and asset allocations do

not change over time. But can there also exist equilibria in which asset prices and allocations

change either deterministically or stochastically over time? We turn to this question next.

Before we proceed, it is worth noting that we have eliminated a set of constant price equilibria

by our indifference-breaking assumption that an asset owner accepts an offer if she is indifferent.

It turns out that if we relax this assumption, when the inefficient trade equilibrium exists, there

is actually continuum of them, in which the (L, 1)-type trades with some probability σ ∈ [0, 1].

In all these equilibria, however, the asset prices and the efficiency of asset allocation coincide
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with those of the inefficient trade equilibrium in Section 3.2.2. Thus, eliminating these equilibria

with our indifference-breaking assumption is essentially without loss of generality.

The next proposition shows that we cannot have deterministic cycles.18 Intuitively, suppose

that trade were efficient at t but inefficient at t + 1 w.p.1. Then, the expected future market

conditions must be worse at t than at t + 1. But, this is not possible since, due to dynamic

strategic complementarities, better expected market conditions tomorrow improve the actual

market conditions today. By a similar reasoning, we can rule out equilibria in which inefficient

trade is followed by efficient trade w.p.1.

Proposition 3 An equilibrium with deterministic cycles generically does not exist.

Nevertheless, as we show in the next section, our economy can feature stochastic equilibria,

in which fluctuations in asset prices, output and welfare are driven by market sentiments –

stochastic sunspots that coordinate agents’ beliefs about future market conditions.

3.3 Sentiments and belief-driven volatility

In this section, we study the possibility of stochastic cycles. Consider a sunspot random variable

zt with some probability distribution, and assume that the realization of the random variable

is public information. We define a sentiment equilibrium as follows:

Definition 3 We say a PBE is a sentiment equilibrium with sunspot zt if equilibrium asset

price depends non-trivially on the realizations of the sunspot.

Let us begin by considering the simple family of sunspots, where zt takes values in the

set Z = {Bad, Good} and follows a symmetric first-order Markov process with persistence

parameter ρ = P(zt = z|zt−1 = z) ∈ (0, 1) for z ∈ Z. Furthermore, let us without loss

of generality assume that if consistent with equilibrium, then in the Good state the agents

coordinate on efficient trade, whereas in the Bad state they coordinate on inefficient trade.19

Then, a sentiment equilibrium with sunspot zt is characterized by a value function V and a

18When productivity shocks are correlated over time, then it is indeed possible to construct equilbria with
determinstic cycles. See Section 4.

19It is straightforward to show that the results in Lemma 1 extend to sunspot equilibria, i.e. it must be that
the low quality assets trade at all times whereas the high quality assets held by unshocked owners never do.
Thus, the only role of the sunspot is to shift equilibrium play from one in which the (H,χ)-type owner trades
to one where she does not.
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Figure 2: Sentiment Equilibrium Existence Set. The parameters used are: δ = 0.9, λ = 0.6, χ = 0.5,
xH = 1 and xL = 0.45. The figure illustrates all the combination of the parameters of π and ρ for which a
sentiment equilibrium with a binary-symmetric Markov sunspot process exists.

price function p∗ satisfying:

V (θ, ω, z) = max {p∗(z), E{ωxθ + δV (θ′, ω′, z′)|(θ, ω, z)}} ∀(θ, ω, z), (16)

Γ(p; z) = {(θ, ω) : V (θ, ω, z) ≤ p} ∀(p, z), (17)

p∗(z) = E{xθ + δV (θ′, ω̃′, z′)|(θ, ω) ∈ Γ(p∗(z); z), z, ω̃ = 1} ∀z, and (18)

p̂ ≥ E{xθ + δV (θ′, ω̃′, z′)|(θ, ω) ∈ Γ(p̂; z), z, ω̃ = 1} ∀p̂ > p∗(z) and ∀z. (19)

These are simply the sunspot-contingent analogues of the equations (1)-(4) in Section 3.2. In

fact, constant price equilibria are solutions to the above system under the restriction that asset

prices satisfy p∗(z) = p∗(z′) for all z, z′ ∈ Z.

The next proposition provides the necessary and sufficient conditions for the existence of

sentiment equilibrium with the above described sunspot process.

Proposition 4 (Sentiments) Consider a binary-symmetric first-order Markov process zt with

persistence ρ. A sentiment equilibrium with sunspot zt exists if and only if π ∈ (π̄ET , π̄IT ) and

ρ ≥ ρ̄, where ρ̄ < 1 depends on the parameters of the model.
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Figure 3: Asset Prices and Welfare in a Sentiment Equilibrium. The parameters used are: π = 0.7,
δ = 0.9, λ = 0.6, χ = 0.5, xH = 1 and xL = 0.45. The solid orange line depicts a simulation with ρ = 0.95,
whereas the dashed blue line depicts a simulation with ρ = 0.8.

This result emphasizes the role of inter-temporal coordination for the existence of multiple

equilibria in our setting. The realization of the sunspot not only must signal to the agents what

to play today, but it must also be informative about how the equilibrium play will proceed

in the future. These two objectives are accomplished precisely by a sunspot process that is

sufficiently persistent. Moreover, the amount of persistence that a sunspot needs in order to

support sentiments depends on model parameters, as illustrated in Figure 2. Thus, in contrast

to static coordination problems, sentiment equilibria cannot be driven by an arbitrary stochastic

process, but rather the necessary properties of its evolution are disciplined by the parameters of

the model. Though this insight was drawn by analyzing a simple family of sunspot processes,

we extend it to more general Markov processes in Theorem 2 in the Appendix. In a nutshell, we

show that, for a sentiment equilibrium with a given sunspot to exist, it is necessary and sufficient

that π ∈ (π̄ET , π̄IT ) and that the equilibrium play (i.e. efficient vs inefficient) generated by the

sunspot is persistent enough. When there are more than two states, the relevant persistence is

not that of the sunspot itself, but of the equilibrium play induced by that sunspot; as a result,

the formal notion of persistence is more nuanced.

Figure 3 depicts the evolution of asset prices and welfare in the economy for a simulation of
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the simple binary sunspot process. The solid line depicts the case where the sunspot is very

persistent (ρ = 0.95), whereas the dashed line depics a less persistent process (ρ = 0.8). In both

cases, the sunspot is sufficiently persistent so that a sentiment equilibrium with that sunspot

exists. Note that the more persistent is the sunspot process, the less frequent are asset prices

fluctuations and they are of larger size. This is intuitive because asset prices are forward looking

and incorporate the expected future transitions of the economy. Importantly, since different

states correspond to different asset allocation and output, the fluctuations in asset prices are

mirrored by fluctuations in the agents’ welfare. For comparison, we also depict the asset prices

and welfare in the constant price equilibria, which provide bounds on asset prices and welfare

that can be attained in any sentiment equilibrium.

Finally, we illustrate the dynamics of the economy with a richer sunspot process in Figure 4. It

depicts the evolution of asset prices in a sentiment equilibrium with a sunspot that takes values

in the set Z = {1, ..., 100}, such that efficient trade is played at time t if and only if zt ≤ 50,

and the transition probabilities have the following property. Conditional on playing efficient

trade at time t, the probability of transitioning to play inefficient trade at t+1 declines with zt;

20



similarly, conditional on playing inefficient trade at time t, the probability of transitioning to

play efficient trade at t+1 increases with zt. The feature of this process that gives rise to richer

dynamics is that different realizations of zt not only change the equilibrium play at t (efficient vs

inefficient) but also the agents’ expectations about how long the economy will feature efficient

vs. inefficient trade in the future. In this example, the persistence of equilibrium play is

reflected in the fact that the periods in which the asset prices remain elevated or depressed last

sufficiently long on average.

Sentiments as an amplification mechanism

Though the idea of sunspots may seem somewhat esoteric or abstract to some, as discussed

in Manuelli and Peck (1992), “the early sunspot literature was motivated by the idea that

small shocks to fundamentals are not very different from sunspots.” They show that, in an

overlapping generations endowment economy with money, small shocks to fundamentals can

serve as the coordination device for different monetary equilibria. Furthermore, in the limit,

as the undelying shocks have no direct effect on endowments, for every equilibrium of the pure

sunspot economy with no shocks to endowments, there is a sequence of equilibria of the economy

with risky endowments that converges to it. Our baseline economy can also be extended to

allow for aggregate shocks to fundamentals which, even when small, can have large effects by

serving as a coordination device for agents’ expectations regarding the future market conditions.

Of course, as we highlighted in Proposition 4 and Theorem 2, one needs to verify that these

fundamentals satisfy the conditions required to coordinate expectations.

To illustrate this point, suppose that the output of the Lucas trees is also a function of some

aggregate state zt ∈ {G,B}, which follows a persistent and publicly observable Markov process.

Concretely, consider the case where in state zt = G the payoff or output of a tree of quality θ in

the hands of a holder with liquidity or productivity status ω is (1 + ε) · ω · xθ, whereas in state

zt = B the output is (1− ε) · ω · xθ, for some ε ∈ [0, 1). Note that when ε = 0, we are back to

our baseline setup, where the aggregate state is a pure sunspot and has no direct impact on any

given tree’s output, but can still serve as a coordination device. It is therefore straightforward

to see that, for ε small but positive, we have the potential for an amplification of fundamental

shocks. The equilibrium features amplification in the sense that the shocks have a negligible

direct effect on the cashflow of any given tree. But, as shown in Section 3.3, these news can

change market expectations about the future, change the pool of assets that are traded, and

thus have a large impact on equilibrium asset prices, output and welfare.
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4 Persistent productivity and history dependence

In our main analysis in Section 3, we assumed that the agents’ productivity shocks or the gains

from trade (as captured by ω’s) were uncorrelated over time. This allowed us to illustrate clearly

how the expectations about future market conditions can generate dynamic complementarities

and lead to belief-driven volatility. When productivity shocks are correlated over time, in

addition to future market conditions, past market conditions are also critical in determining

the set of equilibria. We turn to this issue next.

Indeed, the work of Janssen and Karamychev (2002) and Janssen and Roy (2002) shows how,

even absent re-trade considerations (but with entry of new sellers), past market conditions can

be relevant in determining current market conditions. The main idea behind their result is the

following. Suppose that the average value of the assets in the market in period t is below the

reservation value of the shocked owner of high quality assets (the (H,χ)-type in our setting).

Then, in the current period, only low types would trade and the price would be low. Now, in

period t + 1, even with the entry of a new cohort of sellers, the average quality of the pool

must better than at t, because all the high types that did not trade yesterday are still in the

market today (assuming implicitly that productivity shocks are fully persistent). This leads

to a gradual improvement of the pool over time until the average quality of assets becomes

sufficiently high, so that the pooling price is high enough to attract high type sellers as well.

Once this happens and all high types exit the market, we start over again with a low average

pool quality. Thus, this mechanism gives rise to equilibria with deterministic cycles.20

So, how does the introduction of correlation in productivity shocks affect our results? As we

show next, it turns out that if shocks are correlated positively over time, then (when it exists)

the inefficient trade equilibrium may no longer be characterized by a stationary low price, but

rather by deterministic cycles in which asset prices oscillate between low (in which case only

the low types trade) and high (in which case also the high types trade); instead, the efficient

trade equilibrium (when it exists) will not exhibit any cycles in our model. Thus, our main

finding that for intermediate values of π there can be multiple equilibria continues to hold.

Formally, as before let λ = P(ωj,t = χ) be the unconditional probability that owner j ex-

periences a productivity shock at time t, but now assume that productivity shocks follow a

first-order Markov process with ρω = P(ωj,t = χ|ωj,t−1 = χ).21 Then,

20Janssen and Karamychev (2002) also show that their model allows for multiple equilibria, but these equi-
libria (in a similar way to Akerlof (1970)) are driven by the assumption that agents are price-takers and public
offers to all sellers are not allowed. If we modified their equilibrium definition to match the one in our paper, it
would become unique.

21Our baseline formulation assumes that ρω = λ.
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Proposition 5 If ρω > λ, there exist thresholds 0 < π̃ET < π̃ICT < 1 such that: (i) effi-

cient constant price equilibrium exist when π ≥ π̃ET , (ii) inefficient constant price or cyclical

equilibrium exists when π < π̃ICT , and (iii) multiple equilibria exist when π ∈ (π̃ET , π̃ICT ).

It is worth remarking that when productivity shocks are correlated positively over time,

an improvement in past market conditions worsens current market conditions. That is, the

more efficient was trade yesterday, the less efficient it will be today, and vice versa. This is

clearly different from the role of the re-sale considerations we emphasized in Section 3, where

expectations of improved market conditions in the future lead to more efficient trade today,

and vice versa.

Finally, things change if productivity shocks are correlated negatively over time, a case that

to our knowledge has not been previously studied. Though it may seem less natural at first,

negative correlation may arise if gains from trade arise because the asset owner occasionally

encounters some other investment opportunity, such as an opportunity to participate in a public

procurement auction. It is natural that if such an auction takes place at time t, then it is less

likely to take place at t + 1, thus generating a negative correlation in gains from trade. We

next illustrate that, even in the absence of re-sale considerations, negatively correlated shocks

might lead to multiple equilibria.

Proposition 6 If ρω < λ, then limδ→0 π̃ET < limδ→0 π̃IT . Thus, multiple equilibria can exist

even as re-sale considerations vanish.

Intuitively, if trade were more efficient at t, more of the assets would be held by agents who

were unshocked at t. But, due to negative correlation in shocks, these are the agents who are

more likely to be shocked at t + 1, increasing the gains from trade at that date. As a result,

negative correlation introduces complementarities between past and current market conditions,

which can lead to equilibrium multiplicity even when agents do not care much about future

market conditions.

5 Conclusions

We have presented a parsimonious model, which illustrates that when valuing assets we cannot

separate sentiments, liquidity and fundamentals. Even in the absence of any changes to un-

derlying asset fundamentals and with asset prices always corresponding to properly discounted

cash flows, it is possible to generate volatility in asset prices and market liquidity as a result of

changes in agents’ expectations about future market conditions.
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From a macroeconomic point of view, our model also illustrates that sentiments can gen-

erate substantial fluctuations in aggregate (or sectoral) output. Even though measured TFP

may fluctuate, it is not the cause of output volatility; both are instead driven by shocks to

expectations. These expectations could in turn be driven by pure sunspots or be connected

to exogenous changes to fundamentals. In the latter case, sentiments would serve as an am-

plification mechanism. Thus, an outside observer, who cannot directly measure sentiments,

may overestimate the effect of such fundamental shocks. One must therefore be careful when

estimating and interpreting measures of productivity shocks.

Finally, we purposefully kept our formulation simple in order to clearly identify the key

economic forces at play. Yet, a natural next step is to embed our framework into a richer

workhorse macroeconomic model to investigate additional implications of our mechanism and

explore its quantitative significance. We leave this avenue for future research.
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Appendix A - Proofs for Section 3

Proof of Proposition 1. See text.

Proof of Lemma 1. Note that the equilibrium price satisfies:

p∗ = E{xθ+δV (θ′, ω̃′; p∗)|(θ, ω) ∈ Γ(p∗; p∗), ω̃ = 1} ≥ E{xθ+δV (θ′, ω̃′; p∗)|θ = L, ω̃ = 1} (20)

where the right-hand side is equal to the value of the (L, 1)-type if she were to hold on to

the asset for a period. Thus, it must be that the (L, 1)-type always trades and her value is

V (L, 1; p∗) = p∗. On the other hand, the (L, χ)-type has a weakly lower value than the (L, 1)-

type since the quality of her asset is the same, but her flow payoff is lower. Hence, in equilibrium

she must also trade and her value is V (L, χ; p∗) = p∗. Finally, V (H,χ; p∗) ≥ p∗ holds trivially

since the holder always has the option to trade at price p∗, and V (H, 1; p∗) > p∗ follows from

the fact that, since low types always trade, it must be that:

p∗ = E{xθ + δV (θ′, ω̃′; p∗)|(θ, ω) ∈ Γ(p∗; p∗), ω̃ = 1} < V (H, 1; p∗), (21)

which implies that buyers cannot attract the (H, 1)-type without making losses in expectation.

Thus, indeed, all low quality asset trade at all times, but the high quality assets helds by

unshocked owners never do.

Proof of Theorem 1. That there can at most be two types of constant price equilibria

follows from Lemma 1, which shows that there are only two possibilities depending on whether

the (H,χ)-type trades or not.

Efficient trade. The equations (5), (6), and (7) characterize the equilibrium owner values and

asset price in candidate efficient trade equilibria. Since this system is linear, if an efficient trade

equilibrium exists, it is unique. Moreover, this equilibrium exists if and only if inequality (9) is

satisfied. Combining (5) - (9), we have that the efficient trade equilibrium exists if and only if:

(χxH − π̂xH − (1− π̂)xL) + δ (1− π̂)
(1− λ) (1− π̂) (xH − xL)

1− δ (1− π̂) (1− λ)
≤ 0, (22)

where π̂ ≡ λπ
λπ+1−π . Note that the left-hand side is strictly decreasing in π, positive at π = 0

and negative at π = 1. Hence, the threshold π̄ET ∈ (0, 1) exists, is unique, and the efficient

trade equilibrium exists if and only if π ≥ π̄ET .

Inefficient trade. The equations (11), (12), and (13) characterize the equilibrium owner values

and asset price in candidate inefficient trade equilibria. Since this is a system of linear equations,
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if an inefficient trade equilibrium exists, it is unique. Moreover, this equilibrium exists if and

only if inequality (14) is satisfied. Combining (11) - (14), we have that the inefficient trade

equilibrium exists if and only if:

0 ≤ (χxH − π̂xH − (1− π̂)xL) + δ (1− π̂)
(1− λ+ λχ)xH − xL

1− δ
, (23)

where π̂ ≡ λπ
λπ+1−π . Note that the right-hand side is strictly decreasing in π, positive when

π = 0 and negative when π = 1. Hence, the threshold π̄IT ∈ (0, 1) exists, is unique, and the

inefficient trade equilibrium exists if and only if π ≤ π̄IT .

Existence and Multiplicity. Next, we show that π̄ET < π̄IT , which will establish that an equilib-

rium exists and that the two equilibria coexist whenever π ∈ (π̄ET , π̄IT ). From (22) and (23),

we have that π̄ET < π̄IT if and only if:

(1− λ) (1− π̂) (xH − xL)

1− δ(1− π̂)(1− λ)
|π=π̄ET <

(1− λ+ λχ)xH − xL
1− δ

, (24)

which holds because, for any π < 1, we have:

(1− λ) (1− π̂) (xH − xL)

1− δ(1− π̂)(1− λ)
≤ (1− λ) (xH − xL)

1− δ(1− λ)

<
(1− λ) (xH − xL) + λ(χxH − xL)

1− δ

=
(1− λ+ λχ)xH − xL

1− δ
,

where we used our parametric assumption that χxH ≥ xL.

Finally, as shown in text, the asset prices, output and welfare are strictly higher in the

efficient trade than in the inefficient trade equilibrium. That the two equilibria are Pareto

ranked follows from the fact that asset prices are higher in the efficient than in the efficient

trade equilibrium and by revealed preference of the high type to trade in the former.

Proof of Proposition 2. Consider the expressions defining the thesholds π̄IT and π̄ET :

(χxH − π̂xH − (1− π̂)xL) + δ (1− π̂)
(1− λ+ λχ)xH − xL

1− δ
|π=π̄IT = 0, (25)

and

(χxH − π̂xH − (1− π̂)xL) + δ (1− π̂)
(1− λ) (1− π̂) (xH − xL)

1− δ (1− π̂) (1− λ)
|π=π̄ET = 0, (26)

where in both cases the left-hand side is decreasing in π.
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First, note that limδ→0 π̄IT = limδ→0 π̄ET =
χxH−xL
xH−xL

χxH−xL
xH−xL

+
(

1−χxH−xL
xH−xL

)
·λ

, and thus the equilibrium

becomes generically unique as δ → 0.

Second, note that (i) thresholds π̄IT and π̄ET coincide as δ → 0, (ii) (1−λ)(1−π̂)(xH−xL)
1−δ(1−π̂)(1−λ)

|π=π̄ET <
(1−λ+λχ)xH−xL

1−δ (see proof of Theorem 1), and (iii) (1−λ)(1−π̂)(xH−xL)
1−δ(1−π̂)(1−λ)

is decreasing in π. Therefore,

π̄IT is increasing faster in δ than π̄ET , and so the difference π̄IT − π̄ET is increasing in δ.

Proof of Proposition 3. Let p∗t and Vt (θ, ω, p∗t ) denote the equilibrium asset price and value

of owner (θ, ω). It is again straightforward to show that at any time t all low types trade w.p.1

whereas the unshocked high types do not trade. Now, suppose that there exists a deterministic

equilibrium such that trade is efficient at t (i.e. (H,χ)-type trades) and inefficient at t+ 1 (i.e.

(H,χ)-type does not trade). Then, such an equilibrium must satisfy the following conditions:

(1) The equilibrium price and values at time t are:

Vt (H, 1; p∗t ) = xH + δ
(
λVt+1

(
H,χ; p∗t+1

)
+ (1− λ)Vt+1

(
H, 1; p∗t+1

))
,

p∗t = π̂Vt (H, 1; p∗t ) + (1− π̂)
(
xL + δp∗t+1

)
,

and it suffices to check that the (H,χ)-type does not want to deviate:

χxH + δ
(
λVt+1

(
H,χ; p∗t+1

)
+ (1− λ)Vt+1

(
H, 1; p∗t+1

))
≤ π̂Vt (H, 1; p∗t ) + (1− π̂)

(
xL + δp∗t+1

)
,

⇐⇒

π̂xH+(1− π̂)xL−χxH ≥ δ (1− π̂)
(
λVt+1

(
H,χ; p∗t+1

)
+ (1− λ)Vt+1

(
H, 1; p∗t+1

)
− p∗t+1

)
. (27)

(2) The equilibrium price and values at time t+ 1 are:

Vt+1

(
H,ω; p∗t+1

)
= ωxH + δ

(
λVt+2

(
H,χ; p∗t+2

)
+ (1− λ)Vt+2

(
H,χ; p∗t+2

))
for ω ∈ (χ, 1) ,

p∗t+1 = xL + δp∗t+2,

and it suffices to check that buyers do not want to deviate:

χxH+δ
(
λVt+2

(
H,χ; p∗t+2

)
+ (1− λ)Vt+2

(
H, 1; p∗t+2

))
≥ π̂Vt+1

(
H, 1; p∗t+1

)
+(1− π̂)

(
xL + δp∗t+2

)
,

⇐⇒

π̂xH + (1− π̂)xL − χxH ≤ δ (1− π̂)
(
λVt+2

(
H,χ; ; p∗t+2

)
+ (1− λ)Vt+2

(
H,χ; ; p∗t+2

)
− p∗t+2

)
.

(28)
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But, because trade is inefficient at t+1, it must be that λVt+1

(
H,χ; p∗t+1

)
+(1− λ)Vt+1

(
H, 1; p∗t+1

)
−

p∗t+1 ≥ λVt+2

(
H,χ; ; p∗t+2

)
+ (1− λ)Vt+2

(
H,χ; ; p∗t+2

)
− p∗t+2, with strict inequality if trade is

efficient at any time after t+ 1. Therefore, generically the inequalities (27) and (28) cannot be

satisfied at the same time, a contradiction. By analogous reasoning we can rule out inefficient

trade at t followed by efficient trade at t+ 1.

Consider a first-order Markov process zt that takes values in some finite set Z = {z1, ..., zN}
with N ≥ 2 elements and transition matrix Q; we assume that the process does not have any

absorbing states or trivial states that are never visited. Note that our results generalize to

higher order Markov processes since these can be transformed into first-order ones. Let Z∗

denote the subset of states in which the agents coordinate on playing efficient trade. Let IZ

denote the N × N identity matrix and 1Z be the N × 1 vector of ones. Also, let IZ∗ be the

matrix which coincides with IZ except that it has zeros on the diagonal entries that correspond

to the states z 6∈ Z∗. Finally, define ∆(Q,Z,Z∗)(z) ≡ λV (H,χ, z) + (1 − λ)V (H, 1, z) − p∗(z),

which can be expressed in terms of primitives as:

∆(Q,Z,Z∗) = M(Q,Z,Z∗) · v(Z,Z∗)

where

M(Q,Z,Z∗) = [IZ − (IZ∗ · (1− λ) · (1− π̂) + IZ − IZ∗) · δ ·Q]−1 ,

and

v(Z,Z∗) = IZ∗ · (1− λ) · (1− π̂) · (xH − xL) · 1Z + (IZ − IZ∗) · ((λχ+ 1− λ) · xH − xL) · 1Z .

The following theorem provides the necessary and sufficient conditions on the transition

matrix Q and the parameters of the model for the existence of a sentiment equilibrium. The

result stated in Proposition 4 is a special case.

Theorem 2 (Sentiments) Consider a first-order Markov process zt with values in some finite

set Z with at least two elements and with transition matrix Q. A sentiment equilibrium with

sunspot zt exists if and only if there is a non-empty set Z∗ ( Z such that:

1. There are no profitable deviations for the owners, which holds if and only if

π̂xH + (1− π̂)xL − χxH ≥ δ · (1− π̂) · max
zj∈Z∗

(
Q ·∆(Q,Z,Z∗)

)
(j) .
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2. There are no profitable deviations for the buyers, which holds if and only if:

π̂xH + (1− π̂)xL − χxH ≤ δ · (1− π̂) · min
zj 6∈Z∗

(
Q ·∆(Q,Z,Z∗)

)
(j) .

In particular, a sentiment equilibrium exists only if π ∈ (π̄ET , π̄IT ).

Proof of Theorem 2. Consider a sunspot process as stated in the theorem. For ω ∈ {χ, 1},
let V (H,ω) ≡ (V (H,ω, z))z∈Z denote the vector of high type values and p∗ ≡ (p∗ (z))z∈Z denote

the vector of equilibrium prices across states. A sentiment equilibrium with that sunspot exists

if and only if there exists a non-empty Z∗ ( Z such that:

1. There are no profitable deviations for the owners if and only if:

IZ∗ · (χxH · 1Z + δQ (λV (H,χ) + (1− λ)V (H, 1))) ≤ IZ∗ · p∗,

i.e. the (H,χ)-type owner would rather trade than keep her asset when the state is in Z∗.

2. There are no profitable deviations for the buyers if and only if:

(IZ − IZ∗) · (π̂V (H, 1) + (1− π̂) (xL · 1Z + δQp∗)) ≤ (IZ − IZ∗) · V (H,χ) ,

i.e. the buyers cannot make positive profits by attracting the (H,χ)-type to trade when

the state is outside Z∗.

The equilibrium values and prices can be computed using the equations (16) and (18):

V (H,χ) = IZ∗ · p∗ + (IZ − IZ∗) · (χxH · 1Z + δQ (λV (H,χ) + (1− λ)V (H, 1))) ,

V (H, 1) = xH · 1Z + δQ (λV (H,χ) + (1− λ)V (H, 1)) ,

p∗ = IZ∗ · (π̂V (H, 1) + (1− π̂) (xL · 1Z + δQp∗)) + (IZ − IZ∗) · (xL · 1Z + δQp∗) .

Define ∆(Q,Z,Z∗) ≡ λV (H,χ) + (1− λ)V (H, 1)− p∗, then using the equilibrium equations, we

can express the first existence condition as follows:

IZ∗ · δ (1− π̂)Q∆(Q,Z,Z∗) ≤ IZ∗ · (π̂xH + (1− π̂)xL − χxH) · 1Z ,

i.e. the elements of the vector δ (1− π̂)Q∆(Q,Z,Z∗) correspoding to states z ∈ Z∗ must be lower

than the same elements of the vector (π̂xH + (1− π̂)xL − χxH) · 1Z . The second existence
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condition can in turn be expressed as:

(IZ − IZ∗) · δ (1− π̂)Q∆(Q,Z,Z∗) ≥ (IZ − IZ∗) · (π̂xH + (1− π̂)xL − χxH) · 1Z ,

i.e. the elements of the vector δ (1− π̂)Q∆(Q,Z,Z∗) correspoding to states z 6∈ Z∗ must be greater

than the same elements of the vector (π̂xH + (1− π̂)xL − χxH) · 1Z . These are precisely the

existence conditions stated in Theorem 2. Finally, we can solve for ∆(Q,Z,Z∗) as:

∆(Q,Z,Z∗) = M(Q,Z,Z∗) · v(Z,Z∗)

where M(Q,Z,Z∗) and v(Z,Z∗) are given by:

M(Q,Z,Z∗) = [IZ − (IZ∗ · (1− λ) · (1− π̂) + IZ − IZ∗) · δ ·Q]−1 ,

and

v(Z,Z∗) = IZ∗ · (1− λ) · (1− π̂) · (xH − xL) · 1Z + (IZ − IZ∗) · ((λχ+ 1− λ) · xH − xL) · 1Z .

Next, because (1− λ+ λχ)xH − xL > (1− λ) (1− π̂) (xH − xL), we have that:

minzj∈Z∗
(
Q∆(Q,Z,Z∗)

)
(j) > (1− δ (1− λ) (1− π̂))−1 · (1− λ) (1− π̂) (xH − xL)

and

maxzj 6∈Z∗
(
Q∆(Q,Z,Z∗)

)
(j) < (1− δ)−1 · ((1− λ+ λχ)xH − xL) .

Hence, for a sentiment equilibrium to exist, it is necessary that π ∈ (π̄ET , π̄IT ) (see the condi-

tions (10) and (15)).

To establish Proposition 4, let Z = {G,B}, Z∗ = {G} and Q =

(
ρ 1− ρ

1− ρ ρ

)
. Then,

the vector ∆(Q,Z,Z∗) is given by:

[
∆(Q,Z,Z∗)(1)

∆(Q,Z,Z∗)(2)

]
=

[
1− δ (1− λ) (1− π̂) ρ −δ (1− λ) (1− π̂) (1− ρ)

−δ (1− ρ) 1− δρ

]−1

·

[
(1− λ)(1− π̂)(xH − xL)

(λχ+ 1− λ)xH − xL

]
,

and the existence conditions become:

π̂xH + (1− π̂)xL − χxH ≥ δ (1− π̂)
(
ρ∆(Q,Z,Z∗)(1) + (1− ρ)∆(Q,Z,Z∗)(2)

)
,
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and

π̂xH + (1− π̂)xL − χxH ≤ δ (1− π̂)
(
(1− ρ)∆(Q,Z,Z∗)(1) + ρ∆(Q,Z,Z∗)(2)

)
.

By inspection, it is clear that generically these conditions hold if and only if π ∈ (π̄ET , π̄IT ) and

ρ is sufficiently large.

Appendix B - Proofs for Section 4

Proof of Proposition 5. Using the same arguments as in the construction of the efficient

trade equilibrium in Section 3.2, we can show that the efficient trade equilibrium exists if and

only if:

χxH − π̂xH − (1− π̂)xL + δ (1− ρ̂ω) (1− π̂) ·

(
1−ρω
1−ρ̂ω − π̂

)
(xH − xL)

1− δ (1− ρ̂ω) (1− π̂)
≤ 0, (29)

where ρ̂ω = 1−ρω
1−λ λ and π̂ = πρ̂ω

πρ̂ω+1−π . Note that this inequality becomes the same as (10) when

ρω → λ. The left-hand side is strictly decreasing in π, positive at π = 0 and negative at π = 1.

Hence, the threshold π̃ET ∈ (0, 1) that sets this inequality to an equality exists, is unique, and

the efficient trade equilibrium exists if and only if π ≥ π̃ET .

Analogously, we can show that the inefficient trade equilibrium exists if and only if:

0 ≤ χxH − π̂xH − (1− π̂)xL + δ (1− π̂)

(
χ+ 1−ρω

1−δ(ρω−ρ̂ω)
(1− χ)

)
xH − xL

1− δ
, (30)

where ρ̂ω = 1−ρω
1−λ λ and π̂ = πλ

πλ+1−π . Note that this inequality becomes the same as (15) when

ρω → λ. The right-hand side is strictly decreasing in π, positive at π = 0 and negative at π = 1.

Hence, the threshold π̃IT ∈ (0, 1) that sets this inequality to an equality exists, is unique, and

the inefficient trade equilibrium exists if and only if π ≤ π̃IT .

Define threshold π̃ITC to be the value of π that sets inequality (30) to equality, but where

π̂ = πρ̂ω

πρ̂ω+1−π . We will show shortly that a cyclical equilibrium of period T > 1 exists when

π ∈ (π̃IT , π̃ITC), where the interval is non-empty since ρω > λ implies π̃IT < π̃ITC . Next, we

establish that π̃ET < π̃ITC , which proves our result that when π ∈ (π̃ET , π̃ITC), the efficient

trade equilibrium coexists with either the inefficient or the cyclical trade equilibrium. But the
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latter inequality holds if and only if:

(1− ρ̂ω)
(

1−ρω
1−ρ̂ω − π̂

)
(xH − xL)

1− δ (1− ρ̂ω) (1− π̂)
|π=π̃ET <

(
χ+ 1−ρω

1−δ(ρω−ρ̂ω)
(1− χ)

)
xH − xL

1− δ
, (31)

which follows from the fact that for any π < 1,

(1− ρ̂ω)
(

1−ρω
1−ρ̂ω − π̂

)
(xH − xL)

1− δ (1− ρ̂ω) (1− π̂)
|π=πET ≤

(1− ρω) (xH − xL)

1− δ (1− ρ̂ω)

<
(1− ρω) (xH − xL) + ρω (χxH − xL)

1− δ

=
(1− ρω + ρωχ)xH − xL

1− δ

≤

(
χ+ 1−ρω

1−δ(ρω−ρ̂ω)
(1− χ)

)
xH − xL

1− δ
,

where we used that χxH ≥ xL and ρω > ρ̂ω.

We now show that when π ∈ (π̃IT , π̃ITC), then there exists a cyclical equilibrium of length

T > 1. Thus, consider a candidate equilibrium with cycle length T . Let τ ∈ {1, ..., T} denote

the time that has passed since the (H,χ)-types traded the last time. The stationary distribution

of pool quality is then given by:

π̂τ =
πρ̂ω · 1−(ρω−ρ̂ω)τ

1−(ρω−ρ̂ω)

πρ̂ω · 1−(ρω−ρ̂ω)τ

1−(ρω−ρ̂ω)
+ 1− π

, (32)

where π̂τ is strictly increasing in τ with π̂1 = π·ρ̂ω
π·ρ̂ω+1−π <

π·λ
π·λ+1−π = limτ→∞π̂.

Let Vτ and pτ denote the equilibrium owner values and asset prices, as they depend on τ .

Then,

p∗τ =

xL + δ · p∗τ+1 if τ < T

π̂T · VT (H, 1) + (1− π̂T ) · (xL + δ · p∗1) if τ = T
, (33)

and the values are Vτ (L, χ) = Vτ (L, 1) = p∗τ ,

Vτ (H, 1) = xH + δ · (ρ̂ω · Vτ+1 (H,χ) + (1− ρ̂ω) · Vτ+1 (H, 1)) , (34)

Vτ (H,χ) =

χ · xH + δ · (ρω · Vτ+1 (H,χ) + (1− ρω) · Vτ+1 (H, 1)) if τ < T

p∗T if τ = T
. (35)
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To show that such an equilibrium exists, we must check that neither the buyers nor the owners

want to deviate, i.e., the buyers cannot attract the (H,χ)-type in periods τ 6= T :

Vτ (H,χ) ≥ π̂τ · Vτ (H, 1) + (1− π̂τ ) ·
(
xL + δ · p∗τ+1

)
, (36)

and the (H,χ)-type prefers to trade rather than keep her asset in period T :

p∗T ≥ χ · xH + δ · (ρω · V1 (H,χ) + (1− ρω) · V1 (H, 1)) . (37)

Notice that the efficient trade equilibrium is a special case of a cyclical equilibrium, in which

the cycle legth is T = 1, whereas the inefficient trade equilibrium has cycle T =∞. Therefore,

when π ∈ (π̃IT , π̃ICT ), neither T = 1 nor T = ∞ can be an equilibrium. In the former case,

the (H,χ)-type owner wants to deviate and keep her asset. In the latter case, the buyers want

to deviate and attract the (H,χ)-type to trade. Next, we show that there exists a 0 < T <∞
such that neither the buyers nor the owners want to deviate, thus establishing the result.

These no-deviation conditions can be expressed compactly as follows:

π̂τ ·Vτ (H, 1)+(1− π̂τ )·
(
xL + δ · p∗τ+1

)≤ χ · xH + δ · (ρω · Vτ+1 (H,χ) + (1− ρω) · Vτ+1 (H, 1)) if τ < T

≥ χ · xH + δ · (ρω · V1 (H,χ) + (1− ρω) · V1 (H, 1)) if τ = T
.

(38)

In search of a contradiction, suppose that for all T :

π̂τ ·Vτ (H, 1) + (1− π̂τ ) ·
(
xL + δ · p∗τ+1

)
≤ χ · xH + δ · (ρω · Vτ+1 (H,χ) + (1− ρω) · Vτ+1 (H, 1)) .

(39)

Fix τ and note that limT→∞ Vτ+1 (H,ω) = V
(
H,ω, p∗IT

)
and limT→∞ p

∗
τ+1 = pIT . But then

as T grows large, (39) becomes the same as (30), which defines threshold π̃IT , except that the

pool quality π̂ = πλ
πλ+1−π is replaced with π̂τ . Since π > π̃IT , (30) is violated. Because π̂τ → π̂,

there exists a finite τ such that (39) is violated as well.

Proof of Proposition 6. If ρω < λ, using the definitions of thresholds π̃ET and π̃IT , we have

lim
δ→0

π̃ET =

χxH−xL
xH−xL

χxH−xL
xH−xL

+
(

1− χxH−xL
xH−xL

)
· ρ̂ω

<

χxH−xL
xH−xL

χxH−xL
xH−xL

+
(

1− χxH−xL
xH−xL

)
· λ

= lim
δ→0

π̃IT .
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Appendix C - Asset quality shocks

We now extend our baseline setup to the case in which there are shocks to asset quality.

We denote the quality of asset i at time t by θi,t. As in our baseline setup, the unconditional

probability of an asset being high quality is P (θi,t = H) = π; but we now assume that P (θi,t+1 =

H|θi,t = H) = ρθ ∈ [π, 1]. The quality shocks are assumed to be independent across assets, so

the fraction of good quality assets at any point in time is also given by π.

Using the same arguments as in the construction of the efficient trade equilibrium in Section

3.2, we can show that the efficient trade equilibrium exists if and only if:

χxH − π̂xH − (1− π̂)xL + δ̂(1− π̂)
(1− λ)(1− π̂)(xH − xL)

1− δ̂(1− λ)(1− π̂)
≤ 0, (40)

where δ̂ ≡ δ ρ
θ−π
1−π and π̂ = πλ

πλ+1−π . This condition is the same as equation (10) that determines

the existence of the efficient trade equilibrium in our baseline model, with the only exception

of δ̂ replacing the discount factor δ. Therefore, the efficient trade equilibrium exists under

the same conditions as in the baseline economy, but with the discount factor adjusted to δ̂.

Otherwise, the equilibrium is generically unique.

Analogously, we can show that the inefficient trade equilibrium exists if and only if:

0 ≤ χxH − π̂xH − (1− π̂xL) + δ̂ (1− π̂)
(1− λ+ λχ)xH − xL

1− δ̂
, (41)

which is the same as equation (15) that determines the existence of the inefficient trade equi-

librium in our baseline model, with the only exception of δ̂ replacing the discount factor δ.

Therefore, the inefficient trade equilibrium exists under the same conditions as in the baseline

economy, but with the discount factor adjusted to δ̂.

Therefore, we have that 0 < π̃ET < π̃IT < 1 if and only if ρθ > π, π̃IT − π̃ET is increasing in

ρθ, and it goes to zero as ρθ → π.
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