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The perfect competition assumption, widely used inmany areas of economics, as-

sumes agents are so small that they take prices as given. By applying this assumption to

information asymmetry, rational expectations equilibrium features both price-taking

behavior and fully revealing prices. For example, Grossman and Stiglitz (1980) and

Hellwig (1980) assume perfect competition and show the price becomes fully reveal-

ing as noise trading vanishes. This is problematic because traders must ignore their

effect of trading on prices. It raises the questions of whether perfect competition is an

adequate approximation when traders have private information.

Herewe investigate the strategic foundations for rational expectations equilibrium.

We ask whether the Bayesian Nash equilibrium of a model with a finite number of

traders converges to rational expectations equilibrium as the market becomes large.

We study a one-periodmodel in which traders submit demand schedules to buy or sell

shares of a risky asset. Traders have two private signals, one about the asset’s value

and the other about their endowments. Random endowments motivate risk-averse

traders to trade for hedging motives. A large market is typically modeled as consisting

of infinitely many traders with different private information. In this paper, we divide

traders into groups so that each trader competes not only with the other groups, who

have different signals, but also with his own groupmembers, who who share the same

signals. We assume random variables are normally distributed, and traders have expo-

nential utility with the same risk aversion, endowment shocks with the same variance,

and private information with the same precision. These symmetry assumptions make

the model analytically tractable. Each group’s aggregative risk aversion, each group’s

aggregate endowment shock, and the precision of each group’s information are held

constant as the number of members per group increases.

Wefind that a strategic equilibriumdoesnot approach a rational expectations equi-

librium as the number of groups or the number of competitors per group goes to infin-

ity. Perfect competition and fully revealing prices cannot be achieved simultaneously.

The economic intuition for this result is developed in the following six steps.

First, we measure competition by the quantity a trader trades as a fraction of the

quantity he would trade as a price taker, and we measure price informativeness by

the fraction of other traders’ information a trader extracts from prices. In character-

izing equilibrium, only three parameters matter: the number of groups, the number

of competitors per group, and our measure of adverse selection, the ratio of private

information to endowment shocks.
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Second, price informativeness is solely a function of adverse selection; it does not

depend on the number of groups or number of competitors per group. As infinitely

many competitors share the same information, the market becomes perfectly com-

petitive. We show that this limit corresponds to themodel of Diamond and Verrecchia

(1981). In equilibrium, the price remains partially revealing. Intuitively,more competi-

tionmakes traders trademore aggressively on their private information. This does not

affect price informativeness because traders trade equally more aggressively on their

endowment shocks.

Third, themarket does not become perfectly competitive as infinitelymany groups

compete with different information. Since each group has unique private informa-

tion, traders remain “large” becausenew information continues tomove theprice even

when the group becomes “small” relative to the market. Perfect competition requires,

but is not guaranteed by, infinitely many competitors sharing the same information.

Fourth, as adverse selection increases, the price becomesmore informative but the

market becomes less competitive. The price becomes informative through the pro-

cess by which each trader moves the price towards his own valuation. The more the

price incorporates private information of a trader, the smaller the quantity he trades

compared with a price taker. Thus, importantly, optimal exercise of market power has

opposite implications for price informativeness and competition.

Fifth, theexistenceof equilibriumrequires adverse selection tobe sufficiently small.

Following the spirit of trembling hand perfect equilibrium, we add a vanishingly small

amount of exogenous noise trading to a setup in which endowment shocks alone are

too small for equilibrium to exist. This guarantees that there is always a well-defined

equilibrium in the limit, even though the expected losses of noise traders are zero. In

such an equilibrium, the market is infinitely noncompetitive in the sense that trade

vanishes.

Lastly, without endowment shocks, thepricebecomes fully revealingwhile themar-

ket remains infinitely noncompetitive as the number of competitors per group goes to

infinity. With a finite number of traders, the price is partially revealing. Each trader in-

corporates a maximum of one half of his private information into prices. As the num-

ber of competitors increases to infinity, each trader continues to move the price and

the price becomes fully revealing. Even when they become “small” in terms of private

information, they remain “large” in terms of their effect on the price. Importantly, the

price becomes fully revealing because the market remains noncompetitive. Almost-
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perfect competitors trade large quantities like price takers, and they choose to do so

because little of their private information gets incorporated into prices.

Combining the six results, we confirm that either traders becomeprice takers or the

price becomes fully revealing, but not both, as the number of competitors who share

the same information goes to infinity. The key intuition is the opposite implications

for competition and price informativeness that result from strategic traders’ optimal

exercise of market power.

Such an interaction between price informativeness and competition is absent in

the model of Grossman and Stiglitz (1980), who assume price-taking. The paradox in

their model is that no trader has an incentive to acquire costly information because

the price becomes fully revealing as noise trading vanishes. In our model, the price is

always partially revealing with a finite number of traders; the paradox disappears.

Our no-trade and noisy-price result with vanishing noise trading is different from

the framework of Milgrom and Stokey (1982), who always find a fully revealing price

with no trade. Moreover, even though we allow initial allocations to be Pareto ineffi-

cient, there may still be no trade despite substantial gains from trade. Whether there

are better tradingmechanisms for internalizing gains from trade is left for future study.

Developing the strategic foundations for rational expectations equilibriumhasbeen

the topic of many papers. Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels

(1997), and Kremer (2002) study whether the price becomes fully revealing as themar-

ket becomes large in amodel where buyers are strategic but sellers are not. Kyle (1989)

assumes that informed traders are strategic, but trading is sustained by exogenous

noise traders rather than endowment shocks. In a model in which traders can buy or

sell one unit of an indivisible good, Reny and Perry (2006) show that rational expec-

tations equilibrium is obtained as the market becomes large. Vives (2011) examines a

model of strategic supply-function competition that is similar to ourdemand-schedule

competition.

Our paper is different from the closely related literature in three ways. First, we

use exponential utility while Vives (2011), Rostek andWeretka (2012, 2015) and Berge-

mann, Heumann and Morris (2015) use quadratic storage costs. This is qualitatively

different from exponential utility. With exponential utility, but not with quadratic stor-

age costs, a more informative price makes the market less competitive by decreasing

the riskiness of the asset. Second, in our model, each trader has two signals, and this

prevents traders from inferring the averageof other traders signals perfectly. In amodel
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of correlated private values, Vives (2011) assumes each trader has one signal about

his own private value; symmetry makes the price fully revealing. Rostek and Weretka

(2012, 2015) extend this approach to allow heterogeneous correlations among traders’

private values. Bergemann, Heumann and Morris (2015) study a more general infor-

mational environment that allows confounding between common and private com-

ponents of a signal. They note such confounding is an important element in the infor-

mational environment. In our model, there is confounding between the two signals.

Lastly, by dividing traders into groups, we clearly show how the effect of the number of

groups differs from that of the number of competitors per group.

The plan for this paper is as follows. Section 1 describes the setup of themodel and

defines an equilibrium. Section 2 characterizes an equilibriumandprovides the condi-

tions for existence and uniqueness of an equilibrium. Section 3 analyzes comparative

staticswhen there is nonoise trading and shows that price informativeness is indepen-

dent of the number of competitors who share the same private information. Section 4

introduces an equilibrium with vanishing noise trading and shows that the market is

always infinitely noncompetitive in such an equilibrium. Section 5 concludes.

1 Setup

There is one round of trading in which traders exchange a single risky asset against a

safe asset whose return is normalized to one. The exogenous liquidation value of the

risky asset v is distributed N
�
0, σ2V

�
with σ2V > 0. There are N symmetric groups of

traders. Each group consists ofM identical informed speculators. Altogether, there are

M N traders indexed (m, n). Each informed trader has exponential utilitywith constant

risk aversion parameterM ρ; thus, ρ > 0measures the aggregate absolute risk aversion

of each group.

Before trading, each trader (m, n) in group n obtains two identical signals. First, all

traders in group n obtain an identical private signal about v given by

in = τ
1/2
I

(

v

σV

)

+ en, where en ∼ N (0, 1) . (1)

Each signalprovides imperfect informationabout the liquidationvaluev . Sincevar {in} =

1+ τI , the precision parameter τI is a signal-to-noise ratio in which the signal τ
1/2
I

(

v
σV

)

has variance τI and the noise en has variance equal to one. The error terms in the sig-
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nals e1, . . . , eN are distributed independently. This implies that private information is

different across different groups n = 1, . . . , N even though it is the same for the M

members of group N .

Second, each trader in group n receives an identical random endowment of sm,n ≔

1
M

sn sharesof the riskyasset. Thequantity sn is distributed independently across groups

n with sn satisfying

sn ∼ N
�
s̄n, σ

2
S

�
, where

N
∑

n=1

s̄n = 0. (2)

Each trader observes the realization of his own endowment sn , knows his ownmean s̄n ,

and knows that the aggregatemean endowment is zero. Each trader infers the identical

endowmentof othermembers of his owngroupn butdoesnot observe the endowment

of any other group.

The model is set up so that the group’s aggregate absolute risk aversion (ρ), ag-

gregate endowment shock (σ2S ), and quality of private information (τI ) do not change

when the number of traders within each group (M ) changes. AsM increases, more and

more traderswith the sameprivate informationcompetewithoneanother. At the same

time, each trader becomes smaller in the sense that his risk bearing capacity ((M ρ)−1)

is less. Varying the parameter M changes in the competitiveness with which trading

on private information about payoffs and endowments takes place without changing

other aspects of the economy. We refer to M as the number of competitors.

Noise traders demand a random quantity z which is distributed N
�
0, σ2Z

�
. Noise

traders do not optimize anything; their trading is exogenous. Since themodel does not

require exogenous noise traders, themodel allowsσ2Z = 0. In fact, most of our analysis

assumes that σ2Z is exactly zero or approaches zero, in which case the expected loss of

noise traders is zero. Assume all random variables are jointly normally distributed so

that v ; e1, . . . , eN ; s1, . . . , sN ; and z are all independently distributed.

Except for different mean endowments s̄n , the model is symmetric in that it looks

the same from the perspective of every informed trader. Before the realization of pri-

vate information and endowment shocks, all traders have identical risk aversion, iden-

tical beliefs about the signal precision, and identical beliefs about the distribution of

endowment shocks about their means. If we were to think ofM as representing a con-

tinuum of perfect competitors, our model without noise trading would collapse to the

model of Diamond and Verrecchia (1981).
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Trading. After observing his own endowment shocks sn and private signal in , each

trader (m, n) submits a demand schedule Xm,n (p | in, sn). This notation means that

Xm,n is a function of the price p , and the function is measurable with respect to sn and

in .

Let X denote the M × N matrix of submitted demand functions whose (m, n)th

element corresponds to Xm,n . An auctioneer aggregates all M N functions to calculate

a market clearing price, denoted p (X ), which satisfies the market clearing condition

N
∑

n=1

M
∑

m=1

Xm,n (p) + z = 0. (3)

If there is no market clearing price, then there is no trade (xm,n = 0 for all (m, n)). If

there are many market clearing prices, then the auctioneer chooses the smallest price

which minimizes trading volume. Given the matrix of submitted demand schedules,

trader (m, n) realizes wealth

wm,n (X ) := v
sn

M
+ (v − p (X )) Xm,n (p (X )) (4)

and achieves expected utility

um,n (X ) := E
�
− exp (−M ρwm,n (X ))

	
. (5)

Themodel is describedby sevenexogenousparameters: M ,N , τI , ρ,σV ,σZ andσS .

There are twodimensions ofmeasurement: dollars and shares. TheparametersσZ and

σS have dimensions of shares, the parameter σV has dimensions of dollars-per-share,

and ρ has dimensions of per-dollar. In what follows, we use ρ and σV as units to scale

variables in dollars-per-share by σV and variables in shares by (ρσV )
−1. Therefore it is

crucial to assume ρ > 0 and σV > 0.

The equilibrium concept is a Bayesian Nash equilibrium. An equilibrium is a ma-

trix of demand schedules X such that (1) a market clearing price p(X ) is always well

defined, and (2) for all m = 1, . . . , M and n = 1, . . . , N , trader (m, n) chooses his

demand schedule Xm,n to maximize his expected utility um,n (X ), taking as given the

demand schedules of the other M N − 1 traders.
Define a symmetric linear equilibrium as an equilibrium inwhich all traders choose
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the same linear demand schedule

ρσV Xm,n (p | in, sn) = πC − πS ρσV sn + πI in − πP

p

σV
, (6)

where the four endogenous parameters πC , πS , πI , and πP define the same linear func-

tion Xm,n for all m = 1, . . . , M and n = 1, . . . , N . Multiplying Xm,n (p | in, sn) and sn by

ρσV and dividing p by σV scales the four parameters πC , πS , πI , and πP to make them

dimensionless. This scaling convention is used throughout this paper.

If M N πP = 0, then every trader submits a totally inelastic demand schedule, and

the resulting aggregate demand is either identically zero or some random quantity

which is non-zero with probability one. Market clearing requires this aggregate de-

mand to be identically zero; this further requires noise trading to be zero with proba-

bility one (σ2Z = 0) and each trader’s demand to be identically zero (Xm,n ≡ 0, for all

m, n). In such a no-trade equilibrium, the market clearing price is not uniquely deter-

mined since anyprice can support the allocation. Such an equilibriumexistswhenever

σ2Z = 0. We call this a trivial no-trade equilibrium and exclude it from the following

analysis.

Our goal is to characterize existence and uniqueness of symmetric linear equilib-

ria. Discussing asymmetric equilibria or equilibria with non-linear strategies takes us

beyond the scope of this paper.

2 Equilibrium

Tounderstandequilibrium, it is intuitivelynecessary tomodelhow learning fromprices

andexercisingmarketpower simultaneously affect thedemandschedules traders choose.

To accomplish this, we introduce a “price informativeness” parameter and a “market

noncompetitiveness” parameter and then discuss how the values of these two param-

eters trade off against each other. This discussion leads to the counterintuitive result

that a more informative price goes together with a less competitive market.

Theequilibriumsolutionproceeds infive stepsusing theno-regretpricingapproach.

A trader (1) observes his residual supply schedule, (2) learns about other traders’ pri-

vate information from the intercept of this schedule, (3) finds the optimal quantity on

his residual supply schedule, (4) and implements this optimal quantity by submitting

a demand schedule, which (5) is the same as the demand schedules conjectured for

7



other traders.

Residual Supply Schedule. Trader (m, n) conjectures and takes as given symmetric

linear demand schedules for the other traders, described by the four endogenous pa-

rameters πC , πI , πS and πP as in (6). Ruling out trivial no-trade equilibria as discussed

above (M N πP , 0), the market clearing condition (3) implies that trader (m, n) has a

well-defined residual supply schedule given by

p

σV

=

pm,n

σV

+

1

(M N − 1) πP

ρσV xm,n . (7)

The intercept pm,n is given by

pm,n

σV

=

∑

(m ′,n ′),(m,n) (πC + πI in ′ − πS ρσV sn ′) + ρσV z

(M N − 1) πP

. (8)

Trader (m, n), by submitting a demand schedule, is able to condition the quantity de-

manded on the market clearing price. This implies that the trader can choose the op-

timal demand as if he already observes themarket clearing price p as well as the price

that would prevail if he did not trade pm,n .

In units of dollars per share, (7) can be written

p = pm,n + λxm,n, with λ =
ρσ2V

(M N − 1)πP

, (9)

where λ is the price impact parameter defined in Kyle (1985) and Kyle (1989). Price

impact λmeasures howmuch the per-unit price of the risky asset changes in response

to the informed trader’s buying one more share.

Since the model is symmetric about zero, this implies that the constant πC in the

demand schedule can be shown to be zero in equilibrium, regardless of the values of

other parameters. For the purpose of exposition, we assume πC = 0 without loss of

generality.

Learning fromthePrice. Trader (m, n) infers other traders’ private information from

the intercept pm,n in (8). Let τ∗ denote the dimensionless ratio of the prior variance
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(σ2V ) to the posterior variance (var
�
v
�

pm,n, in, sn

	
) of the liquidation value given by

τ∗ =
σ2V

var
�
v
�

pm,n, in, sn

	 . (10)

Symmetry implies that τ∗ is the same across all traders. Since the posterior variance

is at least as accurate as the prior variance, the inequality τ∗ ≥ 1 holds by definition.

Trader (m, n)’s learning from the price is described by the following lemma. All proofs

are in the Appendix.

Lemma 1 (Learning From Prices.). Assume (N − 1) τI πI , 0. Then τ
∗ can be written

τ∗ = 1 + τI + (N − 1) τI ϕ, (11)

where ϕ is given by

ϕ = *
,1 +

(

πS ρσVσS

πI

)2

+

(

1

N − 1

)

(

ρσVσZ

M πI

)2+
-
−1

. (12)

Trader (m, n)’s conditional expectation of the fundamental value is given by

E

{

v

σV

����� pm,n, in, sn

}

=

√
τI

τ∗

(

in +
(N − 1) ϕπP

πI

pm,n

σV

−
(

M − 1
M

)

ϕ

(

in −
πP

πI

pm,n

σV

− πS

πI

ρσV sn

))

.

(13)

The dimensionless endogenous parameter ϕ given by (12) is both intuitively and

analytically important in this paper. From (10), the parameter ϕ ∈ [0, 1] intuitively

measures how much information about v trader (m, n) extracts from prices as a frac-

tion of the total precision of other traders signals; we refer to ϕ as “price informative-

ness.” If ϕ = 0, then no information is extracted. If ϕ = 1, then the maximum amount

of information is extracted. When traders are identical (N = 1), traders have no pri-

vate information (τI = 0), or traders do not trade on the private information they have

(πI = 0), then there is no learning from the price. We set ϕ = 0 in these cases.

When there is more than one trader in each group (M > 1), the intercept of trader

(m, n)’s residual supply schedule pm,n is already a function of his own private informa-

tion in and endowment shock sn because of the demand schedules submitted by the

other M − 1 traders in the group. In the valuation of the risky asset (13), trader (m, n)
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uses in and sn to eliminate the effect of trading by his own group members to extract

the private information of other groups accurately.

OptimalQuantityTraded. All randomvariables are jointlynormallydistributed, and

trading strategies are linear. Thus, the trading strategy which maximizes exponential

utility in (5) is the sameas the trading strategywhich solves thequadraticmaximization

problem

max
xm,n

{

E
�
wm,n(xm,n)

�
pm,n, sn, in

	
− M ρ

2
var

�
wm,n (xm,n)

�
pm,n, sn, in

	}
. (14)

Using (7) and (10), the first-order condition is

E

{

v

σV

����� pm,n, sn, in

}

−
pm,n

σV

− M

τ∗
ρσV sm,n −

(

2

(M N − 1) πP

+

M

τ∗

)

ρσV xm,n = 0. (15)

Define the “market noncompetitiveness” parameter χ by1

χ :=
τ∗

(M N − 1) πP M
=

τ∗

M ρσ2V
λ. (16)

Then the second-order condition can be written as

χ > −1
2
. (17)

If χ < −1/2 holds, the trader can obtain infinite utility by buying or selling an infinite
quantity, and hence an equilibrium does not exist.

To provide the intuition for χ, define a trader’s “target inventory” by

sT I
m,n ≔

E
�
v
�

pm,n, in, sn

	
− pm,n

M ρσ2V /τ
∗ . (18)

The target inventory sT I
m,n is the quantity a trader would demand to hold if he traded

like a perfect competitor, ignoring price impact resulting from a nonzero slope λ of

1The second inequality in (16) gives an alternativeway of writing χ using the definition of λ from (9).

In theone-periodmodel ofKyle (1985), the informed trader is amonopolist. This corresponds to χ → ∞,
with the informed trader moving the price to a point half-way between his value and his expected price

if he does not trade. In Kyle (1989), the “information incidence” parameter ζmeasures the change in the

equilibrium price as a response to the change in the trader’s valuation. When M = 1, this is similar to

parameter χ/(1 + 2χ), which is always positive but less than one-half.
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the residual demand schedule. If the trader achieves the target inventory, he would

choose not to trade. Substituting (18) into the first-order condition (15) yields the op-

timal quantity traded

xm,n =
1

1 + 2χ

�
sT I

m,n − sm,n

�
. (19)

The fraction 1/(1 + 2χ)measures the optimal quantity a trader chooses to trade as a

fraction of how much he would trade if he were a price taker. If χ = 0, the market is

perfectly competitive; if χ → ∞, , the market is infinitely noncompetitive, and traders

trade a vanishingly small fraction of the quantity needed to achieve their target inven-

tories. We show in Theorem 1 that χ is nonnegative in equilibrium.2

The endogenous parameter χ is a scaled ratio of market impact to risk aversion.

When χ is small, risk aversion restricts trading more than market impact, and thus

traders trade quantities closer to target levels. When χ is large, market impact restricts

trading more than risk aversion, and traders trade only a small fraction of the quantity

needed to reach target inventories.

Market noncompetitiveness χ also determines the extent to which a trader moves

the price towards his valuation of the risky asset:

p − pm,n =
1

2

(

1 − 1

1 + 2χ

) (

E
�
v
�

pm,n, in, sn

	
−

M ρσ2V

τ∗
sm,n − pm,n

)

. (20)

Trader (m, n) optimally chooses howmuch tomove the price from pm,n , the prevailing

price if trader (m, n) did not trade, towards his own valuation of the risky asset ad-

justed for his endowment shock (E
�
v
�

pm,n, in, sn

	
− (M ρσ2V /τ∗)sm,n). If the market is

very competitive (χ close to zero), the trader does notmove the price much (p close to

pm,n). When the trader exercises great monopoly power (χ close to infinity), a trader

will move the the price more, to a level almost halfway between the prevailing price

and his valuation of the asset.

Comparing the quantity factor 1
1+2χ

from (20) with the price factor 1
2

(

1 − 1
1+2χ

)

from (19) shows that market noncompetitiveness χ has opposite effects on quantity

and price. When noncompetitiveness χ increases, a trader chooses to restrict his trad-

2This paper supersedes an earlier version Kyle and Lee (2016) which considers amore general model

in which traders have heterogeneous prior beliefs on the precision of their signals. In the special case

when all traders are relatively underconfident andM ≥ 2, χ can satisfy− 1
2
< χ <, 0 in equilibrium. This

paper’s common prior setup implies χ ≥ 0 in equilibrium. Kyle, Obizhaeva andWang (2016) consider a

model with disagreements but no endowment shock and no noise trading.
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ingmore, but theprice incorporates a larger fractionofhis information. A trader chooses

to trade a competitive quantity only when his private information does not get incor-

porated into the price.

As an index of noncompetitiveness, χmaybebroadly applied outside our symmet-

ric model to compare how much illiquidity affects the trading of different traders in

different markets. To evaluate and refine trading strategies, asset managers often cal-

culate the ratio of market impact costs to expected trading profits (alpha). The param-

eter χmeasures exactly this ratio. It is a trader’s dollar cost of reaching target inventory

as a fraction of a “paper-trading” profit (dollar profit in the absence of price impact).

To apply χ to asset management, think of the reciprocal of risk aversion as measuring

assets under management. Market noncompetitiveness χ is high when assets under

management are high, market impact is high, or learning significantly increases the

precision.3

This effect of learning on market noncompetitiveness is absent in the quadratic

storage cost model used by Vives (2011), Rostek and Weretka (2012, 2015) and Berge-

mann, Heumann and Morris (2015). We can define a hypothetical quadratic storage

cost parameter γ by γ := ρσ2V /τ
∗. If τ∗ were a constant, then the quadratic storage cost

model and the exponential utility model would be the same. In fact, τ∗ defined by (10)

increases in exogenous parameters τI and N and endogeneous parameter ϕ. There-

fore, when the amount of learning varies due to changes in τI ,N , or ϕ, the twomodels

obtain different results. According to (16), if τ∗ were a constant, then χ would be sim-

ply proportional to λ. In this sense, with quadratic storage costs, a more informative

price does not directly reduce competition.

Trader (m, n) can implementhis optimal quantityxm,n by substitutinghis valuation

of the risky asset (13) into the optimal quantity traded (19) to obtain the best response

strategy Xm,n to the symmetric strategies of other traders.

Lemma 2 (Best Response). Assume χ > −1
2
. If the otherM N −1 traders chose strategies

defined by the parameters πI , πP , and πS , then trader (m, n)’s best response is the optimal

3Risk tolerance 1/ (M ρ) intuitively corresponds to assets under management. For a small mean µ

and small variance σ2, the competitive demand function for a log-utility investor with wealthW is ap-

proximatelyW µ/σ2. When this is compared to the CARA-normal competitive demand ρ−1µ/σ2, it is

easy to see that 1/ρmaps directly into wealthW .
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demand schedule Xm,n (p | in, sn) given by

*
,1 + χ +

ϕτ
1/2
I

M 2πI

+
-M ρσV Xm,n (p | in, sn) = τ

1/2
I in − *,τ

∗ −
(N − 1) ϕτ1/2I πP

πI

+
-

p

σV

− ρσV sn

−
(M − 1) ϕτ1/2I

M

(

in −
πP

πI

p

σV

− πS

πI

ρσV sn

)

,

(21)

where τ∗, ϕ and χ are given by (11), (12) and (16) respectively.

CharacterizationofEquilibrium. A linear symmetric equilibriumis foundbyequat-

ing a trader’s best response (21) to the strategy the trader conjectures that others are

playing. An equilibrium can be fully characterized using the exogenous parameters

and the single endogenous informativeness parameter ϕ.

Theorem 1 (Characterization of Symmetric Linear Equilibrium). Suppose ρ > 0,σV >

0, and M N > 2. If (N − 1) τI > 0, then the set of symmetric linear equilibria, excluding

trivial no-trade equilibria, is characterized by the set of all endogenous parameters ϕ

such that (1) ϕ solves

1 − ϕ
ϕ
=

(ρσVσS )
2

τI
+

(ρσV σZ )
2 / (N − 1)

τI
�

M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
�2 , (22)

and (2) ϕ satisfies the second-order condition

ϕ <
M N − 2

M N + N − 2
. (23)

If (N − 1) τI = 0, an equilibrium is characterized by ϕ = 0.

With τ∗ given by (11), the equilibrium demand schedule of trader (m, n) is given by

ρσV Xm,n (p | in, sn) =
(M N − 2 − (M N + N − 2) ϕ)

M (M N − 1)

(

τ
1/2
I in − ρσV sn −

τ∗

1 + (N − 1) ϕ
p

σV

)

,

(24)

the market clearing price is given by

p

σV

=

(

1 + (N − 1) ϕ
N τ∗

) *
,τ

1/2
I

N
∑

i=1

in −
N
∑

n=1

ρσV sn +
ρσV z

M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
+
- , (25)
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andmarket noncompetitiveness χ is given by

χ =
1 + (N − 1) ϕ

M N − 2 − (M N + N − 2) ϕ
. (26)

Equation (22) defines the endogenous parameter ϕ as the solution to an equation

whose other parameters are all exogenous. Once ϕ is determined, χ is expressed as a

simple function of ϕ,M andN in (26). Price informativeness (ϕ) andmarket noncom-

petitiveness (χ) together capture the important aspects equilibrium quantities and

prices. Wediscuss howexogenous parameters determine equilibrium ϕ and χ in detail

in the next section.

In (22), there are two dimensionless products of dimensional quantities: ρσVσS

and ρσVσZ . Changing units of measurement has no real effect on (22), (24), (25), and

(26). This implies ρ and σV can be interpreted as scaling variable with ρ = σV = 1 as-

sumed without loss of generality. Thus, if the four dimensional exogenous variables ρ,

σV ,σS , andσZ , change in such away that the two dimensionless products ρσVσS and

ρσVσZ do not change, then ϕ does not change, and the properties of the equilibrium

do not change in many respects.4

Existence and Uniqueness. Theorem 1 can be used to characterize existence and

uniqueness in terms of exogenous parameters only.

Corollary 1 (Existence andUniqueness). Assume ρ > 0 andσV > 0. Then there exists a

symmetric linear equilibrium, excluding trivial no-trade equilibria, if and only ifM N >

2 and at least one of the following three conditions holds:

(N − 1) τI = 0, (27)

σ2Z > 0, (28)

τI

(ρσVσS )
2
< M − 2

N
. (29)

If a symmetric linear equilibrium exists, it is unique.

4This property is shared by many finance models. Fundamental model properties depend on the

ratio of the risks to be borne—measured by σV σZ and σV σS—to dollar risk-bearing capacity ρ−1. For
example, ρσV σZ or ρσV σS can become small either because risk bearing capacity increases (ρbecomes

small) or because the risks to be borneσV σZ and σV σS become small. Either way, the effect on equilib-

rium is the same.
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A symmetric linear equilibriumexistswhen either (1) there is no information asym-

metry, in which case ϕ = 0 is defined by continuity (in condition (27)); or (2) there is

any amount of noise trading (in condition (28)); or (3) endowment shocks are large

enough, relative to the precision of private signals, to prevent the market from shut-

ting down due to too much adverse selection (in condition (29)). These conditions are

equivalent to the second-order condition (23), which in turn results from (1) main-

taining concavity of the objective function in (14) and (2) ruling out trivial no-trade

equilibria (M N πP , 0). Uniqueness follows from (22) as its left hand side is strictly

decreasing in ϕ and the right hand side is weakly increasing in ϕ.

While the endowment shock needs to be sufficiently large for an equilibrium to

exist, an arbitrarily small amount of exogenous noise trading guarantees existence of

equilibrium. Unlike optimizing traders who receive endowment shocks, noise traders

are willing to incur whatever trading costs are necessary to sustain an equilibriumwith

trade.

3 Competition and Price Informativeness

In this section we discuss how price informativeness and competition depend on ex-

ogenous parameters when there is some information asymmetry ((N − 1) τI > 0) but

no noise trading (σZ = 0). While there remain six exogenous parameters (M ,N , ρ, σV ,

σS and τI ), equations (22), (23), and (26) show that characterizing ϕ and χ only requires

the three exogenous parameters M , N , and “adverse selection” θ, defined by

θ :=
τI

(ρσV σS )
2
. (30)

This parameter θ ∈ (0, ∞] is the ratio of private information to endowment shocks. A

higher precision of private information (τI ) increases adverse selection; a higher vari-

ance of endowment shocks (σ2
S
) reduces adverse selection.

Corollary 2. Assume (N − 1) τI > 0 and σ2Z = 0. Then a symmetric linear equilibrium

exists if and only if the second order condition

θ < M − 2

N
(31)

15



holds. If equilibrium exists, price informativeness ϕ is given by

ϕ =
θ

1 + θ
, (32)

andmarket noncompetitiveness χ is given by

χ =
1 + N θ

M N − 2 − N θ
. (33)

If equilibrium exists for particular values of M , N and θ, then it exists for larger M ,

larger N , and smaller θ. We discuss next the comparative statics results for the three

exogenous parameters M , N and θ.

The Number of Competitors (M ). Increasing the number of competitors M implies

increasing competition. Not surprisingly, (33) implies that market noncompetitive-

ness χ monotonically decreases as M increases. As M → ∞, equilibrium outcomes

approach perfect competition since χ → 0, and the market becomes perfectly com-

petitive in the sense that all traders, acting as price takers, achieve their target inven-

tories in one round of trading (see (19)); this equilibrium corresponds to the model of

Diamond and Verrecchia (1981). The number of competitors (M ) indeed captures the

notion of competitiveness of the market.

More surprisingly, (32) implies that price informativeness ϕ is not affected when

the number of competitors M changes. Price informativeness ϕ is determined solely

by adverse selection θ. It does not depend on howmany traders share the same private

information or how many different groups have different private information. This is

counter to the conventional wisdom that more competition makes prices more infor-

mative by inducing traders to shade their bids less and thus trade more aggressively.

While traders trade more aggressively on private information as M increases, this

does not lead to more informative price because traders also trade equally more ag-

gressively on their endowment shocks. The proportion by which traders shade their

trading, as a function ofM , is the same for private information and endowment shocks

because optimal exercise of market power is governed by the same incentives for both

private information and endowment shocks.

The Number of Groups (N ). Setting the model up with N groups of M traders dis-

tinguishes the effects of changing the number of groups from changing the number of
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members of each group.

Like increasing the number of competitors M , (33) implies that noncompetitive-

ness χ decreases as the number of groups N increases. Unlike the result for the num-

ber of competitors M , as the number of groups with different private information (N )

goes to infinity, equilibrium outcomes do not approach perfect competition. Taking

the limit as N approaches infinity in (33) yields

χ → θ

M − θ > 0 as N →∞. (34)

Theeconomic intuition forwhy themarket remains imperfectly competitive, evenwhen

the total number of traders goes to infinity, is that each group’s uniquely different pri-

vate information is known to only a finite number of traders M . Traders maintain in-

centives to trade less aggressively because they have market power over their private

information. With M = 1, the equilibrium is like monopolistic competition. Like the

corresponding result for changing M , changing N does not change price informative-

ness ϕ.

Adverse Selection (θ). Adverse selection (θ) affects both price informativeness and

competition. Equation (32) implies that price informativeness (ϕ) depends only on

θ and increases in θ. More adverse selection increases the informativeness of prices.

Equation (33) implies that market noncompetitiveness (χ) depends on M , N and θ.

When M and N are fixed and θ varies, χ increases in θ, and thus increases in ϕ. This

implies an inverse relationship between price informativeness and competition: As

adverse selection θ increases, a more informative price (larger ϕ) is associated with

less competition (larger χ).

This inverse relationshipbetweenprice informativeness andcompetitionmayseem

counterintuitive. Imperfect competition is mainly driven by information asymmetry.

As the price becomes more informative, each trader knows more about others’ infor-

mation, and there is less information asymmetry. One might think that therefore the

market should be more competitive. Our earlier discussion on the opposing effects of

competition on the price and the quantity, as shown in (19) and (20), provides eco-

nomic intuition for this result.

We can also examine the positive relationship between ϕ and χ in the best response

strategy (21). Suppose all traders have the sameconjectures about other traders’ strate-
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gies, given by πI , πP , πS and the resulting ϕ and χ defined by (12) and (16). By aggre-

gating across traders, we find the best-response value of market noncompetitiveness,

denoted BR (χ). Since traders share the same conjectures, the resulting best response

strategies are the same as well. To reduce the dimensionality of the best responses, we

impose a restriction that the ratio πP/πI is a fixed point conditional on ϕ. The assump-

tion χ ≥ 0 ensures the existence of a best response.

Corollary 3. Suppose each trader (m, n), for all m and n, takes as given other players’

strategies πI , πP and πS that satisfy

πP

πI

=

1 + τI + (N − 1) τI ϕ
(1 + (N − 1) ϕ) τ1/2I

and χ ≥ 0, (35)

where ϕ and χ are given as (12) and (16), respectively. Then themarket noncompetitive-

ness that results from the best response strategy is given by

BR (χ) =

(

1 + τI + (N − 1) τI BR (ϕ)

1 + τI + (N − 1) τI ϕ

) (

1 + χ

M N − 1 +
ϕ (1 + χ)

M − (M − 1) ϕ +
ϕχ

M − (M − 1) ϕ

)

.

(36)

The noncompetitiveness that results from the best response strategies is given by

the product of the two factors of the right-hand side in (36). The first factor is a co-

efficient that is independent of χ. This coefficient is greater than one if the price in-

formativeness that results from the best response strategies (BR (ϕ)) is higher than the

conjectured price informativeness (ϕ). If the conjectured price informativeness is a

fixed point (ϕ = BR (ϕ)), which is the case when the conjectured strategies are already

in equilibrium, the coefficient reduces to one.

There are three terms in the second factor on the right-hand side of (36). The first

term is the pure effect of competition, which corresponds to the case when there is no

private information ((N − 1) τI = 0). When all traders conjecture χ = 0, the best re-

sponse strategy yields 1
M N−1 because all traders are risk averse and owning the asset is

risky. As the conjectured χ increases, the best response χ increases. The condition that

there are strictly more than two traders (M N > 2) guarantees that the slope is strictly

less than one. The second and the third terms reflect the effect of price informativeness

on competition. The distinction between the two terms comes from the fact that, in a

double auction, all traders are demanders aswell as suppliers of liquidity. As a liquidity

supplier, a trader is concerned about suffering the winner’s curse. When other traders
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want to buy an asset from the trader, it is likely that the valuation of the asset is higher

because other traders may have different information from him. As a liquidity deman-

der, the trader needs to compensate other traders for the winner’s curse that they may

suffer as a result of his own private information. This compensation disappears if the

conjectured χ is zero because trading becomes costless. The two winner’s curses—as

a liquidity supplier and as a liquidity demander—becomemore severe as the price be-

comesmore informative. This feeds back into the best response strategy and results in

the inverse relationship between price informativeness and competition.

Collecting all terms, (36) shows how and why price informativeness and competi-

tion are inversely related in equilibrium. This also explains the equilibrium existence

condition. When price informativeness is a fixed point (ϕ = BR (ϕ)), the slope of χ

is the sum of all three coefficients in the second line. The sum needs to be strictly less

than one for an equilibrium to exist. This is equivalent to the equilibriumsecond-order

condition (23).

4 Equilibriumwith Vanishing Noise Trading

When there is no noise trading (σZ = 0), equilibrium does not exist unless adverse

selection θ is sufficiently small (θ < M − 2
N
). This nonexistence result suggests that

some issue needs to be addressed in our model. While informal intuition may suggest

that there is no trade when equilibrium fails to exist—and indeed, a trivial no-trade

equilibrium does exist is this case—nonexistence does not formally imply no trade.

Instead, nonexistence represents failure of themodel tomakeaprediction even though

no trade is a possible equilibrium outcome.

We address this modeling issue by defining an equilibrium without noise trading

to be the result of taking a limit as noise trading vanishes (σZ → 0). We interpret van-

ishing noise as adding small perturbations to the trading environment. While this is in

the spirit of trembling hand perfect equilibrium, it involves perturbations of the play-

ers’ actions rather than the exogenous perturbations which we propose. According to

Corollary 1, any arbitrarily small amount of exogenous noise trading allows an equi-

librium to exist (because (28) is satisfied), despite the presence of an arbitrarily large

amount of adverse selection (which makes (29) fail to be satisfied). Confirming intu-

ition, there is indeed no trade in such a limit. Contrary to intuition, the price remains

noisy even in the limit when both endowment shocks and noise trading vanish. This
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result contrasts with the fully revealing prices obtained by Milgrom and Stokey (1982)

and the price taking assumed by Grossman and Stiglitz (1980).

The next theorem formalizes this result.

Theorem 2. Let E denote an economy described by {M, N, θ, σZ } such that M N > 2,

(N − 1) τI > 0, and σZ = 0. Let (Ek )
∞
k=0 = (E0, E1, . . . ) denote an arbitrary sequence of

economies such that Ek has exactly the same exogenous parameters as E for all k except

thatσ2Z (k ) > 0 andσ2Z (k )→ 0 as k → ∞. Then there exists a unique equilibrium in Ek

for all k . Moreover, price informativeness ϕk in economy Ek satisfies

ϕk → ϕ := min

{

θ

1 + θ
,

M N − 2
M N − 2 + N

}

as k → ∞, (37)

andmarket noncompetitiveness χk satisfies

χ−1k → χ
−1 := max

{

M N − 2 − N θ

1 + N θ
, 0

}

as k →∞. (38)

Comparing Theorem 2 with Corollary 2 shows that adding vanishing noise trading

does not have any effect when an equilibrium already exists without vanishing noise

(θ < M − 2
N
). When an equilibrium does not exist without noise trading, adding van-

ishing noise trading keeps the price sufficiently noisy to support an equilibrium that

is infinitely noncompetitive. The price is noisy enough so that the second-order con-

dition is satisfied for all k . This result is unique to noise trading; a similar result is not

obtained from vanishing endowment shocks. Although the limit as noise trading van-

ishes hasno trade, this limit is not a trivial no-trade equilibriumbecause thenoisyprice

is well-defined in the limit.

NoisyPriceWithVanishingNoise. Whenan equilibriumdoes not existwithout van-

ishing noise (θ ≥ M − 2
N
), price informativeness is independent of adverse selection θ

and is determined byM andN . The economic intuition for this result is that in such an

equilibrium, the market becomes infinitely noncompetitive (since χ → ∞ from (38)).

This implies that each trader incorporates half of his private information into prices

(since 1
2

(

1 − 1
1+2χ

)

→ 1
2
in (20)).

If all traders with the same private information collude (equivalent to M = 1), this

implies that price informativeness ϕ satisfies ϕ ≈ 1/2 for large enough N (or, more

precisely, ϕ = 1
2

�
1 − 1

N−1
�
). This corresponds to the monopolistic competition limit
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in Kyle (1989) as the number of different informed traders (N ) approaches infinity. As

the number of non-colluding, oligopolistic competitors within each group increases

to M = 2, 3,. . ., the informativeness of prices ϕ increases to approximately 2/3, 3/4,

4/5,. . ., for large enough N . While each trader still incorporates half of his marginal

private information into prices, the price becomes more informative when the over-

lapping private information is shared among many traders M .

The outcome of this oligopolistic competition among M competitors resembles

quantity competition in a Cournot equilibrium in which each firm tries to maximize

its profit by supplying only the half of its residual demand. As the number of firms

increases in quantity Cournot competition, each firm becomes a smaller fraction of

the market, and the total quantity produced increases to fractions 2/3, 3/4,. . . , of the

quantity with perfect competition. Of course, the important distinction here is that

even when traders become “small” in terms of their private information, they remain

“large” in the market because their trading costs are constrained by vanishingly low

market liquidity, not by risk aversion.

Price ImpactwithVanishingNoise. Theequilibriumwithvanishingnoise replaces a

trivial no-trade equilibrium—which has no well-defined price—with a non-trivial no-

trade equilibrium in which the price is well-defined as a limit. Mathematically, the

difference between taking a limit andnot taking a limit shows up in the denominator of

theσZ -term in the ϕ-equation (22). When a limit is taken, both the numerator and the

denominator of the σZ -term in (22) converge to zero, but the ratio has a well-defined

limit given by

(ρσVσZ )
2 / (N − 1)

τI
�

M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
�2 → max


1

M − 2
N

− 1
θ
, 0

 as σZ → 0. (39)

If θ > M−2/N , implyinganequilibriumwouldnot existwithoutnoise trading, this limit

is strictly positive. While noise trading vanishes, the price noise created by vanishing

noise remains strictly positive. The intuition for this result is that the price impact of

noise trading goes to infinity as σZ → 0.

According to (25), the price impact of noise trading λZ—the per-share price change
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in response to per-share noise trading—is defined by

λZ ≔

(

1 + (N − 1) ϕ
N τ∗

) *
,

ρσ2V
M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
+
- . (40)

When θ ≥ M − 2/N , the price impact of vanishing noise trading goes to infinity (see

(37).)

The limit result (39) implies that even though the expected losses of noise traders

E {z · λZ z} vanish as noise trading vanishes, because

E {z · λZ z} = λZσ
2
Z → 0 as σZ → 0, (41)

the variance of the price created by noise traders (var {λZ z}) does not vanish, because

λ2Zσ
2
Z → max


(M N − 1)2 (N − 1) τIσ2V

(M N − 2 + N )2 τ∗
*
,

1

M − 2
N

− 1
θ
+
- , 0

 as σZ → 0. (42)

Mathematically, this limit is finite because price impact λ goes to infinity at the same

rate as σZ goes to zero. Since the price noise created by vanishing noise trading does

not vanish, the price is sufficiently uninformative to allow an equilibrium to exist at the

limit as noise trading vanishes.

No-TradeTheorem. In thevanishing-noise equilibrium, themarket is infinitelynon-

competitive (χ → ∞), and thus there is no trade (since 1
1+2χ

→ 0 in (19)). For σZ > 0,

the second-order condition (23) holds as a strict inequality, but the second-order con-

dition holds as an exact equality in the limit σZ → 0. Even though the price is well-

defined in the limit, the at-the-limit-strategies Xm,n(p) ≡ 0 themselves define a trivial

no-trade equilibrium in which there is no well-defined price.

Recall that initial endowments can have unequal, deterministic components sn in

(2). Thus, it is common knowledge that there are ex-ante gains from trade when initial

allocations are different. Even though there may be large potential gains from trade

to equalize inventories across traders, traders will not participate in any trade at all.

When adverse selection (θ) is sufficiently severe (i.e., θ ≥ M − 2
N
), there is no trade

even when there is a small endowment shock or when many traders have the same

private information.

The economic intuition for this market breakdown is that the market is so illiquid
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that any attempt to trade away from inefficient endowments would move the price

infinitely against the traders. While this is similar to the lemons problem described

by Akerlof (1970), the nature of information asymmetry is different because Akerlof

assumes that only the sellers have private information. We show that even when each

trader has private information in a symmetric fashion, the market may fail to realize

ex-ante gains from trade.

Our no-trade theorem can be contrasted with other no-trade results which obtain

fully revealing prices in the absence of noise trading. WhileMilgrom and Stokey (1982)

allow more general preferences and distributions of random variables, they do not

specify a mechanism for determining prices.5 Moreover, they assume the initial al-

location of resources is Pareto optimal. In contrast, our model allows inefficient initial

allocations and also requires the market-clearing equilibrium price to be defined by

the well-defined mechanism of aggregating demand schedules. While we obtain no

trade, the price in such an equilibrium cannot be fully revealing for any finite M . The

price cannot be more informative than (37).

The equilibrium in demand schedules is attractive because all traders are treated

symmetrically and limit orders are protected. These are properties of well-functioning

markets which organized exchanges and their regulators strive to implement. From

theperspectiveofwelfare economics, themainweaknessof theequilibriumindemand

schedules is thatmodest adverse selectioncanmake tradebreakdownevenwhen there

are large gains from trade due to large non-stochastic initial endowments.

Whether there are better trading mechanisms for internalizing gains from trade is

an interesting issue. Liu and Wang (2016) examine a dealer-market model in which

dealers make profits by buying at the bid and selling at the offer while customers are

not allowed to tradewith one another at the the sameprice (such as themidpoint of the

bid-ask spread). Themonopolistic spread profits earned by dealers may allow trade to

occur when it would not occur in our equilibrium in demand schedules. Duffie and

Zhu (Forthcoming) study a workup process that allows traders to trade at fixed prices

which do not necessarily clear the market. Glode and Opp (2016) study the welfare

effects of trading with intermediation chains. Malamud and Rostek (2016) study the

welfare effects of decentralized exchanges when traders have heterogeneous risk aver-

sion.

5Tirole (1982) considers both static and dynamic settings. Dow, Madrigal and da Costa Werlang

(1990) emphasize market completeness and common knowledge.
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Comparative Statics: Large Number of Traders. Defining an equilibrium using a

limit when noise trading vanishes makes it possible to describe comparative statics

properties of the equilibrium when there is no noise trading and equilibrium would

otherwise not exist because there is too much adverse selection (θ > M − 2
N
).

For finite adverse selection (θ < ∞), the effects of changing the number of traders

per group M or the number of groups N follow from Theorem 2. As M increases, the

second order condition (θ < M − 2
N
) becomes more relaxed andmust eventually hold

for sufficiently large M . Equation (38) implies that the equilibrium becomes compet-

itive in the sense that χ → 0 as M → ∞. Equation (37) implies that when M is large

enough for the second order condition to be satisfied, price informativeness ϕ is de-

termined by θ alone and the price remains noisy in the sense that ϕ → θ/(1 + θ) as
M →∞.

As N increases, the second order condition (θ < M − 2
N
) needs not be satisfied.

While increasing N does relax the second order condition, its effect is muchmore lim-

ited. If (and only if) θ is sufficiently large (θ ≥ M ), the market remains infinitely non-

competitive asN → ∞ (see (38).) The price becomes more informative as the number

of groups increases but remains noisy with ϕ→ M/ (M + 1) as N → ∞ (see (37)).

If endowment shocks are zero (σS = 0), then adverse selection is infinite (θ = ∞)
and the second order condition is never satisfied. For all M , equilibrium remains in-

finitely noncompetitive and there is no trade. In the limit M → ∞, the price becomes

fully revealing as half of each trader’s private information is incorporated into the price.

Fully revealing prices and price taking are mutually exclusive with strategic trading.

This result is theoppositeof competitive rational expectationsmodels suchasGross-

man and Stiglitz (1980), Hellwig (1980), and Diamond and Verrecchia (1981), where in

the limit as noise trading vanishes, (1) traders remain price takers and (2) prices be-

come fully revealing. These limiting results might be justified with the following in-

formal logic: Competitive rational expectations models are an approximation to what

would happen in an oligopolistic model with an arbitrarily large number of traders. As

noise trading vanishes, the noise from prices will disappear. Thus, it is reasonable to

believe that price noise will disappear and price taking behavior will apply in a non-

competitive model with a large number of traders observing the same private infor-

mation.

Ourmodel articulates a flaw in the preceding argument. In amodel with private in-

formation, thecompetitivenessof themarket cannotbeassumedexogenouslybecause
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both market competitiveness and price informativeness are determined by strategic

trading motives. The resulting inverse relationship between competition and price in-

formativeness is so important that the market may remain noncompetitive even as

infinitely many traders compete over the same information. Moreover, the model of

Grossman and Stiglitz (1980) entails awell-knownparadox that no trader has an incen-

tive to acquire costly information because the price is fully revealing as noise trading

vanishes. This paradox disappears in our model because the price is always partially

revealing with a finite number of traders.

Order of Limits. Our symmetric model is in general simpler than asymmetric mod-

els in which traders differ in the quality of their information. For example, Grossman

and Stiglitz (1980) describe an asymmetric model whose equilibrium is more analyt-

ically complicated due to having both informed and uninformed traders. Our model

withN = 2,σ2S = 0, andσ
2
Z > 0 resembles theirs asM → ∞, with the informed andun-

informed replaced by two groups of symmetrically informed traders with independent

private signals.

The approach of competitve models such as Grossman and Stiglitz (1980), Hellwig

(1980), and Diamond and Verrecchia (1981) implicitly takes the limit M → ∞ first.

Taking the limit asM →∞ in (22) and (23) for σZ > 0 yields

(1 − ϕ)3 = (ρσVσZ )
2

(N − 1) τI
ϕ, where ϕ<1. (43)

This equilibrium corresponds to a symmetric version of the equilibrium of Hellwig

(1980). Since ϕ < 1, (26) implies χ → 0 for any positive amount of noise trading σZ so

that the market is perfectly competitive. Next, taking the limit σZ → 0 in (43) makes

the price fully revealing since ϕ → 1. By first assuming M to be infinity, their analysis

completely assumes away the delicate interaction between price informativeness and

market competition.

The fact that different results are obtained when limits are taken in different orders

implies that different results are also possible when a double limit is taken with both

σZ → 0 and M → ∞. Suppose very small target values χ and 1 − ϕ, denoted χ̂ and
1 − ϕ̂, are given. Now choose M = 1

χ̂(1−ϕ̂) and σ
2
Z =

(N−1)τI
ρ2σ2

V

(1−ϕ̂)3
ϕ̂

. Then it can be shown

fromTheorem 1 ((22) and (26)) that both perfect competition and fully revealing prices

are obtained because
χ

χ̂
→ 1 and

1−ϕ
1−ϕ̂ → 1 as both χ̂ → 0 and ϕ̂→ 1 simultaneously.
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Intuitively, prices can bemademore informative bymaking noise tradingσZ small,

and making the market simultaneously more competitive requires M to grow large

faster to compensate for the effect from increased price informativeness (M = 1
χ̂(1−ϕ̂)).

This implies as the price becomes more informative, increasingly more traders must

share and compete over the same information in order for prices to be fully revealing.

The fact that such a strong condition is necessary to replicate the results of competitive

models shows that perfect competition is not an adequate approximation for markets

with a large number of traders and, thus, strategic trading motives must be taken into

account when traders have private information.

5 Conclusion

By examining the comparative statics properties of an equilibrium in demand sched-

ules, we have found that a strategic equilibrium does not approach a rational expecta-

tions equilibrium as the market becomes large. Perfect competition and fully reveal-

ing prices cannot be achieved simultaneously. The result that traders choose not to

trade when endowment shocks are sufficiently small indicates that an equilibrium in

demand schedules does not efficiently internalize gains from trade. It is an interesting

question for future research whether other trading mechanisms can achieve greater

gains from trade than the single-price double auction analyzed in this paper.
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A Proofs

Proof of Lemma 1. As discussed, we assume πC = 0 without loss of generality. Since

πI , 0 and (N − 1) τI , 0, there is information asymmetry and the equilibrium price is

potentially informative about the signals of traders in other groups. Trader (m, n) can

learn from the intercept of the residual supply schedule pm,n in (8).

(M N − 1) πP

pm,n

σV

=

∑

(m ′,n ′),(m,n)

(πI in ′ − πS ρσV sn ′) + ρσV z . (44)

WhenM , 1, the value of pm,n already includes private information in and endowment

sn because of trading of other traders in his group. By subtracting the overlapping in-

formation and endowments, we get

(M N − 1) πP

pm,n

σV

− (M − 1) πI in + (M − 1) πS ρσV sn

= M
∑

n ′,n

πI in ′ −M
∑

n ′,n

πS ρσV sn ′ + ρσV z .
(45)

Dividing both sides by M (N − 1) πI yields

(M N − 1)
M (N − 1) πI /πP

pm,n

σV

− (M − 1)
M (N − 1)in +

(M − 1)
M (N − 1) πI /πS

ρσV sn

=

∑

n ′,n in ′

N − 1
−

∑

n ′,n ρσV sn ′

(N − 1) πI /πS

+

ρσV z

M (N − 1) πI

.

(46)

Since v , en , and
∑

n′,n en′
N−1 − πS

πI

∑

n′,n ρσV sn′
N−1 +

ρσV z

M (N−1)πI
are independently distributed, it

is straightforward to show that

τ∗ = σ2V · var−1
{

v
���in,

(M N − 1)
M (N − 1) πI /πP

pm,n

σV

− (M − 1)
M (N − 1)

in +
(M − 1)

M (N − 1) πI /πS

ρσV sn

}

= 1 + τI + τI var
−1

{∑

n ′,n en ′

N − 1 − πS

πI

∑

n ′,n ρσV sn ′

N − 1 +

ρσV z

M (N − 1) πI

}

.

(47)

Writing τ∗ in the form of (10) implies

1

ϕ
= 1 +

(

ρσVσS

πI /πS

)2

+

1

N − 1

(

ρσVσZ

M πI

)2

. (48)
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The conditional expectation is a weighted average of two signals.

E

{

v

σV

����� in,
(M N − 1)

M (N − 1) πI /πP

pm,n

σV

− (M − 1)
M (N − 1)

in +
(M − 1)

M (N − 1) πI /πS

ρσV sn

}

=

√
τI

τ∗
in +

ϕ
√
τI

τ∗

(

(M N − 1)
M πI /πP

pm,n

σV

− (M − 1)
M

in +
(M − 1)
M πI /πS

ρσV sn

)

=

√
τI

τ∗

(

in +
(N − 1) ϕπP

πI

pm,n

σV

−
(

in −
πP

πI

pm,n

σV

− πS

πI

ρσV sn

)

(

M − 1
M

)

ϕ

)

.

(49)

If (N − 1) τI πI = 0, there is no learning from the price, and the conditional expectation

is simply

E

{

vn

σV

����� in, sn,pm,n

}

=

√
τI

τ∗
in, (50)

which is consistent with (49) when ϕ = 0 is substituted. �

Proof of Lemma 2. Substituting the conditional expectation (13) into the optimal

demand ((19)) allows the optimal quantity demanded xm,n to be written as

(1 + 2χ)M ρσV xm,n = τ
1/2
I in −

(

τ∗ − (N − 1) ϕτ1/2I

πP

πI

)

pm,n

σV

− ρσV sn

−
(M − 1) ϕτ1/2I

M

(

in −
πP

πI

pm,n

σV

− πS

πI

ρσV sn

)

.

(51)

Substituting the residual supply curve (7) allows the optimal quantity demanded xm,n

in (51) to be implemented with a demand schedule Xm,n given by

*
,1 + χ +

ϕτ
1/2
I

M 2πI

+
-M ρσV Xm,n (p | in, sn) = τ

1/2
I in −

(

τ∗ − (N − 1) ϕτ1/2I

πP

πI

)

p

σV

− ρσV sn

−
(M − 1) ϕτ1/2I

M

(

in −
πP

πI

p

σV

− πS

πI

ρσV sn

)

.

(52)

In moving from the optimal quantity on the residual supply schedule (51) to the

demand schedule (52), we have shown that a trader in a symmetric linear equilibrium

can implement a strategy which picks the best point on the linear supply schedule by

submitting a demand schedule which is a function of price and is measurable with
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respect to his private information and endowment shock. �

Proof of Theorem 1. Collecting terms in the demand schedule (21) yields

*
,1 + χ +

ϕτ
1/2
I

M 2πI

+
-M ρσV Xm,n (p | in, sn) =

(

1 − (M − 1) ϕ
M

)

τ
1/2
I in

− *,τ
∗ −
ϕτ

1/2
I πP

πI

(

N − 1

M

)+
-

p

σV

− *,1 −
(M − 1) ϕτ1/2I πS

M πI

+
- ρσV sn .

(53)

Now equating the coefficients in the best response demand schedule produces the fol-

lowing three equations:

πP

πI

=

τ∗ − ϕτ1/2I

�
N − 1

M

�
πP

πI
(

1 − (M−1)ϕ
M

)

τ
1/2
I

, (54)

πS

πI

=

1 − (M−1)ϕτ1/2I

M
πS

πI
(

1 − (M−1)ϕ
M

)

τ
1/2
I

, (55)

πI =

(

1 − (M−1)ϕ
M

)

τ
1/2
I

(

1 + χ +
ϕτ

1/2
I

M 2πI

)

M

. (56)

Combining with (16), these equations can be solved as functions of M , N , τI , and ϕ:

πI =
(M N − 2 − (M N + N − 2) ϕ) τ1/2I

M (M N − 1) , (57)

πS =
1

τ
1/2
I

πI =
(M N − 2 − (M N + N − 2) ϕ)

M (M N − 1)
, (58)

πP =
τ∗

(1 + (N − 1) ϕ) τ1/2I

πI =
(M N − 2 − (M N + N − 2) ϕ) τ∗

M (M N − 1) (1 + (N − 1) ϕ)
, (59)

and

χ =
1 + (N − 1) ϕ

M N − 2 − (M N + N − 2) ϕ
. (60)

Substituting πI , πP , πS , and χ into (21) yields (24). Substituting (24) into the market

clearing condition (3) and rearranging yields (25).

To determine the value of ϕ, first consider the casewhen (N − 1) τ , 0. substituting
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(58) and (57) into (12) yields

1 − ϕ
ϕ
=

(ρσV σS )
2

τI
+

(ρσV σZ )
2 / (N − 1)

τI
�

M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
�2 . (61)

To exclude trivial no-trade equilibrium, we require (M N − 1) πP , 0, that is,

M N − 2 − (M N + N − 2) ϕ , 0. (62)

The second-order condition (χ > −1
2
) combined with no trivial no-trade equilibrium

implies that

ϕ <

(

M N − 2
M N + N − 2

)

or ϕ >

(

M

M − 1

)

. (63)

The second inequality is ruled out because ϕ ≤ 1. If (N − 1) τ = 0, then ϕ = 0. This

satisfies the second-order condition because M N > 2. �

Proof of Corollary 1. Proving this corollary is accomplished by analyzing the two

equations (22) and (23) determining the endogenous parameter ϕ. First we prove if

part. If M N > 2 and (N − 1) τI = 0, ϕ = 0 and this satisfies the second order condition
(23). If M N > 2 and (N − 1) τI , 0, ϕ is determined by (22). Rewrite (22) as

L (ϕ) = R (ϕ) , (64)

where we define L (ϕ) and R (ϕ) by

L (ϕ) :=
1 − ϕ
ϕ
− (ρσVσS )

2

τI
(65)

and

R (ϕ) :=
(ρσV σZ )

2 / (N − 1)
τI
�

M N−2
M N−1 −

�
M N+N−2

M N−1
�
ϕ
�2 . (66)

If σZ = 0, (22) reduces to L (ϕ) = 0 with a unique solution. The solution satisfies 23

if and only if (29) holds. If σZ > 0, R (ϕ) is strictly andmonotonically increasing for all

ϕ in
�
0,
�

M N−2
M N+N−2

��
, with R (0) < ∞ and R (ϕ) → ∞ as ϕ →

�
M N−2

M N+N−2
�
. L (ϕ) is strictly

decreasing everywhere, with L (ϕ) → ∞ as ϕ → 0 and L
�

M N−2
M N+N−2

�
< ∞. Therefore

there always exists a unique solution to (64) satisfying 0 < ϕ < M N−2
M N+N−2 .
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Nowwe prove only if part. It suffices to show that there exists no equilibriumwhen

M N ≤ 2. If M N ≤ 2, (23) implies ϕ < 0, which cannot be satisfied because 0 ≤ ϕ ≤
1. �

ProofofCorollary2. Equation (32) is adirect implicationofCorollary1 andTheorem

1 when σ2Z = 0 is substituted into (22). This completes the proof.

Proof of Corollary 3. From (51), it follows that

BR

(

πP

πI

)

=

τ∗ − (N−1)ϕτ1/2I πP

πI
− (M−1)ϕτ1/2I

M
πP

πI

τ
1/2
I − (M−1)ϕτ1/2I

M

, (67)

which simplifies to

BR

(√
τI πP

τ∗πI

)

=

1

1 −
�
1 − 1

M

�
ϕ
−

�
N − 1

M

�
ϕ

1 −
�
1 − 1

M

�
ϕ

(√
τI πP

τ∗πI

)

(68)

This implies that πP

πI
that satisfies (35) solves the fixed point problem in the sense πP

πI

would be an equilibrium value if ϕwere an equilibrium value.

Again from (51), it follows that

BR (πP ) =
τ∗ − (N − 1) ϕτ1/2I

πP

πI
− (M−1)ϕτ1/2I

M
πP

πI
(

1 + χ +
ϕτ

1/2
I

M 2πI

)

M

(69)

By substituting (35) and (16) into (69), we get

BR (πP ) =

τ∗
(

1 − (N− 1
M )ϕ

1+(N−1)ϕ

)

(

1 + χ + χ
(N− 1

M )ϕ
(1+(N−1)ϕ)

)

M

. (70)

The resultingmarket noncompetitivenessBR (χ) follows substituting (70) into the def-

inition of χ (16):

BR (χ) =
BR (τ∗)

M (M N − 1)BR (πP )
, (71)

which yields (36). �
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Proof of Theorem 2. For given k , economy Ek has an equilibrium because exoge-

nous noise trading satisfies σ2Z (k ) > 0. In equilibrium, ϕ is determined as a solution

to (22), or, equivalently, as a solution to (64). Therefore for all k , there exists unique ϕk

which solves

(ρσVσZ (k ))2

(N − 1) = R (ϕk ) ·
(

M N − 2
M N − 1 −

(

M N + N − 2
M N − 1

)

ϕk

)2

, (72)

and satisfies the second-order condition (23). As k approaches infinity, the left hand

side of (72) approaches zero. Then possible solutions to (72) solve either R (ϕk )→ 0 or

ϕk →
M N − 2

M N + N − 2 . (73)

Consider a candidate solution ϕcandidate that solves R (ϕcandidate) = 0. Since an equilib-

rium does not exist in economy E and more specifically (29) does not hold, ϕcandidate

does not satisfy the second-order condition (23). Therefore, we obtain (37). Substitut-

ing (37) into (26) yields (38). �
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